1
|
Yan Z, Li T, Zou G, Zhang X, Qu L, Wei Y. Probiotic Fermentation of Defatted Cottonseed Meal for Sustainable Foods and Non-Food Applications. Microorganisms 2025; 13:1020. [PMID: 40431193 PMCID: PMC12114460 DOI: 10.3390/microorganisms13051020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Cottonseed is a valuable source of high-quality proteins and oils. Defatted cottonseed meal (DCSM), a by-product of cottonseed oil extraction, holds significant potential as a sustainable protein resource. This review outlines the chemical composition, structural features, and unique properties of cottonseed, with a focus on its inherent antinutritional factors, such as gossypol. Strategies for enhancing the utilization of DCSM as a protein source are systematically evaluated, including physical, chemical, and biological methods used to eliminate or reduce antinutritional components. Among these, microbial fermentation, particularly solid-state fermentation, is highlighted as a promising, eco-friendly approach for detoxification and nutritional improvement. This review further discusses critical factors influencing the removal of anti-nutritional compounds, such as pretreatment methods, fermentation parameters, and microbial strains. The efficacy of probiotic strains (e.g., Bacillus and yeasts) in enhancing the protein digestibility, amino acid profiles, and functional properties of DCSM is discussed. Additionally, recent advances in the application of fermented cottonseed protein in foods (e.g., animal feed, functional peptides, and food additives) and non-food sectors (e.g., biofuels and bioplastic) are explored. The integration of probiotic-driven fermentation processes is proposed as a strategy to exploit the full nutritional and economic potential of DCSM, paving the way for its broader and sustainable use in foods and non-food applications.
Collapse
Affiliation(s)
- Zhanqiang Yan
- School of Medicine, Huanghe Science & Technology University, School of Chemical Engineering, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Tian Li
- School of Medicine, Huanghe Science & Technology University, School of Chemical Engineering, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Gen Zou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Southern Key Laboratory of Edible Fungus Resource Utilization, Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Xiaoling Zhang
- School of Medicine, Huanghe Science & Technology University, School of Chemical Engineering, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- School of Medicine, Huanghe Science & Technology University, School of Chemical Engineering, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou 450001, China
- Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wei
- School of Medicine, Huanghe Science & Technology University, School of Chemical Engineering, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou 450001, China
- Center for Lipid Biosynthetic Engineering, Muyuan Laboratory, 110 Shangding Road, Zhengzhou 450016, China
| |
Collapse
|
2
|
Yan Z, Liu Z, Zhou C, Tan Z. Anti-Nutritional Factors of Plant Protein Feeds for Ruminants and Methods for Their Elimination. Animals (Basel) 2025; 15:1107. [PMID: 40281941 PMCID: PMC12024329 DOI: 10.3390/ani15081107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
In recent years, the rapid development of the ruminant feeding industry and the limited availability and rising prices of traditional protein feed ingredients have renewed the focus on protein feeds in ruminant diets. Plant protein feeds are a core component of protein feeds for ruminants; however, the utilisation of both conventional and non-conventional plant protein feeds is limited by the presence of anti-nutritional factors (ANFs). In order to maximise the use of plant protein feeds and to promote their application in ruminant production, it is important to have a comprehensive understanding of the types and nature of their ANFs, their anti-nutritional mechanisms, and current effective methods of eliminating ANFs. Therefore, the types, anti-nutritional mechanisms, and elimination methods of ANFs in major plant protein feeds for ruminants are initially summarised in this review, which provides a reference for anti-nutritional factor elimination and the production of full-price compound feeds for ruminants.
Collapse
Affiliation(s)
- Zhiyong Yan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.Y.); (Z.L.); (Z.T.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Forage Breeding-by-Design and Utilization, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Zixin Liu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.Y.); (Z.L.); (Z.T.)
- State Key Laboratory of Forage Breeding-by-Design and Utilization, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Chuanshe Zhou
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.Y.); (Z.L.); (Z.T.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Forage Breeding-by-Design and Utilization, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Zhiliang Tan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.Y.); (Z.L.); (Z.T.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Forage Breeding-by-Design and Utilization, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Yuelushan Laboratory, Changsha 410125, China
| |
Collapse
|
3
|
Huang X, Hu Y, Li Z, Jiao B, Ma X, Guo Q, Wang Q. Dephenolization Methods, Quality Characteristics, Applications, and Advancements of Dephenolized Cottonseed Protein: Review. Foods 2025; 14:628. [PMID: 40002072 PMCID: PMC11854183 DOI: 10.3390/foods14040628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Dephenolized cottonseed protein is a high-protein product obtained through the further dephenolization of cottonseed meal or by removing the lint and shell of cottonseed, extracting the oil at a low temperature, and subsequently eliminating toxic substances (gossypol). This paper presents a review of the latest advancements in the dephenolization methods, quality characteristics, and application domains of dephenolized cottonseed protein. It focuses on enhanced dephenolization methods, and summarizes the composition, structural characteristics, functional properties, and recent research developments. Additionally, it identifies challenges, opportunities, and new directions for future research on dephenolized cottonseed protein, which will contribute to advancing the field of dephenolized cottonseed protein research.
Collapse
Affiliation(s)
| | | | | | | | | | - Qin Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; (X.H.)
| | | |
Collapse
|
4
|
Wang W, Zhang F, Chen H, Li S, Cao Z, Wang W, Yang H. Integrative Omics and Gene Knockout Analyses Suggest a Possible Gossypol Detoxification Mechanism and Potential Key Regulatory Genes of a Ruminal Lactobacillus rhamnosus Strain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1619-1629. [PMID: 39743891 DOI: 10.1021/acs.jafc.4c10044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Gossypol removal is crucial for the resourceful utilization of cottonseed meals in the food and feed industries. Herein, we investigated the comprehensive detoxification mechanism of a gossypol-tolerant strain of Lactobacillus rhamnosus (WK331) newly isolated from the rumen. Biodegradation assays showed that WK331 removes over 80% of free gossypol, of which 50% was biodegraded and 30% was converted into bound gossypol. Mass spectrometry identified eight novel degradation products of gossypol and proposed two previously unrecognized metabolic pathways: removal of the aldehyde group and cleavage of the naphthalene ring. Transcriptomic analysis revealed that an antioxidant defense system comprising NADH oxidase, thioredoxin peroxidase, and glutathione peroxidase is pivotal for enhancing gossypol tolerance. Subsequent gene knockout analysis found that bifunctional acetaldehyde-CoA/alcohol dehydrogenase and catechol 2,3-dioxygenase play important regulatory roles in gossypol biodegradation. Collectively, our findings unmask a novel detoxification mechanism of gossypol in ruminal bacteria, which may contribute to the further development of gossypol-degrading enzymes.
Collapse
Affiliation(s)
- Weikang Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hewei Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Liu W, Wang W, Li J, Li H, Gao T, Zhu B. Anaerobic fermentation of soybean meal by Bacillus subtilis ED-3-7 and its effect on the intestinal microbial community of chicken. Poult Sci 2025; 104:104564. [PMID: 39608285 PMCID: PMC11635776 DOI: 10.1016/j.psj.2024.104564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
A strain named ED-3-7 with a high protease-producing ability was screened in a previous study. This strain can be used for the anaerobic fermentation of soybean meal (SBM) to degrade macromolecular antigen proteins and antinutritional factors. We here evaluated the nutritional quality of the anaerobic fermented SBM and its effects on the chicken intestinal microbial community. Crude protein and acid-soluble protein contents increased by 11.68% and 342.61%, glycinin and β-conglycinin decreased by 82.04% and 88.42%, urease content decreased by 90.10%, and the trypsin inhibitor content was lower than the range specified in the detection kit. After being fed with the fermented SBM, the average daily gain, nutrient digestibility of the chickens increased, and their intestinal bacterial community exhibited significant changes. The richness and diversity of bacterial species decreased, and Lactobacillus became the dominant genus, which was conducive to the health of chicken intestines. The experimental results revealed that ED-3-7 anaerobic fermentation improved the nutritional quality of SBM and had beneficial effects on chicken intestines. Thus, the strain could be used for large-scale industrial production.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Sciences, Hebei Agricultural University, Baoding, China; Feed Microbial Technology Innovation Center of Hebei Province, Baoding, China
| | - Wei Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, China; Feed Microbial Technology Innovation Center of Hebei Province, Baoding, China
| | - Jia Li
- College of Life Sciences, Hebei Agricultural University, Baoding, China; Feed Microbial Technology Innovation Center of Hebei Province, Baoding, China
| | - Hongya Li
- College of Life Sciences, Hebei Agricultural University, Baoding, China; Feed Microbial Technology Innovation Center of Hebei Province, Baoding, China
| | - Tongguo Gao
- College of Life Sciences, Hebei Agricultural University, Baoding, China; Feed Microbial Technology Innovation Center of Hebei Province, Baoding, China.
| | - Baocheng Zhu
- College of Life Sciences, Hebei Agricultural University, Baoding, China; Feed Microbial Technology Innovation Center of Hebei Province, Baoding, China
| |
Collapse
|
6
|
Zhang L, Yang X, Nie C, Chen C, Zhang W. Combined transcriptomics and cellular analyses reveal the molecular mechanism by which Candida tropicalis ZD-3 adapts to and degrades gossypol. Int J Biol Macromol 2024; 279:135294. [PMID: 39233179 DOI: 10.1016/j.ijbiomac.2024.135294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Microbial degradation techniques are often considered an environmentally friendly and cost-effective strategy for reducing gossypol toxicity. However, the mechanism by which Candida tropicalis degrades gossypol remains unclear. In the current study, we aimed to establish the mechanisms of biodegradation and adaptation mechanisms by C. tropicalis ZD-3. The toxicological evaluation results revealed that ZD-3 adapts to gossypol primarily by activating the antioxidant defense system to alleviate the oxidative stress response induced by gossypol. Transcriptomic analyses further suggested that ZD-3 protects against gossypol toxicity via cell wall remodeling. The intracellular enzyme CTRG_04744 gene was significantly up-regulated under gossypol stress, and then expressed in Pichia pastoris. The purified AKR_Z1 degraded 92 % of gossypol within 48 h. In addition, the aldehyde group of gossypol was effectively eliminated to achieve the desired detoxification. Collectively, these results provide theoretical guidance for the continued development of bio-efficient strategies capable of degrading gossypol.
Collapse
Affiliation(s)
- Li Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Xiaolong Yang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China
| | - CunXi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
7
|
Guo X, Shang Z, Li Q, Wang L, Zhang Y, Liu S, Cao Y, Dong B. Whole-genome sequencing and assessment of a novel protein- and gossypol-degrading Bacillus subtilis strain isolated from intestinal digesta of Tibetan Pigs. BMC Microbiol 2024; 24:424. [PMID: 39438803 PMCID: PMC11495092 DOI: 10.1186/s12866-024-03588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND With the rapid development of animal husbandry, the demand for protein feed resources is increasing. Cottonseed meal (CSM) and soybean meal (SBM) are rich sources of protein. However, their application is limited due to the existence of anti-nutrients, which can be harmful to the digestion and absorption. A strain of Bacillus subtilis (Mafic-Y7) was isolated from digesta of intestines of Tibetan pigs. The strain showed high protease activity, which helps in degrading proteinic anti-nutritional factors in grain meal and in vitro degradation of free gossypol. In order to better understand this isolated strain, whole genome of Mafic-Y7 strain was sequenced and analyzed. Different effects on various grain meals were identified. RESULT The GC-depth Poisson distributions showed no bias suggesting high-quality genome assembly of Mafic-Y7. The whole genome sequencing showed that one chromosome with 4,248,845 base pairs(bp)and the genes total length with 3,736,524 bp was predicted in Mafic-Y7. Additionally, Mafic-Y7 possessed 4,254 protein-coding genes, and several protease genes were annotated by aligning them with databases. There are 55 protease genes, one phytase gene and one laccase gene were annotated in the gene sequence of Mafic-Y7. The average nucleotide identity between Mafic-Y7 and the GCA-000009045.1 homologous genome was 0.9938, suggesting a close genetic relationship between them at the species level. Compared with the closest four whole genomes, Mafic-Y7 was annotated the most abundant of protease genes (55 genes). The fermentation supernatant of Mafic-Y7 could increase the content of small peptides, water-soluble proteins, and acid-soluble proteins in vitro by 411%, 281% and 317% in SBM and 420%, 257% and 338% in CSM. After fermentation in grain meal by Mafic-Y7, the degradation rate of anti-nutritional factors in SBM, such as trypsin inhibitor, glycinin, and β-conglycinin was greater than 70%, and lectin was greater than 30%. The degradation rates of anti-nutritional factors in CSM, such as gossypol and phytic acid, were 82% and 26%, respectively.
Collapse
Affiliation(s)
- Xiangyue Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhenda Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, 960000, People's Republic of China
| | - Qianxi Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lixue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ying Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, 960000, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
- Sanya Institute of China Agricultural University, Sanya, 572025, People's Republic of China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
8
|
Ashayerizadeh A, Jazi V, Sharifi F, Toghyani M, Mohebodini H, Kim IH, Roura E. Fermented but Not Irradiated Cottonseed Meal Has the Potential to Partially Substitute Soybean Meal in Broiler Chickens. Animals (Basel) 2024; 14:2797. [PMID: 39409746 PMCID: PMC11475882 DOI: 10.3390/ani14192797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
This study was conducted to investigate and compare the effects of substituting soybean meal (SBM) with untreated cottonseed meal (CSM), fermented CSM (FCSM), or electron beam-irradiated CSM (ICSM) on the growth performance, cecal microbiota, digestive enzyme activity, apparent ileal digestibility (AID), and excreta gas emission of broiler chickens. A total of 384 one-day-old male broiler chickens were randomly assigned to four experimental diets, with eight replicates per diet and 12 birds per replicate, for six weeks. The experimental diets consisted of a control diet based on corn-SBM and three other diets in which 50% of the SBM (control) was substituted with CSM in its raw, irradiated, and fermented forms. The results showed that throughout the entire rearing period, feeding broiler chickens with ICSM significantly increased average daily gain (ADG) and body weight (BW) compared to the CSM diet (p < 0.05). Replacing 50% of SBM with FCSM led to a significant improvement in BW, ADG, and feed conversion ratio (FCR) compared to the CSM and ICSM diets (p < 0.05). Interestingly, no significant differences in BW, ADG, or FCR were observed between birds fed FCSM and those on the control diet (p > 0.05). Birds fed FCSM diets exhibited the lowest pH value in the crop, ileum, and ceca. Substituting SBM with FCSM significantly reduced Escherichia coli and Clostridium spp. counts in the ceca, while enhancing the presence of Lactobacillus spp. (p < 0.05). The AID of protein and ether extract was higher in the FCSM group than in the CSM and ICSM groups (p < 0.05). Compared to the CSM diet, ICSM feeding improved protein digestibility (p < 0.05). Broiler chickens on the FCSM diet exhibited higher intestinal amylase and protease activity than those on the other diets (p < 0.05). Furthermore, feeding diets containing FCSM significantly reduced ammonia emissions compared to the other diets (p < 0.05). Overall, our results indicated that microbial fermentation of CSM is a more effective approach than irradiation for enhancing the nutritional value of CSM. Therefore, FCSM is recommended as a viable alternative protein source that can safely replace up to 50% of SBM in broiler chicken diets, particularly during times of fluctuating SBM prices and availability issues.
Collapse
Affiliation(s)
- Amin Ashayerizadeh
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran;
| | - Vahid Jazi
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton Campus, Gatton, QLD 4343, Australia;
| | - Fatemeh Sharifi
- Central Queensland Innovation and Research Precinct (CQIRP), Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4701, Australia;
| | - Majid Toghyani
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39999, Iran;
| | - Hossein Mohebodini
- Department of Animal Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran;
| | - In Ho Kim
- Department of Animal Biotechnology, Dankook University, Cheonan 330-714, Choongnam, Republic of Korea
| | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia;
| |
Collapse
|
9
|
Cheng Y, He J, Zheng P, Yu J, Pu J, Huang Z, Mao X, Luo Y, Luo J, Yan H, Wu A, Yu B, Chen D. Effects of replacing soybean meal with enzymolysis-fermentation compound protein feed on growth performance, apparent digestibility of nutrients, carcass traits, and meat quality in growing-finishing pigs. J Anim Sci Biotechnol 2024; 15:127. [PMID: 39261875 PMCID: PMC11391718 DOI: 10.1186/s40104-024-01080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Addressing the shortage of high-quality protein resources, this study was conducted to investigate the effects of replacing soybean meal (SBM) with different levels of enzymolysis-fermentation compound protein feed (EFCP) in the diets of growing-finishing pigs, focusing on growth performance, nutrients digestibility, carcass traits, and meat quality. METHODS Sixty DLY (Duroc × Landrace × Yorkshire) pigs with an initial body weight of 42.76 ± 2.05 kg were assigned to 5 dietary treatments in a 2 × 2 + 1 factorial design. These dietary treatments included a corn-soybean meal diet (CON), untreated compound protein feed (UCP) substitution 50% (U50) and 100% SBM (U100) diets, and EFCP substitution 50% (EF50) and 100% SBM (EF100) diets. Each treatment had 6 pens (replicates) with 2 pigs per pen, and the experiment lasted 58 d, divided into phase I (1-28 d) and phase II (29-58 d). Following phase I, only the CON, U50, and EF50 groups were continued for phase II, each with 5 replicate pens. On d 59, a total of 15 pigs (1 pig/pen, 5 pens/treatment) were euthanized. RESULTS During phase I, the EF50 group had a higher average daily gain (ADG) in pigs (P < 0.05) compared to the CON group, whereas the U50 group did not have a significant difference. As the substitution ratio of UCP and EFCP increased in phase I, there was a noticeable reduction in the final body weight and ADG (P < 0.05), along with an increase in the feed-to-gain ratio (F/G) (P < 0.05). In phase II, there were no significant differences in growth performance among the treatment groups, but EF50 increased the apparent digestibility of several nutrients (including dry matter, crude protein, crude fiber, acid detergent fiber, ash, gross energy) compared to U50. The EF50 group also exhibited significantly higher serum levels of neuropeptide Y and ghrelin compared to the CON and U50 groups (P < 0.05). Moreover, the EF50 group had higher carcass weight and carcass length than those in the CON and U50 groups (P < 0.05), with no significant difference in meat quality. CONCLUSIONS The study findings suggest that replacing 50% SBM with EFCP during the growing-finishing period can improve the growth performance, nutrient digestibility, and carcass traits of pigs without compromising meat quality. This research offers valuable insights into the modification of unconventional plant protein meals and developing alternatives to SBM.
Collapse
Affiliation(s)
- Yu Cheng
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Jun He
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Junning Pu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Zhiqing Huang
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Hui Yan
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Aimin Wu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China.
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China.
| |
Collapse
|
10
|
Tao A, Wang J, Luo B, Liu B, Wang Z, Chen X, Zou T, Chen J, You J. Research progress on cottonseed meal as a protein source in pig nutrition: An updated review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:220-233. [PMID: 39281049 PMCID: PMC11402386 DOI: 10.1016/j.aninu.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/24/2024] [Accepted: 03/30/2024] [Indexed: 09/18/2024]
Abstract
At a global level, the supply of protein sources is insufficient to support the current magnitude of pig production. Moreover, given the exorbitant expense of conventional protein feed options like soybean meal and fish meal, it becomes imperative to promptly explore alternative sources of protein feed for the sustainable advancement of the pig industry. Cottonseed meal, a by-product from the extraction of cottonseed oil, exhibits significant potential as a protein source for pig feed owing to its high protein content, high yield, low cost, well-balanced amino acid composition, and sufficient accessibility. However, cottonseed meal possesses several anti-nutritional factors, especially gossypol, which adversely affect growth and reproductive performance, resulting in the limited utilization of cottonseed meal in pig feed. To maximize the benefits of cottonseed meal and promote its application in pig production, it is imperative to acquire comprehensive knowledge regarding its nutritional value and current utilization. In this review, we initially presented a summary of the nutritional values of cottonseed meal, primary anti-nutritional factors, and effective approaches for improving its utilization as a protein source feed. Subsequently, we comprehensively summarized the latest research progress of cottonseed meal application in pig nutrition over the past decade. The outcome of this review serves as a theoretical foundation and practical guidance for the research and application of cottonseed meal in pig nutrition and promotes the reduction of soybean meal utilization in the pig industry.
Collapse
Affiliation(s)
- An Tao
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiahao Wang
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Luo
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bowen Liu
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zirui Wang
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xingping Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
11
|
Sun H, Jiang Z, Chen Z, Liu G, Liu Z. Effects of fermented unconventional protein feed on pig production in China. Front Vet Sci 2024; 11:1446233. [PMID: 39144079 PMCID: PMC11322053 DOI: 10.3389/fvets.2024.1446233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Unconventional protein feeds, characterized by low nutritional value, high variability, and poor palatability, have limited their application in swine production. Fermentation technology holds the key to addressing these shortcomings. Given the ban on antibiotics in China, the inferior quality of imported pig breeds, and long-term dependence on imported soybean, the prospects for fermented unconventional protein feeds are promising. This paper delves into the common types of fermented unconventional protein feeds, factors influencing the fermentation process, the mechanisms by which they enhance swine health, and the challenges and prospects of fermented feeds, offering theoretical insights for the future development of the feed industry.
Collapse
Affiliation(s)
- Haoxuan Sun
- Cofco Joycome (Jilin) Co., Ltd., Songyuan, China
| | - Zipeng Jiang
- Guangdong VTR Bio-Tech Co., Ltd., Zhuhai, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhimin Chen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Zexue Liu
- COFCO Wuhan Meat Product Co., Ltd., Wuhan, China
| |
Collapse
|
12
|
Zhou J, Pan Q, Xue Y, Dong Y, Chen Y, Huang L, Zhang B, Liu ZQ, Zheng Y. Synthetic biology for Monascus: From strain breeding to industrial production. Biotechnol J 2024; 19:e2400180. [PMID: 39014924 DOI: 10.1002/biot.202400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/18/2024]
Abstract
Traditional Chinese food therapies often motivate the development of modern medicines, and learning from them will bring bright prospects. Monascus, a conventional Chinese fungus with centuries of use in the food industry, produces various metabolites, including natural pigments, lipid-lowering substances, and other bioactive ingredients. Recent Monascus studies focused on the metabolite biosynthesis mechanisms, strain modifications, and fermentation process optimizations, significantly advancing Monascus development on a lab scale. However, the advanced manufacture for Monascus is lacking, restricting its scale production. Here, the synthetic biology techniques and their challenges for engineering filamentous fungi were summarized, especially for Monascus. With further in-depth discussions of automatic solid-state fermentation manufacturing and prospects for combining synthetic biology and process intensification, the industrial scale production of Monascus will succeed with the help of Monascus improvement and intelligent fermentation control, promoting Monascus applications in food, cosmetic, agriculture, medicine, and environmental protection industries.
Collapse
Affiliation(s)
- Junping Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Qilu Pan
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yinan Xue
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yaping Dong
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yihong Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Lianggang Huang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
13
|
Xie SS, Shen JJ, Liu Y, Yang ZL, Wang WC, Yang L, Zhu YW. Effects of fermented cottonseed meal inclusions on growth performance, serum biochemical parameters and hepatic lipid metabolism of geese during 28-70 d of age. Poult Sci 2024; 103:103702. [PMID: 38652950 PMCID: PMC11063510 DOI: 10.1016/j.psj.2024.103702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
The aim of this study was to investigate the effects of solid-state fermented cottonseed meal (FCSM) inclusion levels on the growth performance, serum biochemical parameters and hepatic lipid metabolism in geese from 28 to 70 d of age. A total of 288 twenty-eight-d-old male geese were randomly divided into 4 treatments with FCSM levels of 0, 5, 15 and 25% including 0, 22.74, 67.33, 111.27 mg FG/kg diet, respectively. Each treatment contained 6 replicates and 12 birds per replicate. Treatments of FCSM inclusions from 0 to 25% had no effect on growth rate and feed intake in geese during d 28 to 70. The F/G ratio was increased (P < 0.05) in geese fed the diet with 25% FCSM compared with birds fed the diet with 0% FCSM. Treatment with 25% FCSM levels had no effect on the contents of TC, TG, HDL-C, LDL-C, but increased (P < 0.05) AST and ALT activities in serum of geese at d 70. Treatment with 25% FCSM increased the contents of FG, HDL-C, TC, C18:2n6, C20:4n6 and PUFA and decreased (P < 0.05) the contents of NEFA, SFA, MUFA in liver compared with treatment of 0% FCSM inclusion. Additionally, treatment with 25% FCSM decreased (P < 0.05) the PPARα, AMPK, and LXR mRNA expression related to lipid deposition, and increased (P < 0.05) PPARγ and ACC mRNA expression related to lipolysis in liver compared with birds fed the diet with 0% FCSM. Overall, treatment with 0 to 15% FCSM (<=67.33 mg FG/kg diet) had no adverse effects on the growth performance and lipid metabolism of geese. However, treatment fed 25% FCSM (111.27 mg FG/kg diet) decreased feed efficiency and promoted hepatic lipid deposition associated with the alteration of related gene expression in geese at 28 to 70 d of age.
Collapse
Affiliation(s)
- S S Xie
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - J J Shen
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Y Liu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Z L Yang
- Woman Biotechnology Co., LTD, Guangzhou, 510000 China
| | - W C Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - L Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Y W Zhu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China.
| |
Collapse
|
14
|
Zhang L, Zheng H, Zhang X, Chen X, Liu Y, Tang Y, Zhang W, Wang Z, Zhao L, Guo Y. Effective Degradation of Free Gossypol in Defatted Cottonseed Meal by Bacterial Laccases: Performance and Toxicity Analysis. Foods 2024; 13:566. [PMID: 38397543 PMCID: PMC10888038 DOI: 10.3390/foods13040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Cottonseed meal (CSM) is the major by-product of the cottonseed oil extraction process with high protein content. However, the presence of free gossypol (FG) in CSM severely restricts its utilization in the food and animal feed industries. The development of a biological strategy for the effective removal of FG in CSM has become an urgent need. In this study, three bacterial laccases including CotA from Bacillus licheniformis, CueO from Escherichia coli, and LcLac from Loigolactobacillus coryniformis were heterologously expressed and investigated for their FG degradation ability. The results showed that CotA laccase displayed the highest FG-degrading capacity among the three laccases, achieving 100% FG degradation at 37 °C and pH 7.0 in 1 h without the addition of a redox mediator. Moreover, in vitro and in vivo studies confirmed that the hepatotoxicity of FG was effectively eliminated after oxidative degradation by CotA laccase. Furthermore, the addition of CotA laccase could achieve 87% to 98% FG degradation in defatted CSM within 2 h. In conclusion, CotA laccase can be developed as an effective biocatalyst for the detoxification of FG in CSM.
Collapse
Affiliation(s)
- Liangyu Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (H.Z.); (X.Z.); (X.C.); (W.Z.); (Z.W.)
| | - Hao Zheng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (H.Z.); (X.Z.); (X.C.); (W.Z.); (Z.W.)
| | - Xingke Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (H.Z.); (X.Z.); (X.C.); (W.Z.); (Z.W.)
| | - Xiaoxue Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (H.Z.); (X.Z.); (X.C.); (W.Z.); (Z.W.)
| | - Yanrong Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (Y.T.); (L.Z.)
| | - Yu Tang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (Y.T.); (L.Z.)
| | - Wei Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (H.Z.); (X.Z.); (X.C.); (W.Z.); (Z.W.)
| | - Zhixiang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (H.Z.); (X.Z.); (X.C.); (W.Z.); (Z.W.)
| | - Lihong Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (Y.T.); (L.Z.)
| | - Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (H.Z.); (X.Z.); (X.C.); (W.Z.); (Z.W.)
| |
Collapse
|
15
|
Guo X, Li Q, Wang L, Zhang Y, Johnston LJ, Levesque CL, Cao Y, Dong B. Effects of crude protease produced by Bacillus subtilis (MAFIC Y7) on growth performance, immune indices, and anti-inflammatory responses of broilers fed soybean meal- or cottonseed meal-based diets. J Anim Sci 2024; 102:skae047. [PMID: 38412360 PMCID: PMC10926942 DOI: 10.1093/jas/skae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/26/2024] [Indexed: 02/29/2024] Open
Abstract
A strain of Bacillus subtilis (MAFIC Y7) was isolated from the intestine of Tibetan pigs and was able to express high protease activity. The aim of this study was to characterize the proteases produced by MAFIC Y7, and to investigate the effects of protease addition on growth performance, ileal amino acid digestibility, and serum immunoglobulin and immune factors of broilers fed SBM-based diets, or on growth performance, carcass characteristics, and intestinal morphology of broilers fed CSM-based diets. B. subtilis (MAFIC Y7) expressed protease showed its optimal enzyme activity at 50 °C and pH 7.0. The coated crude enzyme (CCE) showed greater stability at pH 3.0 than its uncoated counterpart. Experiment 1 was conducted with six diets based on three levels of crude protein (CP)-CPlow, CPmedium, and CPhigh-with or without CCE. In CPlow, CCE increased gain:feed (G:F) (days 1 to 21, days 1 to 42) by 8%, 3%, respectively, and enhanced apparent ileal digestibility (AID) of crude protein and lysine (on day 42) by 8.8%, 4.6%, respectively, compared with diets containing no CCE (P < 0.05). CCE increased G:F from days 1 to 21 from 0.63 to 0.68, improved G:F and average daily gain (ADG) during days 1 to 42, and enhanced AID of crude protein, lysine, cysteine, and isoleucine on day 42 compared with the unsupplemented treatments (in CPmedium, P < 0.05). CCE increased serum IgA (on day 21), serum IgA and IgG and increased serum IL-10 (on day 42), but decreased serum tumor necrosis factor-α (TNF-α; on day 21), and serum IL-8 and TNF-α (on day 42) compared with unsupplemented treatments. At CPhigh, CCE decreased serum levels of IL-6 and TNF-α (on day 21), and IL-8 and TNF-α (on day 42) compared with unsupplemented treatments (in CPhigh, P < 0.05). In experiment 2, CSM-based diets with two lysine-to-protein ratios (5.2% or 5.5%) with or without CCE. In the high Lys diet (5.5% Lys:protein), CCE increased ADG and G:F, increased carcass, but decreased abdominal fat compared with the unsupplemented treatment (P < 0.05). In the 5.2% Lys:protein dietary treatment, CCE improved duodenal villus height compared with the unsupplemented treatment (P < 0.05). Supplementation of protease produced by MAFIC Y7 was associated with lower inflammatory responses in SBM diets (CPmedium or CPhigh) and improved ADG in broilers fed CPmedium or CPhigh. The proteases improved ADG and the efficiency of CSM use when the ratio of Lys to protein was 5.5%.
Collapse
Affiliation(s)
- Xiangyue Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qianxi Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lixue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ying Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lee J Johnston
- Department of Animal Science, West Central Research and Outreach Center, University of Minnesota, Morris, MN 56267, USA
| | - Crystal L Levesque
- Department of Animal Science, College of Agriculture and Biological Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- College of Animal Science and Technology, Sanya Institute of China Agricultural University, Sanya 572000, China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- College of Animal Science and Technology, Sanya Institute of China Agricultural University, Sanya 572000, China
| |
Collapse
|