1
|
Park E, He C, Abbasi AZ, Tian M, Huang S, Wang L, Georgiou J, Collingridge GL, Fraser PE, Henderson JT, Wu XY. Brain microenvironment-remodeling nanomedicine improves cerebral glucose metabolism, mitochondrial activity and synaptic function in a mouse model of Alzheimer's disease. Biomaterials 2025; 318:123142. [PMID: 39874644 DOI: 10.1016/j.biomaterials.2025.123142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/29/2024] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
The development of disease-modifying therapeutics for Alzheimer's disease remains challenging due to the complex pathology and the presence of the blood-brain barrier. Previously we have described the investigation of a brain-penetrating multifunctional bioreactive nanoparticle system capable of remodeling the hypoxic and inflammatory brain microenvironment and reducing beta-amyloid plaques improving cognitive function in a mouse model of Alzheimer's disease. Despite the linkage of hypoxia and inflammation to metabolic alteration, the effects of this system on modulating cerebral glucose metabolism, mitochondrial activity and synaptic function remained to be elucidated. To examine this, a transgenic mouse model of Alzheimer's disease (TgCRND8) in vivo were treated intravenously with beta-amyloid antibody-conjugated (Ab), blood-brain barrier-crossing terpolymer (TP) containing polymer-lipid based manganese dioxide nanoparticles (Ab-TP-MDNPs). Alterations in cerebral glucose utilization were determined by [1⁸F]FDG-PET imaging in vivo, with glucose metabolism and mitochondrial activity analyzed by biomarkers and studies with primary neurons in vitro. Synaptic function was evaluated by both biomarkers and electrophysiologic analysis. Current study shows that intravenously administered Ab-TP-MDNPs enhanced cerebral glucose utilization, improved glucose metabolism, mitochondrial activity, and increased the levels of neprilysin, O-glycosylation. The consequence of this was enhanced glucose and ATP availability, resulting in improved long-term potentiation for promoting neuronal synaptic function. This study highlights the importance of targeting the metabolism of complex disease pathologies in addressing disease-modifying therapeutics for neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Elliya Park
- 144 College St, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Chunsheng He
- 144 College St, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Azhar Z Abbasi
- 144 College St, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Meng Tian
- 135 Nassau St, TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 1M8, Canada
| | - Shudi Huang
- 144 College St, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Liting Wang
- 144 College St, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - John Georgiou
- 600 University Ave, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Graham L Collingridge
- 135 Nassau St, TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 1M8, Canada; 600 University Ave, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Paul E Fraser
- 60 Leonard Ave, Tanz Centre for Research in Neurodegenerative Diseases, Department of Medical Biophysics, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Jeffrey T Henderson
- 144 College St, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Xiao Yu Wu
- 144 College St, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
2
|
Coggan JS, Shichkova P, Markram H, Keller D. Seizure and redox rescue in a model of glucose transport deficiency. PLoS Comput Biol 2025; 21:e1012959. [PMID: 40184423 PMCID: PMC12002639 DOI: 10.1371/journal.pcbi.1012959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 04/16/2025] [Accepted: 03/12/2025] [Indexed: 04/06/2025] Open
Abstract
Disruptions of energy supply to the brain are associated with many neurodegenerative pathologies and are difficult to study due to numerous interlinked metabolic pathways. We explored the effects of diminished energy supply on brain metabolism using a computational model of the neuro-glia-vasculature ensemble, in the form of a neuron, an astrocyte and local blood supply. As a case study, we investigated the glucose transporter type-1 deficiency syndrome (GLUT1-DS), a childhood affliction characterized by impaired glucose utilization and associated with phenotypes including seizures. Compared to neurons, astrocytes exhibited markedly higher metabolite concentration variabilities for all but a few redox species. This effect could signal a role for astrocytes in absorbing the shock of blood nutrient fluctuations. Redox balances were disrupted in GLUT1-DS with lower levels of reducing equivalent carriers NADH and ATP. The best non-glucose nutrient or pharmacotherapies for re-establishing redox normalcy involved lactate, the keto-diet (β-hydroxybutyrate), NAD and Q10 supplementation, suggesting a possible glucose sparing mechanism. GLUT1-DS seizures resulted from after-discharge neuronal firing caused by post-stimulus ATP reductions and impaired Na+/K+-ATPase, which can be rescued by restoring either normal glucose or by relatively small increases in neuronal ATP.
Collapse
Affiliation(s)
- Jay S. Coggan
- Blue Brain Project, EPFL: École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Polina Shichkova
- Blue Brain Project, EPFL: École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Biognosys AG, Schlieren, Switzerland
| | - Henry Markram
- Blue Brain Project, EPFL: École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Daniel Keller
- Blue Brain Project, EPFL: École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| |
Collapse
|
3
|
Sun M, Zhang X, Feng X, Liang L. PKM2 accelerated the progression of chronic fatigue syndrome via promoting the H4K12la/ NF-κB induced neuroinflammation and mitochondrial damage. Sci Rep 2025; 15:10772. [PMID: 40155479 PMCID: PMC11953386 DOI: 10.1038/s41598-025-93313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025] Open
Abstract
This study aims to explore the effects and potential mechanisms of PKM2-mediated neuroinflammation leading to mitochondrial damage and its role in the progression of chronic fatigue syndrome (CFS). Bioinformatics methods were applied to predict and analyze PKM2 and downstream signaling factors. In vivo experiments were conducted with mice divided into four groups after different treatments: control group, model group, Model + PKM2-OE group, and Model + PKM2-KD group. Morris water maze and field tests were used to assess cognitive function, grip strength, and rotation tests to evaluate physical strength. HE and Nissl staining were used to observe cellular conditions in the CA1 region of the hippocampus. Immunohistochemistry was used to detect PKM2 levels in the CA1 region. Western blot was performed to assess protein expression, lactate assay kits measured serum and brain tissue lactate levels, and ELISA detected inflammatory factors in brain tissue. Bioinformatics analysis showed that PKM2 could promote the expression of glycolytic factors, leading to H4K12la histone lactylation modification, which enhances the expression of inflammatory factors such as NF-κB, resulting in mitochondrial damage. Compared to the control group, the cognitive function of the model group significantly declined, while the cognitive function of the Model + PKM2-OE group improved. However, cognitive function worsened in the Model + PKM2-KD group compared to the model group. The physical strength of the control group was normal, and no significant differences were observed in the model, Model + PKM2-OE, and Model + PKM2-KD groups. Cell quantity and arrangement in the control group were normal, while the model group showed fewer and disorganized cells. The Model + PKM2-OE group showed further deterioration compared to the model group, whereas the Model + PKM2-KD group showed improvement. Compared to the control group, the model group had increased expression of PKM2, H4K12la, H4, IL-1β, and TNFα. Compared to the model group, these markers were even higher in the Model + PKM2-OE group, but significantly reduced in the Model + PKM2-KD group. Serum lactate levels increased in the model group compared to the control group, but there was no significant difference between the Model + PKM2-OE and Model + PKM2-KD groups. Brain tissue lactate levels increased in the model group, further elevated in the Model + PKM2-OE group, but decreased in the Model + PKM2-KD group. PKM2 in hippocampal cells enhances glycolysis, lactate accumulation, and H4K12la/NF-κB-mediated neuroinflammation, leading to mitochondrial damage and accelerating the progression of chronic fatigue syndrome.
Collapse
Affiliation(s)
- Meng Sun
- Department of Interventional vascular Surgery, Affiliated Hospital of Hebei University, B aoding 071000, Baoding City, Hebei, China
| | - Xinwen Zhang
- Department of Integrative Medicine, Affiliated Hospital of Hebei University, Baoding 07, Baoding City, 1000, Hebei, China
| | - Xinli Feng
- Department of Emergency Medicine, Affiliated Hospital of Hebei University, Baoding 07, Baoding City, 1000, Hebei, China.
- , 212 Yuhua East Road, Baoding City, 071000, Hebei Province, China.
| | - Lu Liang
- Department of Emergency Medicine, Affiliated Hospital of Hebei University, Baoding 07, Baoding City, 1000, Hebei, China.
- , 212 Yuhua East Road, Baoding City, 071000, Hebei Province, China.
| |
Collapse
|
4
|
Genç S, Günay AR, Günay E. The effects of resistance based post-activation performance enhancement on reaction time and change of direction in basketball players. PLoS One 2025; 20:e0320437. [PMID: 40138354 PMCID: PMC11940757 DOI: 10.1371/journal.pone.0320437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
The aim of this study was to investigate the effect of post-activation performance enhancement (PAPE) intervention with 80% one repetition maximum (1RM) resistance on change of direction (COD) and reaction time (RT) in basketball players. This study sixteen male basketball players (mean age: 20.25 years, height: 1.88 m, weight: 80.75 kg, training age: 10.12 years) were included. For this study, participants attended 3 experimental sessions in the laboratory. Firstly, anthropometric measurements of the participants were taken, then RT and COD were familiarized respectively, and then 1RMs were determined. Then, the participants randomly completed the first and second sessions. In the first session, a 20-minute standard warm-up (Wup) was performed. After the participants rested passively for 3 minutes after the Wup, RT and COD tests were measured at 1-minute intervals, respectively. The results obtained were considered as the control condition. In the second session, participants rested passively for 3 minutes after performing the PAPE (80% of 1RM - 5 rep) protocol. After the rest period, participants performed RT and COD with a 1-minute interval, respectively. The data were analyzed separately for RT (visual, auditory, and mixed) and COD test results in terms of Wup and Wup+PAPE. At least 48 hours of rest was allowed between the first and second sessions to ensure that fatigue from the previous test session did not affect the results. Wilcoxon test results showed that PAPE significantly reduced visual RT (p < .005), mixed RT (p < 0.013), and COD (p < 0.001), but not auditory RT (p < 0.068). The findings showed that PAPE is an effective method to improve COD and RT performance in sports such as basketball, where success is achieved through fast-paced play.
Collapse
Affiliation(s)
- Sümeyye Genç
- Institute of Health Sciences, Dokuz Eylul University, İzmir, Turkiye
| | - Ahmet Rahmi Günay
- Faculty of Sport Sciences, Muğla Sıtkı Koçman University, Kötekli, Turkiye
| | - Erkan Günay
- Faculty of Sport Sciences, Manisa Celal Bayar University, Manisa, Turkiye
| |
Collapse
|
5
|
Zhang L, Zhang C, Yuan X, Ji Y. The impact of exercise interventions on core symptoms of 3-12-year-old children with autism spectrum disorder: a systematic review and network meta-analysis. Eur Child Adolesc Psychiatry 2025:10.1007/s00787-025-02696-8. [PMID: 40131458 DOI: 10.1007/s00787-025-02696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Exercise interventions targeting Fundamental Movement Skills (FMS) represent a critical approach for mitigating functional impairments in children with autism spectrum disorder (ASD). This study, for the first time, based on motor development theory, employed a Network Meta-analysis (NMA) to examine the effects of four types of exercise interventions-Isolation of Fundamental Movement Skills (FMS-I), Combination of Fundamental Movement Skills (FMS-C), Fine Motor Movement (FMM), and Specialized Movement Skills (SMS)-on the core symptoms of ASD in children aged 3-12, including social communication deficits and stereotyped and repetitive behaviors. Five electronic databases were systematically searched up to May 22, 2024. Included studies compared exercise interventions with control groups and assessed at least one core symptom of ASD. Study quality and evidence certainty were evaluated using the Risk of Bias tools (RoB 2.0, ROBINS-I) and the Confidence in Network Meta-Analysis (CINeMA) framework. Data analysis was performed via Stata 17.0 software. The systematic review included 26 studies encompassing 878 children, with 19 studies eligible for NMA. Ranking probabilities indicated that FMS-I emerged as the most promising intervention for addressing social communication deficits (SMD: -0.99, 95%CI: -1.46 to -0.52; SUCRA: 86.9%) and stereotyped and repetitive behaviors (SMD: -2.73, 95% CI: -3.76 to -1.70; SUCRA: 100%). The FMS-C showed potential for enhancing overall features (SMD: -0.90; 95%CI: -1.32 to -0.49; SUCRA: 74.7%). To conclude, exercise interventions should be grounded in FMS, transitioning from isolated movements to integrated actions, to enhance the overall behavior of children with ASD.
Collapse
Affiliation(s)
- Liu Zhang
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Chi Zhang
- Department of Biomedical Sciences, Beijing City University, Beijing, China
| | - Xin Yuan
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Yuelong Ji
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China.
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Beijing, China.
| |
Collapse
|
6
|
Chen X, Zhu X. Lactate: Beyond a mere fuel in the epileptic brain. Neuropharmacology 2025; 266:110273. [PMID: 39719259 DOI: 10.1016/j.neuropharm.2024.110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/08/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Epilepsy, a prevalent neurological disorder characterized by spontaneous recurrent seizures, significantly impacts physiological and cognitive functions. Emerging evidence suggests a crucial role for metabolic factors, particularly lactate, in epilepsy. We discuss the applicability of the astrocyte-neuron lactate shuttle (ANLS) model during acute seizure events and examine lactate's metabolic adaptation in epilepsy progression. Additionally, the roles of lactate metabolism in microglia and oligodendrocytes are considered, aiming to supplement our understanding of neuro-glial metabolic interactions as extensions of the ANLS model. Additionally, lactate modulates neuronal excitability via its interaction with hydroxycarboxylic acid receptor 1 (HCAR1), alongside additional mechanisms involving acid-sensing ion channels (ASICs) and ATP-sensitive potassium (KATP) channels, which contribute as secondary modulatory pathways. In conclusion, we propose that lactate functions as more than a mere fuel source in the epileptic brain, offering potential insights into new therapeutic targets for seizure control.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
7
|
Liao Z, Chen B, Yang T, Zhang W, Mei Z. Lactylation modification in cardio-cerebral diseases: A state-of-the-art review. Ageing Res Rev 2025; 104:102631. [PMID: 39647583 DOI: 10.1016/j.arr.2024.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Cardio-cerebral diseases (CCDs), encompassing conditions such as coronary heart disease, myocardial infarction, stroke, Alzheimer's disease, et al., represent a significant threat to human health and well-being. These diseases are often characterized by metabolic abnormalities and remodeling in the process of pathology. Glycolysis and hypoxia-induced lactate accumulation play critical roles in cellular energy dynamics and metabolic imbalances in CCDs. Lactylation, a post-translational modification driven by excessive lactate accumulation, occurs in both histone and non-histone proteins. It has been implicated in regulating protein function across various pathological processes in CCDs, including inflammation, angiogenesis, lipid metabolism dysregulation, and fibrosis. Targeting key proteins involved in lactylation, as well as the enzymes regulating this modification, holds promise as a therapeutic strategy to modulate disease progression by addressing these pathological mechanisms. This review provides a holistic picture of the types of lactylation and the associated modifying enzymes, highlights the roles of lactylation in different pathological processes, and synthesizes the latest clinical evidence and preclinical studies in a comprehensive view. We aim to emphasize the potential of lactylation as an innovative therapeutic target for preventing and treating CCD-related conditions.
Collapse
Affiliation(s)
- Zi Liao
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Bei Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
8
|
Kim S, Jung UJ, Kim SR. The Crucial Role of the Blood-Brain Barrier in Neurodegenerative Diseases: Mechanisms of Disruption and Therapeutic Implications. J Clin Med 2025; 14:386. [PMID: 39860392 PMCID: PMC11765772 DOI: 10.3390/jcm14020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The blood-brain barrier (BBB) is a crucial structure that maintains brain homeostasis by regulating the entry of molecules and cells from the bloodstream into the central nervous system (CNS). Neurodegenerative diseases such as Alzheimer's and Parkinson's disease, as well as ischemic stroke, compromise the integrity of the BBB. This leads to increased permeability and the infiltration of harmful substances, thereby accelerating neurodegeneration. In this review, we explore the mechanisms underlying BBB disruption, including oxidative stress, neuroinflammation, vascular dysfunction, and the loss of tight junction integrity, in patients with neurodegenerative diseases. We discuss how BBB breakdown contributes to neuroinflammation, neurotoxicity, and the abnormal accumulation of pathological proteins, all of which exacerbate neuronal damage and facilitate disease progression. Furthermore, we discuss potential therapeutic strategies aimed at preserving or restoring BBB function, such as anti-inflammatory treatments, antioxidant therapies, and approaches to enhance tight junction integrity. Given the central role of the BBB in neurodegeneration, maintaining its integrity represents a promising therapeutic approach to slow or prevent the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
9
|
Shukla A, Meena K, Gupta A, Sandhir R. 1H NMR-Based Metabolomic Signatures in Rodent Models of Sporadic Alzheimer's Disease and Metabolic Disorders. ACS Chem Neurosci 2024; 15:4478-4499. [PMID: 39629865 DOI: 10.1021/acschemneuro.4c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Alzheimer's disease (AD) is a chronic neurological disorder that impacts the elderly population all over the globe. Evidence suggests association between AD and metabolic disorders such as diabetes mellitus (DM) and obesity (OB). The present study is an attempt to evaluate metabolic alterations in the serum and brain through NMR spectroscopy with the aim to identify shared metabolic signatures. AD was induced in rats by stereotactic intracerebroventricular injection of oligomerized Aβ-42 peptide into the brain. DM and OB were induced by intraperitoneal injection of streptozotocin and feeding rats on a high-fat diet, respectively. The metabolic alterations obtained through 1H NMR spectroscopy were further subjected to multivariate analysis by principal component analysis and partial least-squares discrimination for identification of metabolic signatures. In the serum, the levels of lactate and betaine were increased in AD, DM, and OB rats. On the other hand, the metabolite profile of brain indicated increase in the levels of lactate, N-acetylaspartate, and creatinine in AD, DM, and OB rats. Additionally, the concentration of neurochemicals such as glutamate, GABA, N-acetylglutamate, and myo-inositol were also elevated. The alterations in neurotransmitters and cerebral energy metabolism were accompanied by deficits in cognition assessed by Morris water maze in AD, DM, and OB rats. The perturbed metabolic profiles were accompanied by the presence of pathogenic amyloid deposits visualized by Congo red stain in the brains of AD, DM, and OB rats. Overall, the study identifies common metabolic signatures in AD, DM, and OB that may be involved in etiopathogenesis and also suggests linkages between these three conditions.
Collapse
Affiliation(s)
- Ananya Shukla
- Department of Biochemistry, Hargobind Khorana Block (BMS Block II), Panjab University, Sector-25, Chandigarh 160014, India
| | - Khushbhu Meena
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS) Campus, Lucknow, Uttar Pradesh 226014, India
| | - Ashish Gupta
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS) Campus, Lucknow, Uttar Pradesh 226014, India
| | - Rajat Sandhir
- Department of Biochemistry, Hargobind Khorana Block (BMS Block II), Panjab University, Sector-25, Chandigarh 160014, India
| |
Collapse
|
10
|
Wang Y, Li P, Xu Y, Feng L, Fang Y, Song G, Xu L, Zhu Z, Wang W, Mei Q, Xie M. Lactate metabolism and histone lactylation in the central nervous system disorders: impacts and molecular mechanisms. J Neuroinflammation 2024; 21:308. [PMID: 39609834 PMCID: PMC11605911 DOI: 10.1186/s12974-024-03303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Brain takes up approximately 20% of the total body oxygen and glucose consumption due to its relatively high energy demand. Glucose is one of the major sources to generate ATP, the process of which can be realized via glycolysis, oxidative phosphorylation, pentose phosphate pathways and others. Lactate serves as a hub molecule amid these metabolic pathways, as it may function as product of glycolysis, substrate of a variety of enzymes and signal molecule. Thus, the roles of lactate in central nervous system (CNS) diseases need to be comprehensively elucidated. Histone lactylation is a novel lactate-dependent epigenetic modification that plays an important role in immune regulation and maintaining homeostasis. However, there's still a lack of studies unveiling the functions of histone lactylation in the CNS. In this review, we first comprehensively reviewed the roles lactate plays in the CNS under both physiological and pathological conditions. Subsequently, we've further discussed the functions of histone lactylation in various neurological diseases. Furthermore, future perspectives regarding histone lactylation and its therapeutic potentials in stroke are also elucidated, which may possess potential clinical applications.
Collapse
Affiliation(s)
- Yao Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ping Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yuan Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Linyu Feng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yongkang Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Guini Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Li Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Zhou Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China.
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
11
|
Tensaouti F, Courbière N, Cabarrou B, Pollidoro L, Roques M, Sévely A, Péran P, Baudou E, Laprie A. Metabolic Profile of Cerebellum in Posterior Fossa Tumor Survivors: Correlation With Memory Impairment. Clin Oncol (R Coll Radiol) 2024; 36:e439-e447. [PMID: 39107208 DOI: 10.1016/j.clon.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/16/2024] [Accepted: 07/18/2024] [Indexed: 08/09/2024]
Abstract
AIMS The cerebellum is a key structure in working and procedural memory. The aim of the present prospective exploratory study was to investigate, the metabolic characteristics of the cerebellum in posterior fossa tumor (PFT) survivors using 3D proton magnetic resonance spectroscopy imaging (3D MRSI), to determine whether metabolites could be useful biomarkers of memory impairment. MATERIALS AND METHODS Sixty participants were included in the IMPALA study, divided into three groups: 22 irradiated PFT, 17 nonirradiated PFT, and 21 healthy controls matched with irradiated PFT for age, sex, and handedness. PFT survivors were treated at least 5 years ago, either by surgery or a combination of surgery, chemotherapy, and radiotherapy. All participants underwent working and procedural memory tests and multimodal MRI including a 3D MRSI sequence. N-acetylaspartate (NAA), choline (Cho), creatine (Cr), and lactate (Lac) metabolite values were extracted from the cerebellum for comparisons between groups, correlations with neurocognitive test scores, and radiotherapy doses. RESULTS Median (range) age at neurocognitive tests was 18 (7-26) years. Median Cho, Cr, NAA, and Lac values, and the ratio of NAA to the sum of metabolites were significantly lower for PFT survivors than for healthy controls (p < 0.05). Scores on working and procedural memory tests were significantly lower for PFT survivors (p < 0.004) and correlated with median and maximum Cho and NAA values (0.28 CONCLUSION Results revealed changes in cerebellar metabolic values in PFT survivors that were closely correlated with memory deficits, suggesting that some metabolites could be used as markers of cognitive decline, but this will require validation on a larger sample size.
Collapse
Affiliation(s)
- F Tensaouti
- Radiation Oncology Department, Oncopole Claudius Regaud- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.
| | - N Courbière
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - B Cabarrou
- Biostatistics & Health Data Science Unit, Oncopole Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopôle, Toulouse, France
| | - L Pollidoro
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - M Roques
- Radiology Department, Toulouse University Hospital, Toulouse, France
| | - A Sévely
- Radiology Department, Toulouse University Hospital, Toulouse, France
| | - P Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - E Baudou
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; Pediatric Neurology Department, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - A Laprie
- Radiation Oncology Department, Oncopole Claudius Regaud- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| |
Collapse
|
12
|
Pavić V, Viljetić B, Blažetić S, Labak I, Has-Schön E, Heffer M. Temperature-Induced Seasonal Dynamics of Brain Gangliosides in Rainbow Trout ( Oncorhynchus mykiss Walbaum) and Common Carp ( Cyprinus carpio L.). Life (Basel) 2024; 14:1273. [PMID: 39459573 PMCID: PMC11509357 DOI: 10.3390/life14101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
This study aimed to determine the expression and distribution of gangliosides in specific regions of the brains of rainbow trout (Oncorhynchus mykiss Walbaum) and common carp (Cyprinus carpio L.) with regard to seasonal temperature changes. Seasonal changes in ganglioside expression and distribution within the species were expected. The natural ecosystems of these fishes differ significantly due to their distinct habitat preferences, geographic distributions, and environmental requirements. Based on the fact that the common carp is eurythermic and adapts to a wide range of temperatures, while the rainbow trout is stenothermic and thrives in a narrower temperature range, it was expected that these species would exhibit distinct patterns of ganglioside modification as part of their adaptive response to temperature fluctuations. Immunohistochemistry using specific antibodies for the major brain gangliosides (GM1, GD1a, GD1b, GT1b), along with the Svennerholm method for quantifying sialic acid bound to gangliosides, revealed that cold acclimatization led to an increase in polysialylated gangliosides in the common carp brain and an increase in trisialogangliosides in the rainbow trout brain. Immunohistochemical analysis also identified region-specific changes in ganglioside expression, suggesting specific functional roles in neuronal adaptation. These results supported the hypothesis that the composition and distribution of brain gangliosides change in response to seasonal thermal shifts as part of the adaptive response. The results underscore the importance of gangliosides in neuronal function and adaptation to environmental stimuli, with implications for understanding fish resilience to temperature changes. This study offers valuable insights into species' temperature adaptation, with implications for physiological and ecological management and improved aquaculture practices. Future research could expand the species scale, study molecular mechanisms and regulatory pathways in ganglioside metabolism, and examine ganglioside interactions with membrane proteins and lipids for a deeper understanding of thermal adaptation.
Collapse
Affiliation(s)
- Valentina Pavić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia; (V.P.); (S.B.); (E.H.-S.)
| | - Barbara Viljetić
- Department of Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia; (V.P.); (S.B.); (E.H.-S.)
| | - Irena Labak
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia; (V.P.); (S.B.); (E.H.-S.)
| | - Elizabeta Has-Schön
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia; (V.P.); (S.B.); (E.H.-S.)
| | - Marija Heffer
- Department of Medical Biology, School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| |
Collapse
|
13
|
Meng X, Wu W, Tang Y, Peng M, Yang J, Yuan S, Hu Z, Liu W. Lactate/Hydroxycarboxylic Acid Receptor 1 in Alzheimer's Disease: Mechanisms and Therapeutic Implications-Exercise Perspective. Mol Neurobiol 2024; 61:7717-7731. [PMID: 38427215 DOI: 10.1007/s12035-024-04067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Lactate has a novel function different from previously known functions despite its traditional association with hypoxia in skeletal muscle. It plays various direct and indirect physiological functions. It is a vital energy source within the central nervous system (CNS) and a signal transmitter regulating crucial processes, such as angiogenesis and inflammation. Activating lactate and its associated receptors elicits effects like synaptic plasticity and angiogenesis alterations. These effects can significantly influence the astrocyte-neuron lactate shuttle, potentially impacting cognitive performance. Decreased cognitive function relates to different neurodegenerative conditions, including Alzheimer's disease (AD), ischemic brain injury, and frontotemporal dementia. Therefore, lactic acid has significant potential for treating neurodegenerative disorders. Exercise is a method that induces the production of lactic acid, which is similar to the effect of lactate injections. It is a harmless and natural way to achieve comparable results. Animal experiments demonstrate that high-intensity intermittent exercise can increase vascular endothelial growth factor (VEGF) levels, thus promoting angiogenesis. In vivo, lactate receptor-hydroxycarboxylic acid receptor 1 (HCAR1) activation can occur by various stimuli, including variations in ion concentrations, cyclic adenosine monophosphate (cAMP) level elevations, and fluctuations in the availability of energy substrates. While several articles have been published on the benefits of physical activity on developing Alzheimer's disease in the CNS, could lactic acid act as a bridge? Understanding how HCAR1 responds to these signals and initiates associated pathways remains incomplete. This review comprehensively analyzes lactate-induced signaling pathways, investigating their influence on neuroinflammation, neurodegeneration, and cognitive decline. Consequently, this study describes the unique role of lactate in the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Mei Peng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Jialun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Shunling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Zelin Hu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China.
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
14
|
Mitchell AK, Bliss RR, Church FC. Exercise, Neuroprotective Exerkines, and Parkinson's Disease: A Narrative Review. Biomolecules 2024; 14:1241. [PMID: 39456173 PMCID: PMC11506540 DOI: 10.3390/biom14101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease in which treatment often includes an exercise regimen. Exercise is neuroprotective in animal models of PD, and, more recently, human clinical studies have verified exercise's disease-modifying effect. Aerobic exercise and resistance training improve many of PD's motor and non-motor symptoms, while neuromotor therapy and stretching/flexibility exercises positively contribute to the quality of life in people with PD. Therefore, understanding the role of exercise in managing this complex disorder is crucial. Exerkines are bioactive substances that are synthesized and released during exercise and have been implicated in several positive health outcomes, including neuroprotection. Exerkines protect neuronal cells in vitro and rodent PD models in vivo. Aerobic exercise and resistance training both increase exerkine levels in the blood, suggesting a role for exerkines in the neuroprotective theory. Many exerkines demonstrate the potential for protecting the brain against pathological missteps caused by PD. Every person (people) with Parkinson's (PwP) needs a comprehensive exercise plan tailored to their unique needs and abilities. Here, we provide an exercise template to help PwP understand the importance of exercise for treating PD, describe barriers confronting many PwP in their attempt to exercise, provide suggestions for overcoming these barriers, and explore the role of exerkines in managing PD. In conclusion, exercise and exerkines together create a powerful neuroprotective system that should contribute to slowing the chronic progression of PD.
Collapse
Affiliation(s)
- Alexandra K. Mitchell
- Department of Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | | | - Frank C. Church
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Ottosen RN, Seefeldt JM, Hansen J, Nielsen R, Møller N, Johannsen M, Poulsen TB. Preparation and Preclinical Characterization of a Simple Ester for Dual Exogenous Supply of Lactate and Beta-hydroxybutyrate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19883-19890. [PMID: 39214666 PMCID: PMC11403612 DOI: 10.1021/acs.jafc.4c04849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Elevation of the plasma levels of (S)-lactate (Lac) and/or (R)-beta-hydroxybutyrate (BHB) occurs naturally in response to strenuous exercise and prolonged fasting, respectively, resulting in millimolar concentrations of these two metabolites. It is increasingly appreciated that Lac and BHB have wide-ranging beneficial physiological effects, suggesting that novel nutritional solutions, compatible with high-level and/or sustained consumption, which allow direct control of plasma levels of Lac and BHB, are of strong interest. In this study, we present a molecular hybrid between (S)-lactate and the BHB-precursor (R)-1,3-butanediol in the form of a simple ester referred to as LaKe. We show that LaKe can be readily prepared on the kilogram scale and undergoes rapid hydrolytic conversion under a variety of physiological conditions to release its two constituents. Oral ingestion of LaKe, in rats, resulted in dose-dependent elevation of plasma levels of Lac and BHB triggering expected physiological responses such as reduced lipolysis and elevation of the appetite-suppressing compound N-L-lactoyl-phenylalanine (Lac-Phe).
Collapse
Affiliation(s)
- Rasmus N Ottosen
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Jacob M Seefeldt
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N DK-8200, Denmark
| | - Jakob Hansen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard. 99, Aarhus N DK-8200, Denmark
| | - Roni Nielsen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N DK-8200, Denmark
| | - Niels Møller
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard 11, Aarhus N DK-8200, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, Aarhus N DK-8200, Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard. 99, Aarhus N DK-8200, Denmark
| | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| |
Collapse
|
16
|
Pu J, Han J, Yang J, Yu L, Wan H. Anaerobic Glycolysis and Ischemic Stroke: From Mechanisms and Signaling Pathways to Natural Product Therapy. ACS Chem Neurosci 2024; 15:3090-3105. [PMID: 39140296 DOI: 10.1021/acschemneuro.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Ischemic stroke is a serious condition that results in high rates of illness and death. Anaerobic glycolysis becomes the primary means of providing energy to the brain during periods of low oxygen levels, such as in the aftermath of an ischemic stroke. This process is essential for maintaining vital brain functions and has significant implications for recovery following a stroke. Energy supply by anaerobic glycolysis and acidosis caused by lactic acid accumulation are important pathological processes after ischemic stroke. Numerous natural products regulate glucose and lactate, which in turn modulate anaerobic glycolysis. This article focuses on the relationship between anaerobic glycolysis and ischemic stroke, as well as the associated signaling pathways and natural products that play a therapeutic role. These natural products, which can regulate anaerobic glycolysis, will provide new avenues and perspectives for the treatment of ischemic stroke in the future.
Collapse
Affiliation(s)
- Jia Pu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jin Han
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, Zhejiang 310053, China
| | - Haitong Wan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
17
|
Späte E, Zhou B, Sun T, Kusch K, Asadollahi E, Siems SB, Depp C, Werner HB, Saher G, Hirrlinger J, Möbius W, Nave KA, Goebbels S. Downregulated expression of lactate dehydrogenase in adult oligodendrocytes and its implication for the transfer of glycolysis products to axons. Glia 2024; 72:1374-1391. [PMID: 38587131 DOI: 10.1002/glia.24533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Oligodendrocytes and astrocytes are metabolically coupled to neuronal compartments. Pyruvate and lactate can shuttle between glial cells and axons via monocarboxylate transporters. However, lactate can only be synthesized or used in metabolic reactions with the help of lactate dehydrogenase (LDH), a tetramer of LDHA and LDHB subunits in varying compositions. Here we show that mice with a cell type-specific disruption of both Ldha and Ldhb genes in oligodendrocytes lack a pathological phenotype that would be indicative of oligodendroglial dysfunctions or lack of axonal metabolic support. Indeed, when combining immunohistochemical, electron microscopical, and in situ hybridization analyses in adult mice, we found that the vast majority of mature oligodendrocytes lack detectable expression of LDH. Even in neurodegenerative disease models and in mice under metabolic stress LDH was not increased. In contrast, at early development and in the remyelinating brain, LDHA was readily detectable in immature oligodendrocytes. Interestingly, by immunoelectron microscopy LDHA was particularly enriched at gap junctions formed between adjacent astrocytes and at junctions between astrocytes and oligodendrocytes. Our data suggest that oligodendrocytes metabolize lactate during development and remyelination. In contrast, for metabolic support of axons mature oligodendrocytes may export their own glycolysis products as pyruvate rather than lactate. Lacking LDH, these oligodendrocytes can also "funnel" lactate through their "myelinic" channels between gap junction-coupled astrocytes and axons without metabolizing it. We suggest a working model, in which the unequal cellular distribution of LDH in white matter tracts facilitates a rapid and efficient transport of glycolysis products among glial and axonal compartments.
Collapse
Affiliation(s)
- Erik Späte
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Baoyu Zhou
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Ebrahim Asadollahi
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sophie B Siems
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Constanze Depp
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Johannes Hirrlinger
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
18
|
Plini ERG, Melnychuk MC, Andrews R, Boyle R, Whelan R, Spence JS, Chapman SB, Robertson IH, Dockree PM. Greater physical fitness ( VO 2 max ) in healthy older adults associated with increased integrity of the locus coeruleus-noradrenergic system. Acta Physiol (Oxf) 2024; 240:e14191. [PMID: 38895950 PMCID: PMC11250687 DOI: 10.1111/apha.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
AIM Physical activity (PA) is a key component for brain health and Reserve, and it is among the main dementia protective factors. However, the neurobiological mechanisms underpinning Reserve are not fully understood. In this regard, a noradrenergic (NA) theory of cognitive reserve (Robertson, 2013) has proposed that the upregulation of NA system might be a key factor for building reserve and resilience to neurodegeneration because of the neuroprotective role of NA across the brain. PA elicits an enhanced catecholamine response, in particular for NA. By increasing physical commitment, a greater amount of NA is synthetised in response to higher oxygen demand. More physically trained individuals show greater capabilities to carry oxygen resulting in greaterVo 2 max - a measure of oxygen uptake and physical fitness (PF). METHODS We hypothesized that greaterVo 2 max would be related to greater Locus Coeruleus (LC) MRI signal intensity. In a sample of 41 healthy subjects, we performed Voxel-Based Morphometry analyses, then repeated for the other neuromodulators as a control procedure (Serotonin, Dopamine and Acetylcholine). RESULTS As hypothesized, greaterVo 2 max related to greater LC signal intensity, and weaker associations emerged for the other neuromodulators. CONCLUSION This newly established link betweenVo 2 max and LC-NA system offers further understanding of the neurobiology underpinning Reserve in relationship to PA. While this study supports Robertson's theory proposing the upregulation of the NA system as a possible key factor building Reserve, it also provides ground for increasing LC-NA system resilience to neurodegeneration viaVo 2 max enhancement.
Collapse
Affiliation(s)
- Emanuele R G Plini
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Michael C Melnychuk
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Ralph Andrews
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Rory Boyle
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Robert Whelan
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Jeffrey S Spence
- Center for BrainHealth, The University of Texas at Dallas, Dallas, Texas, USA
| | - Sandra B Chapman
- Center for BrainHealth, The University of Texas at Dallas, Dallas, Texas, USA
| | - Ian H Robertson
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Department of Psychology, Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Paul M Dockree
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Akter M, Fu Z, Zheng X, Iqbal Z, Zhang N, Karim A, Li Y. Astrocytic GPCR signaling in the anterior cingulate cortex modulates decision making in rats. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae010. [PMID: 38915791 PMCID: PMC11194462 DOI: 10.1093/oons/kvae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
Decision making is a process of selecting a course of action by assessing the worth or value of the potential consequences. Rat Gambling Task (RGT) is a well-established behavioral paradigm that allows for assessment of the decision-making performance of rats. Astrocytes are emerging as key players in modulating cognitive functions. Using repeated RGTs with short intersession time intervals (48 h), the current study demonstrates that Gi pathway activation of astrocytes in the anterior cingulate cortex (ACC) leads to impaired decision-making in consistently good decision-making rats. On the other hand, ACC astrocytic Gq pathway activation improves decision-making in a subset of rats who are not consistently good decision-makers. Furthermore, we show that astrocytic Gq activation is associated with an increase in the L-lactate level in the extracellular fluid of the ACC. Together, these results expand our knowledge of the role of astrocytic GPCR signaling in modulating cognitive functions.
Collapse
Affiliation(s)
- Mastura Akter
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Zhongqi Fu
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Xianlin Zheng
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Zafar Iqbal
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, SAR, China
- Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, 17W, Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, SAR, China
| | - Na Zhang
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Anwarul Karim
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Ying Li
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, SAR, China
- Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, 17W, Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| |
Collapse
|
20
|
Guan X, Cao P. Brain Mechanisms Underlying Panic Attack and Panic Disorder. Neurosci Bull 2024; 40:795-814. [PMID: 37477800 PMCID: PMC11178723 DOI: 10.1007/s12264-023-01088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/23/2023] [Indexed: 07/22/2023] Open
Abstract
Panic disorder is a psychiatric disorder characterized by recurrent panic attacks, with a prevalence of ~ 4% in the general population, causing heavy personal and socioeconomic burdens. The similarities of animal defense responses to clinical panic attack symptoms in humans make it possible to translate neuroanatomical pathways identified in animal studies to panic disorder in humans. Therefore, in this review we first present a basic overview of panic disorder in humans including the main subtypes, models commonly used to trigger panic attacks, related hypotheses, the neurotransmitter systems that may be involved, and the current clinical treatments to give the reader a comprehensive understanding of panic disorder. The animal section introduces the models that trigger panic-like behavior in animals and the brain regions that may be involved, providing insights for future elucidation of the neural circuit mechanisms behind panic attacks.
Collapse
Affiliation(s)
- Xuyan Guan
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.
| | - Peng Cao
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| |
Collapse
|
21
|
Palmer JA, Whitaker AA, Payne AM, Bartsch BL, Reisman DS, Boyne PE, Billinger SA. Aerobic Exercise Improves Cortical Inhibitory Function After Stroke: A Preliminary Investigation. J Neurol Phys Ther 2024; 48:83-93. [PMID: 37436187 PMCID: PMC10776819 DOI: 10.1097/npt.0000000000000453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
BACKGROUND AND PURPOSE Aerobic exercise can elicit positive effects on neuroplasticity and cognitive executive function but is poorly understood after stroke. We tested the effect of 4 weeks of aerobic exercise training on inhibitory and facilitatory elements of cognitive executive function and electroencephalography markers of cortical inhibition and facilitation. We investigated relationships between stimulus-evoked cortical responses, blood lactate levels during training, and aerobic fitness postintervention. METHODS Twelve individuals with chronic (>6 months) stroke completed an aerobic exercise intervention (40 minutes, 3×/wk). Electroencephalography and motor response times were assessed during congruent (response facilitation) and incongruent (response inhibition) stimuli of a Flanker task. Aerobic fitness capacity was assessed as o2peak during a treadmill test pre- and postintervention. Blood lactate was assessed acutely (<1 minute) after exercise each week. Cortical inhibition (N2) and facilitation (frontal P3) were quantified as peak amplitudes and latencies of stimulus-evoked electroencephalographic activity over the frontal cortical region. RESULTS Following exercise training, the response inhibition speed increased while response facilitation remained unchanged. A relationship between earlier cortical N2 response and faster response inhibition emerged postintervention. Individuals who produced higher lactate during exercise training achieved faster response inhibition and tended to show earlier cortical N2 responses postintervention. There were no associations between o2peak and metrics of behavioral or neurophysiologic function. DISCUSSION AND CONCLUSIONS These preliminary findings provide novel evidence for selective benefits of aerobic exercise on inhibitory control during the initial 4-week period after initiation of exercise training and implicate a potential therapeutic effect of lactate on poststroke inhibitory control.
Collapse
Affiliation(s)
- Jacqueline A Palmer
- Department of Neurology (J.A.P., S.A.B.), School of Medicine, University of Kansas Medical Center, Kansas City; University of Kansas Alzheimer's Disease Research Center (J.A.P., S.A.B.), Fairway; Department of Physical Therapy, Rehabilitation Science, and Athletic Training (A.A.W., B.L.B.), University of Kansas Medical Center, Kansas City; Department of Psychology (A.M.P.), College of Arts and Sciences, Florida State University, Tallahassee; Department of Physical Therapy (D.S.R.), College of Health Sciences, University of Delaware, Newark; and Department of Rehabilitation, Exercise and Nutrition Sciences (P.E.B.), College of Allied Health Sciences, University of Cincinnati, Cincinnati, Ohio
| | | | | | | | | | | | | |
Collapse
|
22
|
Patel H, Paracha A, Singhal A, Wang K, Gostanian N. Clinical Warburg Effect in a Patient With Mantle Cell Lymphoma: A Case Report. Cureus 2024; 16:e58768. [PMID: 38779236 PMCID: PMC11111258 DOI: 10.7759/cureus.58768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The clinical Warburg effect is a rare occurrence in cancer biology where tumor cells primarily utilize glycolysis for energy production, leading to significant hypoglycemia and lactate formation. This presentation is associated with a poor prognosis for the patient. In this context, we describe the case of a 53-year-old woman with stage IV mantle cell lymphoma who developed the clinical Warburg effect with solely arrhythmia and without neurological symptoms. She received prompt treatment for glucose stabilization and underwent inpatient chemotherapy. This case underscores the importance of early intervention to reduce tumor burden and highlights the effectiveness of hemodialysis in stabilizing metabolic acidosis. Further investigation into this approach is warranted.
Collapse
Affiliation(s)
- Himanshu Patel
- Internal Medicine, Northwell, New Hyde Park, USA
- Internal Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, USA
| | | | - Adit Singhal
- Internal Medicine, Northwell, New Hyde Park, USA
| | - Kevin Wang
- Hematology and Oncology, Northwell, New Hyde Park, USA
| | - Nouneh Gostanian
- Hematology and Oncology, Northwell, New Hyde Park, USA
- Hematology and Oncology, Northwell Health Cancer Institute, Lake Success, USA
| |
Collapse
|
23
|
Bhinderwala F, Roth HE, Filipi M, Jack S, Powers R. Potential Metabolite Biomarkers of Multiple Sclerosis from Multiple Biofluids. ACS Chem Neurosci 2024; 15:1110-1124. [PMID: 38420772 PMCID: PMC11586083 DOI: 10.1021/acschemneuro.3c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic and progressive neurological disorder without a cure, but early intervention can slow disease progression and improve the quality of life for MS patients. Obtaining an accurate diagnosis for MS is an arduous and error-prone task that requires a combination of a detailed medical history, a comprehensive neurological exam, clinical tests such as magnetic resonance imaging, and the exclusion of other possible diseases. A simple and definitive biofluid test for MS does not exist, but is highly desirable. To address this need, we employed NMR-based metabolomics to identify potentially unique metabolite biomarkers of MS from a cohort of age and sex-matched samples of cerebrospinal fluid (CSF), serum, and urine from 206 progressive MS (PMS) patients, 46 relapsing-remitting MS (RRMS) patients, and 99 healthy volunteers without a MS diagnosis. We identified 32 metabolites in CSF that varied between the control and PMS patients. Utilizing patient-matched serum samples, we were able to further identify 31 serum metabolites that may serve as biomarkers for PMS patients. Lastly, we identified 14 urine metabolites associated with PMS. All potential biomarkers are associated with metabolic processes linked to the pathology of MS, such as demyelination and neuronal damage. Four metabolites with identical profiles across all three biofluids were discovered, which demonstrate their potential value as cross-biofluid markers of PMS. We further present a case for using metabolic profiles from PMS patients to delineate biomarkers of RRMS. Specifically, three metabolites exhibited a variation from healthy volunteers without MS through RRMS and PMS patients. The consistency of metabolite changes across multiple biofluids, combined with the reliability of a receiver operating characteristic classification, may provide a rapid diagnostic test for MS.
Collapse
Affiliation(s)
- Fatema Bhinderwala
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588-0304
- Current Affiliation - University of Pittsburgh School of Medicine, Department of Structural Biology, Pittsburgh, PA 15213
| | - Heidi E. Roth
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
| | - Mary Filipi
- Multiple Sclerosis Clinic, Saunders Medical Center, Wahoo, NE 68066
| | - Samantha Jack
- Multiple Sclerosis Clinic, Saunders Medical Center, Wahoo, NE 68066
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588-0304
| |
Collapse
|
24
|
Moore JE, Robison RK, Hu J, Sengupta ST, Mahdi OS, Anderson AW, Luo LY, Mohler AC, Merrell RT, Choi C. Optimization of the flip angles of narrow-band editing pulses in J-difference edited MRS of lactate at 3T. Magn Reson Med 2024; 91:886-895. [PMID: 38010083 PMCID: PMC10929535 DOI: 10.1002/mrm.29933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE Application of highly selective editing RF pulses provides a means of minimizing co-editing of contaminants in J-difference MRS (MEGA), but it causes reduction in editing yield. We examined the flip angles (FAs) of narrow-band editing pulses to maximize the lactate edited signal with minimal co-editing of threonine. METHODS The effect of editing-pulse FA on the editing performance was examined, with numerical and phantom analyses, for bandwidths of 17.6-300 Hz in MEGA-PRESS editing of lactate at 3T. The FA and envelope of 46 ms Gaussian editing pulses were tailored to maximize the lactate edited signal at 1.3 ppm and minimize co-editing of threonine. The optimized editing-pulse FA MEGA scheme was tested in brain tumor patients. RESULTS Simulation and phantom data indicated that the optimum FA of MEGA editing pulses is progressively larger than 180° as the editing-pulse bandwidth decreases. For 46 ms long 17.6 Hz bandwidth Gaussian pulses and other given sequence parameters, the lactate edited signal was maximum at the first and second editing-pulse FAs of 241° and 249°, respectively. The edit-on and difference-edited lactate peak areas of the optimized FA MEGA were greater by 43% and 25% compared to the 180°-FA MEGA, respectively. In-vivo data confirmed the simulation and phantom results. The lesions of the brain tumor patients showed elevated lactate and physiological levels of threonine. CONCLUSION The lactate MEGA editing yield is significantly increased with editing-pulse FA much larger than 180° when the editing-pulse bandwidth is comparable to the lactate quartet frequency width.
Collapse
Affiliation(s)
- Jason E. Moore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ryan K. Robison
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Philips, Nashville, TN, USA
| | - Jie Hu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Saikat T. Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Olaimatu S. Mahdi
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam W. Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Leo Y. Luo
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander C. Mohler
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ryan T. Merrell
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Changho Choi
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
25
|
Krzyściak W, Bystrowska B, Karcz P, Chrzan R, Bryll A, Turek A, Mazur P, Śmierciak N, Szwajca M, Donicz P, Furman K, Pilato F, Kozicz T, Popiela T, Pilecki M. Association of Blood Metabolomics Biomarkers with Brain Metabolites and Patient-Reported Outcomes as a New Approach in Individualized Diagnosis of Schizophrenia. Int J Mol Sci 2024; 25:2294. [PMID: 38396971 PMCID: PMC10888632 DOI: 10.3390/ijms25042294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Given its polygenic nature, there is a need for a personalized approach to schizophrenia. The aim of the study was to select laboratory biomarkers from blood, brain imaging, and clinical assessment, with an emphasis on patients' self-report questionnaires. Metabolomics studies of serum samples from 51 patients and 45 healthy volunteers, based on the liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS), led to the identification of 3 biochemical indicators (cortisol, glutamate, lactate) of schizophrenia. These metabolites were sequentially correlated with laboratory tests results, imaging results, and clinical assessment outcomes, including patient self-report outcomes. The hierarchical cluster analysis on the principal components (HCPC) was performed to identify the most homogeneous clinical groups. Significant correlations were noted between blood lactates and 11 clinical and 10 neuroimaging parameters. The increase in lactate and cortisol were significantly associated with a decrease in immunological parameters, especially with the level of reactive lymphocytes. The strongest correlations with the level of blood lactate and cortisol were demonstrated by brain glutamate, N-acetylaspartate and the concentrations of glutamate and glutamine, creatine and phosphocreatine in the prefrontal cortex. Metabolomics studies and the search for associations with brain parameters and self-reported outcomes may provide new diagnostic evidence to specific schizophrenia phenotypes.
Collapse
Affiliation(s)
- Wirginia Krzyściak
- Department of Medical Diagnostics, Jagiellonian University Medical College, Faculty of Pharmacy, 30-688 Krakow, Poland;
| | - Beata Bystrowska
- Department of Biochemical Toxicology, Jagiellonian University Medical College, Faculty of Pharmacy, 30-688 Krakow, Poland;
| | - Paulina Karcz
- Department of Electroradiology, Jagiellonian University Medical College, Faculty of Health Sciences, 31-126 Krakow, Poland;
| | - Robert Chrzan
- Department of Radiology, Jagiellonian University Medical College, Faculty of Medicine, 31-503 Krakow, Poland; (R.C.); (A.B.); (T.P.)
| | - Amira Bryll
- Department of Radiology, Jagiellonian University Medical College, Faculty of Medicine, 31-503 Krakow, Poland; (R.C.); (A.B.); (T.P.)
| | - Aleksander Turek
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Paulina Mazur
- Department of Medical Diagnostics, Jagiellonian University Medical College, Faculty of Pharmacy, 30-688 Krakow, Poland;
| | - Natalia Śmierciak
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Marta Szwajca
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Paulina Donicz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Katarzyna Furman
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Fabio Pilato
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Tamas Kozicz
- Department of Clinical Genomics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Tadeusz Popiela
- Department of Radiology, Jagiellonian University Medical College, Faculty of Medicine, 31-503 Krakow, Poland; (R.C.); (A.B.); (T.P.)
| | - Maciej Pilecki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| |
Collapse
|
26
|
Lei Z, Mozaffaritabar S, Kawamura T, Koike A, Kolonics A, Kéringer J, Pinho RA, Sun J, Shangguan R, Radák Z. The effects of long-term lactate and high-intensity interval training (HIIT) on brain neuroplasticity of aged mice. Heliyon 2024; 10:e24421. [PMID: 38293399 PMCID: PMC10826720 DOI: 10.1016/j.heliyon.2024.e24421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/02/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Extensive research has confirmed numerous advantages of exercise for promoting brain health. More recent studies have proposed the potential benefits of lactate, the by-product of exercise, in various aspects of brain function and disorders. However, there remains a gap in understanding the effects of lactate dosage and its impact on aged rodents. The present study first examined the long-term effects of three different doses of lactate intervention (2000 mg/kg, 1000 mg/kg, and 500 mg/kg) and high-intensity interval training (HIIT) on aging mice (20-22 months) as the 1st experiment. Subsequently, in the 2nd experiment, we investigated the long-term effects of 500 mg/kg lactate intervention and HIIT on brain neuroplasticity in aged mice (25-27 months). The results of the 1st experiment demonstrated that both HIIT and different doses of lactate intervention (500 mg/kg and 2000 mg/kg) positively impacted the neuroplasticity biomarker VEGF in the hippocampus of aging mice. Subsequently, the 2nd experiment revealed that long-term HIIT significantly improved the performance of mice in open-field, novel object recognition, and passive avoidance tests. However, lactate intervention did not significantly affect these behavioral tests. Moreover, compared to the control group, both HIIT and lactate intervention positively influenced the angiogenesis signaling pathway (p/t-AKT/ENOS/VEGF), mitochondrial biomarker (SDHA), and metabolic protein (p/t-CREB, p/t-HSL, and LDH) in the hippocampus of aged mice. Notably, only lactate intervention significantly elevated the BDNF (PGC-1α, SIRT1, and BDNF) signaling pathway and metabolic content (lactate and pyruvate). In the end, long-term HIIT and lactate intervention failed to change the protein expression of p/t-MTOR, iNOS, nNOS, HIF-1α, SYNAPSIN, SIRT3, NAMPT, CS, FNDC5 and Pan Lactic aid-Lysine in the hippocampus of aged mice. In summary, the present study proved that long-term HIIT and lactate treatment have positive effects on the brain functions of aged mice, suggesting the potential usage of lactate as a therapeutic strategy in neurodegenerative diseases in the elderly population.
Collapse
Affiliation(s)
- Zhou Lei
- Research Institute of Molecular Exercise Science, Hungarian University of Sports Science, H-1123, Budapest, Hungary
| | - Soroosh Mozaffaritabar
- Research Institute of Molecular Exercise Science, Hungarian University of Sports Science, H-1123, Budapest, Hungary
| | - Takuji Kawamura
- Research Institute of Molecular Exercise Science, Hungarian University of Sports Science, H-1123, Budapest, Hungary
- Waseda Institute for Sport Sciences, Waseda University, Saitama, 359-1192, Japan
| | - Atsuko Koike
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153–8902, Japan
| | - Attila Kolonics
- Research Institute of Molecular Exercise Science, Hungarian University of Sports Science, H-1123, Budapest, Hungary
| | - Johanna Kéringer
- Research Institute of Molecular Exercise Science, Hungarian University of Sports Science, H-1123, Budapest, Hungary
| | - Ricardo A. Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, 80215-901, Brazil
| | - Jingquan Sun
- Institute of Sports Science, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, China
| | - Ruonan Shangguan
- Department of Physical Education, Chengdu University, 610106, Chengdu, China
| | - Zsolt Radák
- Research Institute of Molecular Exercise Science, Hungarian University of Sports Science, H-1123, Budapest, Hungary
- Waseda Institute for Sport Sciences, Waseda University, Saitama, 359-1192, Japan
| |
Collapse
|
27
|
Chirumbolo S, Bertossi D, Magistretti P. Insights on the role of L-lactate as a signaling molecule in skin aging. Biogerontology 2023; 24:709-726. [PMID: 36708434 PMCID: PMC9883612 DOI: 10.1007/s10522-023-10018-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
L-lactate is a catabolite from the anaerobic metabolism of glucose, which plays a paramount role as a signaling molecule in various steps of the cell survival. Its activity, as a master tuner of many mechanisms underlying the aging process, for example in the skin, is still presumptive, however its crucial position in the complex cross-talk between mitochondria and the process of cell survival, should suggest that L-lactate may be not a simple waste product but a fine regulator of the aging/survival machinery, probably via mito-hormesis. Actually, emerging evidence is highlighting that ROS are crucial in the signaling of skin health, including mechanisms underlying wound repair, renewal and aging. The ROS, including superoxide anion, hydrogen peroxide, and nitric oxide, play both beneficial and detrimental roles depending upon their levels and cellular microenvironment. Physiological ROS levels are essential for cutaneous health and the wound repair process. Aberrant redox signaling activity drives chronic skin disease in elderly. On the contrary, impaired redox modulation, due to enhanced ROS generation and/or reduced levels of antioxidant defense, suppresses wound healing via promoting lymphatic/vascular endothelial cell apoptosis and death. This review tries to elucidate this issue.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, Unit of Human Anatomy, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
| | - Dario Bertossi
- Department of Surgery, Dentistry, Paediatrics and Gynaecology-Unit of Maxillo-Facial Surgery, University of Verona, Verona, Italy
| | - Pierre Magistretti
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
28
|
Plini ERG, Melnychuk MC, Andrews R, Boyle R, Whelan R, Spence JS, Chapman SB, Robertson IH, Dockree PM. Greater physical fitness (Vo2Max) in healthy older adults associated with increased integrity of the Locus Coeruleus-Noradrenergic system. RESEARCH SQUARE 2023:rs.3.rs-2556690. [PMID: 36798156 PMCID: PMC9934752 DOI: 10.21203/rs.3.rs-2556690/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Physical activity (PA) is a key component for brain health and Reserve, and it is among the main dementia protective factors. However, the neurobiological mechanisms underpinning Reserve are not fully understood. In this regard, a noradrenergic (NA) theory of cognitive reserve (Robertson, 2013) has proposed that the upregulation of NA system might be a key factor for building reserve and resilience to neurodegeneration because of the neuroprotective role of NA across the brain. PA elicits an enhanced catecholamine response, in particular for NA. By increasing physical commitment, a greater amount of NA is synthetised in response to higher oxygen demand. More physically trained individuals show greater capabilities to carry oxygen resulting in greater Vo2max - a measure of oxygen uptake and physical fitness (PF). In the current study, we hypothesised that greater Vo2 max would be related to greater Locus Coeruleus (LC) MRI signal intensity. As hypothesised, greater Vo2max related to greater LC signal intensity across 41 healthy adults (age range 60-72). As a control procedure, in which these analyses were repeated for the other neuromodulators' seeds (for Serotonin, Dopamine and Acetylcholine), weaker associations emerged. This newly established link between Vo2max and LC-NA system offers further understanding of the neurobiology underpinning Reserve in relationship to PA. While this study supports Robertson's theory proposing the upregulation of the noradrenergic system as a possible key factor building Reserve, it also provide grounds for increasing LC-NA system resilience to neurodegeneration via Vo2max enhancement.
Collapse
Affiliation(s)
- Emanuele RG Plini
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland
| | - Michael C Melnychuk
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland
| | - Ralph Andrews
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland
| | - Rory Boyle
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Building 149, Charlestown MA, USA
| | - Robert Whelan
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland
| | - Jeffrey S. Spence
- Center for BrainHealth, The University of Texas at Dallas, Dallas, TX, USA
| | - Sandra B. Chapman
- Center for BrainHealth, The University of Texas at Dallas, Dallas, TX, USA
| | - Ian H Robertson
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Building 149, Charlestown MA, USA
- Center for BrainHealth, The University of Texas at Dallas, Dallas, TX, USA
- Department of Psychology, Global Brain Health Institute, Trinity College Dublin, Lloyd Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland
| | - Paul M Dockree
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland
| |
Collapse
|
29
|
Robison RK, Haynes JR, Ganji SK, Nockowski CP, Kovacs Z, Pham W, Morgan VL, Smith SA, Thompson RC, Omary RA, Gore JC, Choi C. J-Difference editing (MEGA) of lactate in the human brain at 3T. Magn Reson Med 2023; 90:852-862. [PMID: 37154389 PMCID: PMC10901256 DOI: 10.1002/mrm.29693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE The need to detect and quantify brain lactate accurately by MRS has stimulated the development of editing sequences based on J coupling effects. In J-difference editing of lactate, threonine can be co-edited and it contaminates lactate estimates due to the spectral proximity of the coupling partners of their methyl protons. We therefore implemented narrow-band editing 180° pulses (E180) in MEGA-PRESS acquisitions to resolve separately the 1.3-ppm resonances of lactate and threonine. METHODS Two 45.3-ms rectangular E180 pulses, which had negligible effects 0.15-ppm away from the carrier frequency, were implemented in a MEGA-PRESS sequence with TE 139 ms. Three acquisitions were designed to selectively edit lactate and threonine, in which the E180 pulses were tuned to 4.1 ppm, 4.25 ppm, and a frequency far off resonance. Editing performance was validated with numerical analyses and acquisitions from phantoms. The narrow-band E180 MEGA and another MEGA-PRESS sequence with broad-band E180 pulses were evaluated in six healthy subjects. RESULTS The 45.3-ms E180 MEGA offered a difference-edited lactate signal with lower intensity and reduced contamination from threonine compared to the broad-band E180 MEGA. The 45.3 ms E180 pulse had MEGA editing effects over a frequency range larger than seen in the singlet-resonance inversion profile. Lactate and threonine in healthy brain were both estimated to be 0.4 ± 0.1 mM, with reference to N-acetylaspartate at 12 mM. CONCLUSION Narrow-band E180 MEGA editing minimizes threonine contamination of lactate spectra and may improve the ability to detect modest changes in lactate levels.
Collapse
Affiliation(s)
- Ryan K Robison
- Philips, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin R Haynes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sandeep K Ganji
- Philips, Rochester, Minnesota, USA
- Mayo Clinic, Rochester, Minnesota, USA
| | - Charles P Nockowski
- Philips, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Wellington Pham
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Victoria L Morgan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Reid C Thompson
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Reed A Omary
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| | - Changho Choi
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
30
|
Colucci ACM, Tassinari ID, Loss EDS, de Fraga LS. History and Function of the Lactate Receptor GPR81/HCAR1 in the Brain: A Putative Therapeutic Target for the Treatment of Cerebral Ischemia. Neuroscience 2023; 526:144-163. [PMID: 37391123 DOI: 10.1016/j.neuroscience.2023.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
GPR81 is a G-protein coupled receptor (GPCR) discovered in 2001, but deorphanized only 7 years later, when its affinity for lactate as an endogenous ligand was demonstrated. More recently, GPR81 expression and distribution in the brain were also confirmed and the function of lactate as a volume transmitter has been suggested since then. These findings shed light on a new function of lactate acting as a signaling molecule in the central nervous system, in addition to its well-known role as a metabolic fuel for neurons. GPR81 seems to act as a metabolic sensor, coupling energy metabolism, synaptic activity, and blood flow. Activation of this receptor leads to Gi-mediated downregulation of adenylyl cyclase and subsequent reduction in cAMP levels, regulating several downstream pathways. Recent studies have also suggested the potential role of lactate as a neuroprotective agent, mainly under brain ischemic conditions. This effect is usually attributed to the metabolic role of lactate, but the underlying mechanisms need further investigation and could be related to lactate signaling via GPR81. The activation of GPR81 showed promising results for neuroprotection: it modulates many processes involved in the pathophysiology of ischemia. In this review, we summarize the history of GPR81, starting with its deorphanization; then, we discuss GPR81 expression and distribution, signaling transduction cascades, and neuroprotective roles. Lastly, we propose GPR81 as a potential target for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Anna Clara Machado Colucci
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil
| | - Isadora D'Ávila Tassinari
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil
| | - Eloísa da Silveira Loss
- Laboratório de Endocrinologia Experimental (LABENEX), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil
| | - Luciano Stürmer de Fraga
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil.
| |
Collapse
|
31
|
Li R, Yang Y, Wang H, Zhang T, Duan F, Wu K, Yang S, Xu K, Jiang X, Sun X. Lactate and Lactylation in the Brain: Current Progress and Perspectives. Cell Mol Neurobiol 2023; 43:2541-2555. [PMID: 36928470 PMCID: PMC11410153 DOI: 10.1007/s10571-023-01335-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023]
Abstract
As the final product of glycolysis, lactate features not only as an energy substrate, a metabolite, and a signaling molecule in a variety of diseases-such as cancer, inflammation, and sepsis-but also as a regulator of protein lactylation; this is a newly proposed epigenetic modification that is considered to be crucial for energy metabolism and signaling in brain tissues under both physiological and pathological conditions. In this review, evidence on lactylation from studies on lactate metabolism and disease has been summarized, revealing the function of lactate and its receptors in the regulation of brain function and summarizing the levels of lactylation expression in various brain diseases. Finally, the function of lactate and lactylation in the brain and the potential mechanisms of intervention in brain diseases are presented and discussed, providing optimal perspectives for future research on the role of lactylation in the brain.
Collapse
Affiliation(s)
- Ruobing Li
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Yi Yang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Haoyu Wang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Tingting Zhang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Fangfang Duan
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Kaidi Wu
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Siyu Yang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Ke Xu
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Xicheng Jiang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China.
| | - Xiaowei Sun
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China.
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang District, Harbin, 8615-0040, China.
| |
Collapse
|
32
|
Akter M, Ma H, Hasan M, Karim A, Zhu X, Zhang L, Li Y. Exogenous L-lactate administration in rat hippocampus increases expression of key regulators of mitochondrial biogenesis and antioxidant defense. Front Mol Neurosci 2023; 16:1117146. [PMID: 37008779 PMCID: PMC10062455 DOI: 10.3389/fnmol.2023.1117146] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
L-lactate plays a critical role in learning and memory. Studies in rats showed that administration of exogenous L-lactate into the anterior cingulate cortex and hippocampus (HPC) improved decision-making and enhanced long-term memory formation, respectively. Although the molecular mechanisms by which L-lactate confers its beneficial effect are an active area of investigations, one recent study found that L-lactate supplementation results in a mild reactive oxygen species burst and induction of pro-survival pathways. To further investigate the molecular changes induced by L-lactate, we injected rats with either L-lactate or artificial CSF bilaterally into the dorsal HPC and collected the HPC after 60 minutes for mass spectrometry. We identified increased levels of several proteins that include SIRT3, KIF5B, OXR1, PYGM, and ATG7 in the HPC of the L-lactate treated rats. SIRT3 (Sirtuin 3) is a key regulator of mitochondrial functions and homeostasis and protects cells against oxidative stress. Further experiments identified increased expression of the key regulator of mitochondrial biogenesis (PGC-1α) and mitochondrial proteins (ATPB, Cyt-c) as well as increased mitochondrial DNA (mtDNA) copy number in the HPC of L-lactate treated rats. OXR1 (Oxidation resistance protein 1) is known to maintain mitochondrial stability. It mitigates the deleterious effects of oxidative damage in neurons by inducing a resistance response against oxidative stress. Together, our study suggests that L-lactate can induce expression of key regulators of mitochondrial biogenesis and antioxidant defense. These findings create new research avenues to explore their contribution to the L-lactate’s beneficial effect in cognitive functions as these cellular responses might enable neurons to generate more ATP to meet energy demand of neuronal activity and synaptic plasticity as well as attenuate the associated oxidative stress.
Collapse
Affiliation(s)
- Mastura Akter
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Haiying Ma
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Mahadi Hasan
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Anwarul Karim
- School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Xiaowei Zhu
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong, Futian Research Institute, Shenzhen, Guangdong, China
| | - Ying Li
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- *Correspondence: Ying Li,
| |
Collapse
|
33
|
Wu YY, Yang C, Yan HJ, Lu P, Zhang L, Feng WC, Long YS. Lysine acetylome profiling in mouse hippocampus and its alterations upon FMRP deficiency linked to abnormal energy metabolism. J Proteomics 2022; 269:104720. [PMID: 36089189 DOI: 10.1016/j.jprot.2022.104720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/07/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Loss of fragile X retardation protein (FMRP) leads to fragile X syndrome (FXS), a common cause of inherited intellectual disability. Protein lysine acetylation (K-ac), a reversible post-translational modification of proteins, is associated with the regulation of brain development and neuropathies. However, a comprehensive hippocampal K-ac protein profile in response to FMRP deficiency has not been reported until now. Using LC-MS/MS to analyze the enriched K-ac peptides, this study identified 1629 K-ac hits across 717 proteins in the mouse hippocampus, and these proteins were enriched in several metabolic processes. Of them, 51 K-ac hits across 45 proteins were significantly changed upon loss of FMRP. These altered K-ac proteins were enriched in energy metabolic processes including carboxylic acid metabolism process, aerobic respiration and citrate cycle, linking with several neurological disorders such as lactic acidosis, Lewy body disease, Leigh disease and encephalopathies. In the mouse hippocampus and the hippocampal HT-22 cells, FMRP deficiency could induce altered K-ac modification of several key enzymes, decrease in ATP and increase in lactate. Thus, this study identified a global hippocampal lysine acetylome and an altered K-ac protein profile upon loss of FMRP linked to abnormal energy metabolism, implicating in the pathogenesis of FXS. SIGNIFICANCE: Fragile X syndrome (FXS) is a common inherited neurodevelopment disorder characterized by intellectual disability and an increased risk for autism spectrum disorder. FXS is resulted from silencing of the FMR1 gene, which induces loss of its encoding protein FMRP. Molecular and metabolic changes of Fmr1-null animal models of FXS have been identified to potentially contribute to the pathogenesis of FXS. Here, we used a TMT-labeled quantitative proteomic analysis of the peptides enriched by anti-K-ac antibodies and identified a global K-ac protein profile in the mouse hippocampus with a total of 1629 K-ac peptides on 717 proteins. Of them, 51 K-ac peptides regarding 45 proteins altered in response to loss of FMRP, which were enriched in energy metabolic processes and were implicated in several neurological disorders. Thus this study for the first time provides a global hippocampal lysine acetylome upon FMRP deficiency linked to abnormal metabolic pathways, which may contribute to pathogenic mechanism of FXS.
Collapse
Affiliation(s)
- Yue-Ying Wu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Cui Yang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Hua-Juan Yan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Ping Lu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Li Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Weng-Cai Feng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yue-Sheng Long
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
34
|
Kumar V, Kim SH, Bishayee K. Dysfunctional Glucose Metabolism in Alzheimer’s Disease Onset and Potential Pharmacological Interventions. Int J Mol Sci 2022; 23:ijms23179540. [PMID: 36076944 PMCID: PMC9455726 DOI: 10.3390/ijms23179540] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/21/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related dementia. The alteration in metabolic characteristics determines the prognosis. Patients at risk show reduced glucose uptake in the brain. Additionally, type 2 diabetes mellitus increases the risk of AD with increasing age. Therefore, changes in glucose uptake in the cerebral cortex may predict the histopathological diagnosis of AD. The shifts in glucose uptake and metabolism, insulin resistance, oxidative stress, and abnormal autophagy advance the pathogenesis of AD syndrome. Here, we summarize the role of altered glucose metabolism in type 2 diabetes for AD prognosis. Additionally, we discuss diagnosis and potential pharmacological interventions for glucose metabolism defects in AD to encourage the development of novel therapeutic methods.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - So-Hyeon Kim
- Biomedical Science Core-Facility, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Kausik Bishayee
- Biomedical Science Core-Facility, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: or
| |
Collapse
|