1
|
Schuppelius B, Schüler R, Pivovarova-Ramich O, Hornemann S, Busjahn A, Machann J, Kruse M, Park SQ, Kabisch S, Csanalosi M, Ost AC, Pfeiffer AFH. Alterations in Glucagon Levels and the Glucagon-to-Insulin Ratio in Response to High Dietary Fat or Protein Intake in Healthy Lean Adult Twins: A Post Hoc Analysis. Nutrients 2024; 16:3905. [PMID: 39599691 PMCID: PMC11597242 DOI: 10.3390/nu16223905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Emerging data support evidence of the essential role of glucagon for lipid metabolism. However, data on the role of dietary fat intake for glucagon secretion is limited. This analysis investigated whether altering nutritional fat intake affects glucagon levels in healthy subjects. Methods: A total of 92 twins (age: 31 ± 14 years, BMI: 23 ± 3 kg/m2) consumed two 6-week diets: first a low-fat, high-carbohydrate diet (LFD) followed by an isocaloric high-fat, low-carbohydrate diet (HFD). In total, 24 twins (age: 39 ± 15 years, BMI: 24 ± 2 kg/m2) continued with a high-protein diet (HPD). Clinical investigations were performed after 6 weeks of the LFD, after 1 and 6 weeks of the HFD and after 6 weeks of the HPD. Results: The LFD caused a significant decrease in fasting glucagon (-27%, p < 0.001) compared to baseline. After 6 weeks of the HFD, glucagon increased (117%, p < 0.001 vs. LFD), while free fatty acids decreased. Six weeks of the HPD further increased glucagon levels (72%, p = 0.502 vs. HFD), although fasting amino acid levels remained constant. Fasting insulin and HOMA-IR moderately increased after one week of the HFD, while six weeks of the HPD significantly decreased both. The fasting glucagon-to-insulin ratio decreased during the LFD (p < 0.001) but increased after the HFD (p < 0.001) and even further increased after the HPD (p = 0.018). Liver fat, triglycerides and blood glucose did not increase during the HFD. The heritability of glucagon levels was 45% with the LFD. Conclusions: An HFD increases glucagon levels and the glucagon-to-insulin ratio under isocaloric conditions compared to an LFD in healthy lean subjects. This rise in glucagon may represent a metabolic response to prevent hepatic steatosis, as glucagon increases have been previously shown to induce hepatic fat oxidation.
Collapse
Affiliation(s)
- Bettina Schuppelius
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Rita Schüler
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Olga Pivovarova-Ramich
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- Department of Molecular Metabolism and Precision Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
| | - Silke Hornemann
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Andreas Busjahn
- HealthTwiSt GmbH, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Section of Experimental Radiology, Department of Diagnostic and Interventional Radiology, University of Tübingen, Geissweg 3, 72076 Tübingen, Germany
| | - Michael Kruse
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Soyoung Q. Park
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
- Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- Neuroscience Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Stefan Kabisch
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
| | - Marta Csanalosi
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Anne-Cathrin Ost
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
| |
Collapse
|
2
|
Mensink M. Dietary protein, amino acids and type 2 diabetes mellitus: a short review. Front Nutr 2024; 11:1445981. [PMID: 39114126 PMCID: PMC11305142 DOI: 10.3389/fnut.2024.1445981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Diabetes is a widespread metabolic disorder and results from insulin resistance and impaired insulin secretion. Modifiable factors like diet, physical activity, and body weight play crucial roles in diabetes prevention, with targeted interventions reducing diabetes risk by about 60%. High-protein consumption, above the recommended intake of 0.8 g/kg body weight per day, have often explored in relation to diabetes risk. However, the relationship between dietary protein and diabetes is multifaceted. Observational studies have linked high total and animal protein intake to an increased risk of type 2 diabetes, particularly in obese women. Elevated levels of branched-chain amino acids (BCAA), which can result from dietary intake, protein breakdown, as well as an impaired catabolism, are strong predictors of cardiometabolic risk and insulin resistance. With several mechanism linking BCAA to insulin resistance. On the other hand, intervention studies suggest that high-protein diets can support weight loss and improve cardiometabolic risk factors. However, the impact on insulin sensitivity and glucose homeostasis is not straightforward. Proteins and amino acids stimulate both insulin and glucagon secretion, influencing glucose levels, but chronic effects remain uncertain. This short narrative review aims to provide an update on the relationship between increased dietary protein intake, amino acids, insulin resistance and type 2 diabetes, and to describe protein recommendations for type 2 diabetes.
Collapse
Affiliation(s)
- Marco Mensink
- Division of Human Nutrition and Health, Chair Group Nutritional Biology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
3
|
Kistkins S, Moser O, Ankudovičs V, Blizņuks D, Mihailovs T, Lobanovs S, Sourij H, Pfeiffer AFH, Pīrāgs V. From classical dualistic antagonism to hormone synergy: potential of overlapping action of glucagon, insulin and GLP-1 for the treatment of diabesity. Endocr Connect 2024; 13:e230529. [PMID: 38579770 PMCID: PMC11046332 DOI: 10.1530/ec-23-0529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
The increasing prevalence of 'diabesity', a combination of type 2 diabetes and obesity, poses a significant global health challenge. Unhealthy lifestyle factors, including poor diet, sedentary behaviour, and high stress levels, combined with genetic and epigenetic factors, contribute to the diabesity epidemic. Diabesity leads to various significant complications such as cardiovascular diseases, stroke, and certain cancers. Incretin-based therapies, such as GLP-1 receptor agonists and dual hormone therapies, have shown promising results in improving glycaemic control and inducing weight loss. However, these therapies also come with certain disadvantages, including potential withdrawal effects. This review aims to provide insights into the cross-interactions of insulin, glucagon, and GLP-1, revealing the complex hormonal dynamics during fasting and postprandial states, impacting glucose homeostasis, energy expenditure, and other metabolic functions. Understanding these hormonal interactions may offer novel hypotheses in the development of 'anti-diabesity' treatment strategies. The article also explores the question of the antagonism of insulin and glucagon, providing insights into the potential synergy and hormonal overlaps between these hormones.
Collapse
Affiliation(s)
| | - Othmar Moser
- Division of Exercise Physiology and Metabolism, Institute of Sport Science, University of Bayreuth, Bayreuth, Germany
| | | | - Dmitrijs Blizņuks
- Institute of Smart Computing Technologies, Riga Technical University, Riga, Latvia
| | - Timurs Mihailovs
- Institute of Smart Computing Technologies, Riga Technical University, Riga, Latvia
| | | | - Harald Sourij
- Trials Unit for Interdisciplinary Metabolic Medicine, Division of Endocrinology and Diabetolgoy, Medical University of Graz, Graz, Austria
| | - Andreas F H Pfeiffer
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm, Berlin, Germany
| | - Valdis Pīrāgs
- Pauls Stradiņš Clinical University Hospital, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
| |
Collapse
|
4
|
Andreozzi F, Mancuso E, Rubino M, Salvatori B, Morettini M, Monea G, Göbl C, Mannino GC, Tura A. Glucagon kinetics assessed by mathematical modelling during oral glucose administration in people spanning from normal glucose tolerance to type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1376530. [PMID: 38681771 PMCID: PMC11045965 DOI: 10.3389/fendo.2024.1376530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Background/Objectives Glucagon is important in the maintenance of glucose homeostasis, with also effects on lipids. In this study, we aimed to apply a recently developed model of glucagon kinetics to determine the sensitivity of glucagon variations (especially, glucagon inhibition) to insulin levels ("alpha-cell insulin sensitivity"), during oral glucose administration. Subjects/Methods We studied 50 participants (spanning from normal glucose tolerance to type 2 diabetes) undergoing frequently sampled 5-hr oral glucose tolerance test (OGTT). The alpha-cell insulin sensitivity and the glucagon kinetics were assessed by a mathematical model that we developed previously. Results The alpha-cell insulin sensitivity parameter (named SGLUCA; "GLUCA": "glucagon") was remarkably variable among participants (CV=221%). SGLUCA was found inversely correlated with the mean glycemic values, as well as with 2-hr glycemia of the OGTT. When stratifying participants into two groups (normal glucose tolerance, NGT, N=28, and impaired glucose regulation/type 2 diabetes, IGR_T2D, N=22), we found that SGLUCA was lower in the latter (1.50 ± 0.50·10-2 vs. 0.26 ± 0.14·10-2 ng·L-1 GLUCA/pmol·L-1 INS, in NGT and IGR_T2D, respectively, p=0.009; "INS": "insulin"). Conclusions The alpha-cell insulin sensitivity is highly variable among subjects, and it is different in groups at different glucose tolerance. This may be relevant for defining personalized treatment schemes, in terms of dietary prescriptions but also for treatments with glucagon-related agents.
Collapse
Affiliation(s)
- Francesco Andreozzi
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Elettra Mancuso
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Mariangela Rubino
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | | | - Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Giuseppe Monea
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Christian Göbl
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Andrea Tura
- CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
5
|
Kjeldsen SAS, Thomsen MN, Skytte MJ, Samkani A, Richter MM, Frystyk J, Magkos F, Hansen E, Thomsen HS, Holst JJ, Madsbad S, Haugaard SB, Krarup T, Wewer Albrechtsen NJ. Markers of Glucagon Resistance Improve With Reductions in Hepatic Steatosis and Body Weight in Type 2 Diabetes. J Endocr Soc 2023; 7:bvad122. [PMID: 37818402 PMCID: PMC10561012 DOI: 10.1210/jendso/bvad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 10/12/2023] Open
Abstract
Context Hyperglucagonemia may develop in type 2 diabetes due to obesity-prone hepatic steatosis (glucagon resistance). Markers of glucagon resistance (including the glucagon-alanine index) improve following diet-induced weight loss, but the partial contribution of lowering hepatic steatosis vs body weight is unknown. Objective This work aimed to investigate the dependency of body weight loss following a reduction in hepatic steatosis on markers of glucagon resistance in type 2 diabetes. Methods A post hoc analysis was conducted from 2 previously published randomized controlled trials. We investigated the effect of weight maintenance (study 1: isocaloric feeding) or weight loss (study 2: hypocaloric feeding), both of which induced reductions in hepatic steatosis, on markers of glucagon sensitivity, including the glucagon-alanine index measured using a validated enzyme-linked immunosorbent assay and metabolomics in 94 individuals (n = 28 in study 1; n = 66 in study 2). Individuals with overweight or obesity with type 2 diabetes were randomly assigned to a 6-week conventional diabetes (CD) or carbohydrate-reduced high-protein (CRHP) diet within both isocaloric and hypocaloric feeding-interventions. Results By design, weight loss was greater after hypocaloric compared to isocaloric feeding, but both diets caused similar reductions in hepatic steatosis, allowing us to investigate the effect of reducing hepatic steatosis with or without a clinically relevant weight loss on markers of glucagon resistance. The glucagon-alanine index improved following hypocaloric, but not isocaloric, feeding, independently of macronutrient composition. Conclusion Improvements in glucagon resistance may depend on body weight loss in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Sasha A S Kjeldsen
- Department of Clinical Biochemistry, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Mads N Thomsen
- Department of Endocrinology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
| | - Mads J Skytte
- Department of Endocrinology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
| | - Amirsalar Samkani
- Department of Endocrinology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
| | - Michael M Richter
- Department of Clinical Biochemistry, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Jan Frystyk
- Department of Endocrinology, Odense University Hospital, Odense, 5000, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Elizaveta Hansen
- Department of Radiology, Copenhagen University Hospital-Herlev, Herlev, 2730, Denmark
| | - Henrik S Thomsen
- Department of Radiology, Copenhagen University Hospital-Herlev, Herlev, 2730, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital-Hvidovre, Hvidovre, 2650, Denmark
| | - Steen B Haugaard
- Department of Endocrinology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Thure Krarup
- Department of Endocrinology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| |
Collapse
|
6
|
Zhang J, Zheng Y, Martens L, Pfeiffer AFH. The Regulation and Secretion of Glucagon in Response to Nutrient Composition: Unraveling Their Intricate Mechanisms. Nutrients 2023; 15:3913. [PMID: 37764697 PMCID: PMC10536047 DOI: 10.3390/nu15183913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Glucagon was initially regarded as a hyperglycemic substance; however, recent research has revealed its broader role in metabolism, encompassing effects on glucose, amino acids (AAs), and lipid metabolism. Notably, the interplay of glucagon with nutrient intake, particularly of AAs, and non-nutrient components is central to its secretion. Fasting and postprandial hyperglucagonemia have long been linked to the development and progression of type 2 diabetes (T2DM). However, recent studies have brought to light the positive impact of glucagon agonists on lipid metabolism and energy homeostasis. This review explores the multifaceted actions of glucagon, focusing on its regulation, signaling pathways, and effects on glucose, AAs, and lipid metabolism. The interplay between glucagon and other hormones, including insulin and incretins, is examined to provide a mechanistic understanding of its functions. Notably, the liver-α-cell axis, which involves glucagon and amino acids, emerges as a critical aspect of metabolic regulation. The dysregulation of glucagon secretion and its impact on conditions such as T2DM are discussed. The review highlights the potential therapeutic applications of targeting the glucagon pathway in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Jiudan Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China;
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
| | - Yang Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Lisa Martens
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
- Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
| |
Collapse
|
7
|
Muntis FR, Smith-Ryan AE, Crandell J, Evenson KR, Maahs DM, Seid M, Shaikh SR, Mayer-Davis EJ. A High Protein Diet Is Associated with Improved Glycemic Control Following Exercise among Adolescents with Type 1 Diabetes. Nutrients 2023; 15:nu15081981. [PMID: 37111199 PMCID: PMC10143215 DOI: 10.3390/nu15081981] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Nutritional strategies are needed to aid people with type 1 diabetes (T1D) in managing glycemia following exercise. Secondary analyses were conducted from a randomized trial of an adaptive behavioral intervention to assess the relationship between post-exercise and daily protein (g/kg) intake on glycemia following moderate-to-vigorous physical activity (MVPA) among adolescents with T1D. Adolescents (n = 112) with T1D, 14.5 (13.8, 15.7) years of age, and 36.6% overweight or obese, provided measures of glycemia using continuous glucose monitoring (percent time above range [TAR, >180 mg/dL], time-in-range [TIR, 70-180 mg/dL], time-below-range [TBR, <70 mg/dL]), self-reported physical activity (previous day physical activity recalls), and 24 h dietary recall data at baseline and 6 months post-intervention. Mixed effects regression models adjusted for design (randomization assignment, study site), demographic, clinical, anthropometric, dietary, physical activity, and timing covariates estimated the association between post-exercise and daily protein intake on TAR, TIR, and TBR from the cessation of MVPA bouts until the following morning. Daily protein intakes of ≥1.2 g/kg/day were associated with 6.9% (p = 0.03) greater TIR and -8.0% (p = 0.02) less TAR following exercise, however, no association was observed between post-exercise protein intake and post-exercise glycemia. Following current sports nutrition guidelines for daily protein intake may promote improved glycemia following exercise among adolescents with T1D.
Collapse
Affiliation(s)
- Franklin R Muntis
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Abbie E Smith-Ryan
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Exercise & Sports Science, University of North Carolina, Chapel Hill, NC 27519, USA
| | - Jamie Crandell
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kelly R Evenson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David M Maahs
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Stanford Diabetes Research Center, Stanford, CA 94304, USA
| | - Michael Seid
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Saame R Shaikh
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elizabeth J Mayer-Davis
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27514, USA
| |
Collapse
|
8
|
Asai T, Yoshikawa S, Ikeda Y, Taniguchi K, Sawamura H, Tsuji A, Matsuda S. Encouraging Tactics with Genetically Modified Probiotics to Improve Immunity for the Prevention of Immune-Related Diseases including Cardio-Metabolic Disorders. Biomolecules 2022; 13:biom13010010. [PMID: 36671395 PMCID: PMC9855998 DOI: 10.3390/biom13010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The PI3K/AKT/mTOR signaling pathway may play crucial roles in the pathogenesis of obesity and diabetes mellitus, as well as metabolic syndromes, which could also be risk factors for cardio-metabolic disorders. Consistently, it has been shown that beneficial effects may be convoyed by the modulation of the PI3K/AKT/mTOR pathway against the development of these diseases. Importantly, the PI3K/AKT/mTOR signaling pathway can be modulated by probiotics. Probiotics have a variety of beneficial properties, with the potential of treating specific diseases such as immune-related diseases, which are valuable to human health. In addition, an increasing body of work in the literature emphasized the contribution of genetically modified probiotics. There now seems to be a turning point in the research of probiotics. A better understanding of the interactions between microbiota, lifestyle, and host factors such as genetics and/or epigenetics might lead to a novel therapeutic approach with probiotics for these diseases. This study might provide a theoretical reference for the development of genetically modified probiotics in health products and/or in functional foods for the treatment of cardio-metabolic disorders.
Collapse
|