1
|
Msane S, Khathi A, Sosibo AM. The Effect of the 14:10-Hour Time-Restricted Feeding (TRF) Regimen on Selected Markers of Glucose Homeostasis in Diet-Induced Prediabetic Male Sprague Dawley Rats. Nutrients 2025; 17:292. [PMID: 39861423 PMCID: PMC11768421 DOI: 10.3390/nu17020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Prediabetes is a condition that often precedes the onset of type 2 diabetes mellitus (T2DM). Literature evidence indicates that prediabetes is reversible, making it an important therapeutic target for preventing the progression to T2DM. Several studies have investigated intermittent fasting as a possible method to manage or treat prediabetes. OBJECTIVES This study evaluated the impact of a 14:10-hour time-restricted feeding (TRF) regimen on leptin concentration, insulin sensitivity and selected markers associated with the insulin signalling pathway and glucose homeostasis in diet-induced prediabetic rats. METHODS Twenty-four male Sprague Dawley rats were obtained and randomly divided into two dietary groups: group 1 (n = 6) received a standard diet and water, while group 2 (n = 18) was provided a high-fat, high-carbohydrate (HFHC) diet supplemented with 15% fructose for a period of 20 weeks to induce prediabetes. After confirming prediabetes, an intermittent fasting (IF) regimen was assigned to the rats while also having untreated and metformin-treated prediabetic rats serving as controls. RESULTS Both IF and HFHC-Met groups yield significantly lower blood glucose, leptin and BMI results compared to the prediabetic group. The IF group yielded significantly lower insulin, HOMA-IR and HbA1C than both controls. CONCLUSIONS The study showed the potential of IF in alleviating prediabetes-induced dysregulation of glucose homeostasis and therefore warrants further investigations into its use in the management of prediabetes.
Collapse
Affiliation(s)
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (S.M.); (A.M.S.)
| | | |
Collapse
|
2
|
Sebastian SA, Shah Y, Arsene C. Intermittent fasting and cardiovascular disease: A scoping review of the evidence. Dis Mon 2024; 70:101778. [PMID: 38910053 DOI: 10.1016/j.disamonth.2024.101778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Intermittent fasting (IF), characterized by alternating periods of fasting and unrestricted eating, typically within an 8-hour window or less each day, has gained significant attention as a possible dietary approach. While it is recognized for its metabolic advantages, like weight loss and enhanced glucose and insulin sensitivity, its effect on cardiovascular health remains a topic of mixed opinions. Recent findings suggest a potential downside, with reports indicating a concerning association: a 91 % higher risk of cardiovascular disease (CVD) mortality compared to eating spread across a 12- to 16-hour period. Despite this alarming statistic, the evidence cannot establish a causal link. The impact of IF on CVD is still insufficiently understood, with benefits sometimes exaggerated and risks downplayed in popular discourse. This scoping review aims to consolidate the current evidence, addressing unresolved questions about the benefits and risks of IF, particularly its association with CVD risks and mortality. The goal is to provide a balanced perspective on the potential health implications of IF, emphasizing the need for further research to clarify its long-term effects on cardiovascular health.
Collapse
Affiliation(s)
| | - Yash Shah
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, Michigan, USA
| | - Camelia Arsene
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, Michigan, USA
| |
Collapse
|
3
|
Soberanes-Chávez P, Trujillo-Barrera J, de Gortari P. Circadian Synchronization of Feeding Attenuates Rats' Food Restriction-Induced Anxiety and Amygdalar Thyrotropin-Releasing Hormone Downregulation. Int J Mol Sci 2024; 25:5857. [PMID: 38892044 PMCID: PMC11172148 DOI: 10.3390/ijms25115857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 06/21/2024] Open
Abstract
Anxiety is a common comorbidity of obesity, resulting from prescribing long-term caloric restriction diets (CRDs); patients with a reduced food intake lose weight but present anxious behaviors, poor treatment adherence, and weight regain in the subsequent 5 years. Intermittent fasting (IF) restricts feeding time to 8 h during the activity phase, reducing patients' weight even with no caloric restriction; it is unknown whether an IF regime with ad libitum feeding avoids stress and anxiety development. We compared the corticosterone blood concentration between male Wistar rats fed ad libitum or calorie-restricted with all-day or IF food access after 4 weeks, along with their anxiety parameters when performing the elevated plus maze (EPM). As the amygdalar thyrotropin-releasing hormone (TRH) is believed to have anxiolytic properties, we evaluated its expression changes in association with anxiety levels. The groups formed were the following: a control which was offered food ad libitum (C-adlib) or 30% of C-adlib's energy requirements (C-CRD) all day, and IF groups provided food ad libitum (IF-adlib) or 30% of C-adlib's requirements (IF-CRD) with access from 9:00 to 17:00 h. On day 28, the rats performed the EPM and, after 30 min, were decapitated to analyze their amygdalar TRH mRNA expression by in situ hybridization and corticosterone serum levels. Interestingly, circadian feeding synchronization reduced the body weight, food intake, and animal anxiety levels in both IF groups, with ad libitum (IF-adlib) or restricted (IF-CRD) food access. The anxiety levels of the experimental groups resulted to be negatively associated with TRH expression, which supported its anxiolytic role. Therefore, the low anxiety levels induced by synchronizing feeding with the activity phase would help patients who are dieting to improve their diet therapy adherence.
Collapse
Affiliation(s)
- Paulina Soberanes-Chávez
- Laboratorio de Neurofisiología Molecular, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (P.S.-C.); (J.T.-B.)
| | - Jariz Trujillo-Barrera
- Laboratorio de Neurofisiología Molecular, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (P.S.-C.); (J.T.-B.)
- Escuela de Dietética y Nutrición del ISSSTE, Ciudad de México 14070, Mexico
| | - Patricia de Gortari
- Laboratorio de Neurofisiología Molecular, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico; (P.S.-C.); (J.T.-B.)
| |
Collapse
|
4
|
Rejeki PS, Pranoto A, Widiatmaja DM, Utami DM, Izzatunnisa N, Sugiharto, Lesmana R, Halim S. Combined Aerobic Exercise with Intermittent Fasting Is Effective for Reducing mTOR and Bcl-2 Levels in Obese Females. Sports (Basel) 2024; 12:116. [PMID: 38786985 PMCID: PMC11126026 DOI: 10.3390/sports12050116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
The integration of combined aerobic exercise and intermittent fasting (IF) has emerged as a strategy for the prevention and management of obesity, including its associated health issues such as age-related metabolic diseases. This study aimed to examine the potential of combined aerobic exercise and IF as a preventative strategy against cellular senescence by targeting mTOR and Bcl-2 levels in obese females. A total of 30 obese women, aged 23.56 ± 1.83 years, body fat percentage (FAT) 45.21 ± 3.73% (very high category), BMI 30.09 ± 3.74 kg/m2 were recruited and participated in three different types of interventions: intermittent fasting (IF), exercise (EXG), and a combination of intermittent fasting and exercise (IFEXG). The intervention program was carried out 5x/week for 2 weeks. We examined mTOR and Bcl-2 levels using ELISA kits. Statistical analysis used the one-way ANOVA test and continued with Tukey's HSD post hoc test, with a significance level of 5%. The study results showed that a combination of aerobic exercise and IF significantly decreased mTOR levels (-1.26 ± 0.79 ng/mL) compared to the control group (-0.08 ± 1.33 ng/mL; p ≤ 0.05). However, combined aerobic exercise and IF did not affect Bcl-2 levels significantly (-0.07 ± 0.09 ng/mL) compared to the control group (0.01 ± 0.17 ng/mL, p ≥ 0.05). The IF-only group, exercise-only group, and combined group all showed a significant decrease in body weight and fat mass compared to the control group (p ≤ 0.05). However, the combined aerobic exercise and IF program had a significant effect in reducing the total percentage of body fat and fat mass compared to the IF-only group (p ≤ 0.05). Therefore, it was concluded that the combined intermittent fasting and exercise group (IFEXG) undertook the most effective intervention of the three in terms of preventing cellular senescence, as demonstrated by decreases in the mTOR level, body weight, and fat mass. However, the IFEXG did not present reduced Bcl-2 levels.
Collapse
Affiliation(s)
- Purwo Sri Rejeki
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia
| | - Adi Pranoto
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia;
| | - Deandra Maharani Widiatmaja
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia; (D.M.W.); (D.M.U.); (N.I.)
| | - Dita Mega Utami
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia; (D.M.W.); (D.M.U.); (N.I.)
| | - Nabilah Izzatunnisa
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia; (D.M.W.); (D.M.U.); (N.I.)
| | - Sugiharto
- Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang, Malang 65145, East Java, Indonesia;
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjajaran, Bandung 45363, West Java, Indonesia;
| | - Shariff Halim
- Faculty of Health Sciences, University Technology MARA (UiTM) Pulau Pinang, Bertam Campus, Kepala Batas 13200, Pulau Pinang, Malaysia;
| |
Collapse
|
5
|
Damasceno de Lima R, Fudoli Lins Vieira R, Rosetto Muñoz V, Chaix A, Azevedo Macedo AP, Calheiros Antunes G, Felonato M, Rosseto Braga R, Castelo Branco Ramos Nakandakari S, Calais Gaspar R, Ramos da Silva AS, Esper Cintra D, Pereira de Moura L, Mekary RA, Rochete Ropelle E, Pauli JR. Time-restricted feeding combined with resistance exercise prevents obesity and improves lipid metabolism in the liver of mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2023; 325:E513-E528. [PMID: 37755454 PMCID: PMC10864020 DOI: 10.1152/ajpendo.00129.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a condition characterized by the accumulation of fat in the liver, is estimated to be the most common liver disease worldwide. Obesity is a major risk factor and contributor, and, accordingly, weight loss can improve NAFLD. Previous studies in preclinical models of diet-induced obesity and fatty liver disease have shown the independent benefits of resistance exercise training (RT) and time-restricted feeding (TRF) in preventing weight gain and hepatic build-up of fat. Here, we tested the combined effect of TRF and RT on obesity and NAFLD in mice fed a high-fat diet. Our results showed that both TRF-8-h food access in the active phase-and RT-consisting of three weekly sessions of ladder climbing-attenuated body weight gain, improved glycemic homeostasis, and decreased the accumulation of lipids in the liver. TRF combined with RT improved the respiratory exchange rate, energy expenditure, and mitochondrial respiration in the liver. Furthermore, gene expression analysis in the liver revealed lower mRNA expression of lipogenesis and inflammation genes along with increased mRNA of fatty acid oxidation genes in the TRF + RT group. Importantly, combined TRF + RT was shown to be more efficient in preventing obesity and metabolic disorders. In conclusion, TRF and RT exert complementary actions compared with isolated interventions, with significant effects on metabolic disorders and NAFLD in mice.NEW & NOTEWORTHY Whether time-restricted feeding (TRF) combined with resistance exercise training (RT) may be more efficient compared with these interventions alone is still unclear. We show that when combined with RT, TRF provided additional benefits, being more effective in increasing energy expenditure, preventing weight gain, and regulating glycemic homeostasis than each intervention alone. Thus, our results demonstrate that TRF and RT have complementary actions on some synergistic pathways that prevented obesity and hepatic liver accumulation.
Collapse
Affiliation(s)
- Robson Damasceno de Lima
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Renan Fudoli Lins Vieira
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Ana Paula Azevedo Macedo
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Gabriel Calheiros Antunes
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Maíra Felonato
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Renata Rosseto Braga
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | | | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Adelino Sanchez Ramos da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, and Postgraduate Program in Physical Education and Sport, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics (LabGeN), University of Campinas (UNICAMP), Limeira, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - Rania A Mekary
- Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, Massachusetts, United States
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| |
Collapse
|
6
|
Silverii GA, Cresci B, Benvenuti F, Santagiuliana F, Rotella F, Mannucci E. Effectiveness of intermittent fasting for weight loss in individuals with obesity: A meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2023; 33:1481-1489. [PMID: 37248144 DOI: 10.1016/j.numecd.2023.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023]
Abstract
AIM To assess whether intermittent fasting (IF) diets are associated with improvement in weight loss, metabolic parameters, and subjective well-being, in people with obesity. DATA SYNTHESIS We performed a Meta-analysis of Randomized Controlled Trials longer than 2 months, retrieved through an extensive search on MedLine, Cochrane CENTRAL Library, and Embase online databases, comparing weight loss with IF diets and control diets in people with Body Mass index (BMI) > 30 kg/m2. We retrieved 9 trials, enrolling 540 patients. IF was not associated with a significantly greater reduction of body weight or BMI at any time point with respect to controls or in respect to continuous restricted diets, with low-to moderate quality of evidence; no significant difference in efficacy between alternate day fasting and time restricted eating was found. Differences in fasting plasma glucose, total or high-density lipoprotein cholesterol or blood pressure at any time point were not statistically significant, whereas a reduction of low-density lipoprotein cholesterol (MD -8.39 [-15.96, -0.81] mg/dl, P = 0.03; I2 = 0%) was observed at 2-4 months, but not in the longer term. Data on psychological parameters and overall well-being were insufficient to perform a formal meta-analysis, whereas a qualitative synthesis did not show any difference between IF and controls. CONCLUSIONS IF is not associated with greater or lesser weight loss than non-intermittent fasting diets. Further data on psychological parameters and overall well-being are needed to properly assess the role of IF diets in the management of obesity.
Collapse
|
7
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
8
|
Vitaloni M, Caccialanza R, Ravasco P, Carrato A, Kapala A, de van der Schueren M, Constantinides D, Backman E, Chuter D, Santangelo C, Maravic Z. The impact of nutrition on the lives of patients with digestive cancers: a position paper. Support Care Cancer 2022; 30:7991-7996. [PMID: 35761102 PMCID: PMC9512936 DOI: 10.1007/s00520-022-07241-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Nutritional intervention is an essential part of cancer treatments. Research and clinical evidence in cancer have shown that nutritional support can reduce length of hospitalisation, diminish treatment-related toxicity, and improve nutrient intake, quality of life, and physical function. Nutritional intervention can improve outcomes and help patients in the successful completion of oncological treatments by preventing malnutrition. Malnutrition is a very common hallmark in patients with cancers. Almost one-fourth of cancer patients are at risk of dying because of the consequences of malnutrition, rather than cancer itself. Patients with digestive cancers are at higher risk of suffering malnutrition due to the gastrointestinal impairment caused by their disease. They are at high nutritional risk by definition, yet the majority of them have insufficient or null access to nutritional intervention.Inadequate resources are dedicated to implementing nutritional services in Europe. Universal access to nutritional support for digestive cancer patients is not a reality in many European countries. To change this situation, health systems should invest in qualified staff to reinforce or create nutritional teams’ experts in digestive cancer treatments. We aim to share the patient community’s perspective on the status and the importance of nutritional intervention. This is an advocacy manuscript presenting data on the topic and analysing the current situations and the challenges for nutrition in digestive cancers. It highlights the importance of integrative nutrition in the treatment of digestive cancers and advocates for equitable and universal access to nutritional intervention for all patients.
Collapse
Affiliation(s)
| | - Riccardo Caccialanza
- UOC Dietetics and Clinical Nutrition, IRCCS San Matteo Polyclinic Foundation, Pavia, Italy
| | - Paula Ravasco
- Medicine and Scientific Research, Catolica Medical School & Centre for Interdisciplinary Research in Health - Universidade Católica Portuguesa (UCP); Centre for Interdiscipinary Research Egas Moniz, (CiiEM), Egas Moniz Cooperativa de Ensino Superior, CRL, Lisbon, Portugal
| | - Alfredo Carrato
- Pancreatic Cancer Europe, Brussels, Belgium.,Alcalá University, Madrid, Spain
| | - Aleksandra Kapala
- Clinic of Oncological Diagnostics, Cardio-Oncology and Palliative Medicine, National Oncology Institute Maria Skłodowska-Curie, State Research Institute, Warsaw, Poland
| | | | - Dora Constantinides
- PASYKAF, the Cyprus Association of Cancer Patients and Friends, Nicosia, Cyprus
| | | | | | | | | |
Collapse
|