1
|
Wang KL, Yu BK, Zhao HF, Liu YX, Wu CY, Zhang YH, Mu ZS. Preparation and characterization of microcapsules for tuna oil by maillard reaction products of whey protein isolate and Arabic gum via complex coacervation. Food Chem 2025; 475:143269. [PMID: 39956057 DOI: 10.1016/j.foodchem.2025.143269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
This study aimed to prepare Maillard reaction products (MRPs) from whey protein isolate (WPI) and different reducing sugars (glucose, fructose, maltose, lactose), and utilize the optimal MRPs to fabricate tuna oil (TO) microcapsules for enhancing TO's storage stability. The results showed that the optimal wet heat reaction duration of WPI and reducing sugar was 8 h at 75 °C. Glycosylation improves the functional properties of WPI. WPI-maltose coupling (WPI-M) and Arabic gum were selected as the wall material to prepare TO microcapsules by complex coacervation, and the encapsulation efficiency of microcapsules reached 87.41 %. Compared to WPI, WPI-M microcapsules have a more homogeneous emulsion morphology. The peroxide value of microencapsulated protected TO was 35.78 % lower than that of free TO after accelerated oxidation at 55 °C for 16 days. Microcapsules prepared with MRPs wall materials by complex coacervation offer a promising approach for the preservation of compounds.
Collapse
Affiliation(s)
- Kun-Long Wang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Bo-Kang Yu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Hong-Fu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ye-Xuan Liu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Chun-Ying Wu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying-Hua Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| | - Zhi-Shen Mu
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011500, PR China.
| |
Collapse
|
2
|
Wang M, Yang Y, Xing J, Zhou W, Tao W, Fan L, Li J. Effect of soybean phosphatidylethanolamine-tamarind gum Maillard conjugate on physicochemical stability of water-in-oil emulsions. Int J Biol Macromol 2025; 303:140259. [PMID: 39880255 DOI: 10.1016/j.ijbiomac.2025.140259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/01/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Lipid oxidation hinders the development of water-in-oil (W/O) emulsions. This work aimed to determine the impact of soybean phosphatidylethanolamine (SP)/tamarind gum (TG) ratios on interface activity and anti-oxidant capacity of Maillard conjugates (MCs) in W/O emulsions. Results showed that grafting degree of MCs reached maximum with SP/TG ratio at 1:1 (43.5 %). Compared with SP and mixtures, interface activity (larger reduction of interfacial tension) and anti-oxidant capacity of MCs, especially with SP/TG = 1:1, were enhanced. The improvement of interface activity was owing to more stable adsorption at the interface caused by the increase of zeta potential and water contact angle as well as faster interface saturation benefited from broader steric network of TG moiety. The higher DPPH scavenging ability and ferric-reducing antioxidant power of MC were attributed to the combined effects of grafting degree, interface activity and molecule behavior of TG moiety. When the MC was added, the emulsion was observed smaller droplet size (1.3 μm), higher zeta potential (-73.5 mV) and lower contents of primary and secondary oxidation products (decreased by 70.9 % and 78.7 %, respectively). Hence, soybean phosphatidylethanolamine-tamarind gum-Maillard conjugate was effective to improve the physicochemical stability of W/O emulsions.
Collapse
Affiliation(s)
- Mengzhu Wang
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Ying Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Jianrong Xing
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Wanyi Zhou
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Wenyang Tao
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Li S, Wang C, Dai Y, Dai J, Wang W. Novel technologies, effects and applications of modified plant proteins by Maillard reaction and strategies for regulation: A review. Food Res Int 2025; 204:115959. [PMID: 39986797 DOI: 10.1016/j.foodres.2025.115959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 02/24/2025]
Abstract
With an increase in awareness of health, environmental conservation and animal welfare, the market for plant proteins is expanding. However, the low solubility and poor functional properties of plant proteins near the isoelectric point limit their application in food processing. Glycosylation refers to the structural modification of proteins by introduction of polysaccharides to form protein-polysaccharide conjugates in the early stages of Maillard reaction. Glycosylation is a green and efficient method that has been proved to produce modified proteins with superior solubility, emulsifying and forming properties. Glycosylation and the application of protein-carbohydrate conjugates have become research hotspots in recent years. This paper presented a comprehensive review of the effects of glycosylation on the functional properties of plant proteins and the mechanisms of non-thermal physical treatments assisted glycosylation. It was demonstrated that glycosylation modified the structure of plant proteins and improved their functional properties. Non-thermal physical treatments assisted glycosylation increased the reactive sites of plant proteins and further improved their functional properties. Protein-carbohydrate conjugates could be applied in delivery systems, films, emulsifiers and other applications, which have significant research prospects in food applications.
Collapse
Affiliation(s)
- Shengxian Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Chaoyi Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Yangyong Dai
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China.
| | - Jingqi Dai
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Shandong 277160, China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| |
Collapse
|
4
|
Zhao Z, Wang W, Chen J, Chen J, Deng J, Wu G, Zhou C, Jiang G, Guan J, Luo D. Effect of ultrasound-assisted Maillard reaction on functional properties and flavor characteristics of Oyster protein enzymatic hydrolysates. ULTRASONICS SONOCHEMISTRY 2024; 111:107113. [PMID: 39442458 PMCID: PMC11532777 DOI: 10.1016/j.ultsonch.2024.107113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
To address the delamination phenomenon during storage and flavor characteristics of Oyster protein hydrolysates (OPH). In this study, xylo-oligosaccharides (XOS) were selected to covalently graft with OPH through ultrasound-assisted Maillard reaction, and the effect of ultrasound-assisted Maillard reaction on the structure, functional properties, and flavor characteristics of OPH were investigated. The results revealed that the ultrasound treatment led to a 1.46-fold increase in the degree of grafting compared with the conventional wet-heat Maillard reaction methods. Structural analyses at various levels indicated substantial alterations in the OPH structure following the ultrasound-assisted Maillard reaction. More ordered α-helical secondary structures were shifting to random coiling, the tertiary structure showed more stretching changes, and the surface structure was characterized by loose and porous features. Compared with OPH, the solubility of the ultrasound-assisted Maillard reaction products (OPH-U-M) increased from 54.67% to 70.14%, leading to a notable enhancement in storage stability. Flavor profile analysis demonstrated a decrease in unsaturated aldehydes and ketones presenting fishy and bitter aromas, while an increase in presenting meat aroma compounds was observed in OPH-U-M. Furthermore, OPH-U-M exhibited superior antioxidant properties with DPPH and ABTS radical scavenging abilities enhancing 46.05% and 42.09% in comparison with OPH, respectively. The results demonstrated that covalently binding with XOS under ultrasonication pretreatment endowed OPH with superior functional properties (including solubility, storage stability, and antioxidant activity), and the improvement of flavor profile. This study can provide theoretical guidance and practical implications for promoting the processing applications of oyster protein.
Collapse
Affiliation(s)
- Zilong Zhao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou 521000, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Wenduo Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou 521000, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Jin Chen
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou 521000, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Jianxu Chen
- Guangdong Mei wei yuan Flavors Co., Ltd., Yangjiang 529500, China
| | - Jinying Deng
- Guangdong Mei wei yuan Flavors Co., Ltd., Yangjiang 529500, China
| | - Guixian Wu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Mei wei yuan Flavors Co., Ltd., Yangjiang 529500, China
| | - Guili Jiang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Jingjing Guan
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Donghui Luo
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou 521000, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Mei wei yuan Flavors Co., Ltd., Yangjiang 529500, China.
| |
Collapse
|
5
|
Anuduang A, Ounjaijean S, Phongphisutthinant R, Pitchakarn P, Chaipoot S, Taya S, Parklak W, Wiriyacharee P, Boonyapranai K. Biological Activities of Soy Protein Hydrolysate Conjugated with Mannose and Allulose. Foods 2024; 13:3041. [PMID: 39410079 PMCID: PMC11476019 DOI: 10.3390/foods13193041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The non-enzymatic conjugation of peptides through the Maillard reaction has gained attention as an effective method to enhance biological functions. This study focuses on two conjugate mixtures: crude soy protein hydrolysate (SPH) conjugated with mannose (SPHM) and crude soy protein hydrolysate conjugated with allulose (SPHA). These two mixtures were products of the Maillard reaction, also known as non-enzymatic glycation. In vitro experiments were conducted to evaluate the antioxidant, anti-pancreatic lipase, inhibition of Bovine Serum Albumin (BSA) denaturation, and anti-angiotensin converting enzyme (ACE) activities of these conjugated mixtures. The results indicate that conjugated mixtures significantly enhance the antioxidant potential demonstrated via the DPPH and FRAP assays. SPHA exhibits superior DPPH scavenging activity (280.87 ± 16.39 µg Trolox/mL) and FRAP value (38.91 ± 0.02 mg Trolox/mL). Additionally, both conjugate mixtures, at a concentration of 10 mg/mL, enhance the BSA denaturation properties, with SPHM showing slightly higher effectiveness compared to SPHA (19.78 ± 2.26% and 5.95 ± 3.89%, respectively). SPHA also shows an improvement in pancreatic lipase inhibition (29.43 ± 1.94%) when compared to the SPHM (23.34 ± 3.75%). Furthermore, both the conjugated mixtures and rare sugars exhibit ACE inhibitory properties on their own, effectively reducing ACE activity. Notably, the ACE inhibitory effects of the individual compounds and their conjugate mixtures (SPHM and SPHA) are comparable to those of positive control (Enalapril). In conclusion, SPHM and SPHA demonstrate a variety of bioactive properties, suggesting their potential use in functional foods or as ingredients in supplementary products.
Collapse
Affiliation(s)
- Artorn Anuduang
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (A.A.); (S.O.); (W.P.)
| | - Sakaewan Ounjaijean
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (A.A.); (S.O.); (W.P.)
| | - Rewat Phongphisutthinant
- The Traditional Food Research and Development Unit, Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.C.); (S.T.)
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Supakit Chaipoot
- The Traditional Food Research and Development Unit, Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.C.); (S.T.)
| | - Sirinya Taya
- The Traditional Food Research and Development Unit, Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.C.); (S.T.)
| | - Wason Parklak
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (A.A.); (S.O.); (W.P.)
| | | | - Kongsak Boonyapranai
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (A.A.); (S.O.); (W.P.)
| |
Collapse
|
6
|
Ounjaijean S, Chaipoot S, Phongphisutthinant R, Kanthakat G, Taya S, Pathomrungsiyounggul P, Wiriyacharee P, Boonyapranai K. Evaluation of Prebiotic and Health-Promoting Functions of Honeybee Brood Biopeptides and Their Maillard Reaction Conjugates. Foods 2024; 13:2847. [PMID: 39272610 PMCID: PMC11395396 DOI: 10.3390/foods13172847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
This study addresses the growing interest in natural functional ingredients by evaluating the prebiotic and health-promoting functions of honeybee brood biopeptides (HBb-Bps) and their conjugates. The purpose was to investigate their antioxidant activities, enzyme inhibition properties, and effects on probiotic growth and short-chain fatty acid (SCFA) production. The HBb-Bps were conjugated with honey, glucose, and fructose via the Maillard reaction. Antioxidant activities were assessed using DPPH and ABTS assays. The inhibitory effects on amylase, pancreatic lipase, and the angiotensin-converting enzyme (ACE) were measured. Probiotic growth and SCFA production were evaluated using L. plantarum TISTR846, and L. lactis TISTR1464. The HBb-Bps and their conjugates exhibited enhanced antioxidant activities post-Maillard reaction. They showed moderate enzyme inhibition, which decreased after conjugation. However, ACE inhibition increased with conjugation. The HBb-Bps significantly promoted probiotic growth and SCFA production, with further enhancement by the Maillard reaction. Overall, the HBb-Bps and their conjugates demonstrate significant prebiotic and health-promoting functions, suggesting their potential as natural ingredients in functional foods and nutraceuticals. Further research should focus on the in vivo effects and, given their solubility and stability these biopeptides could be incorporated into functional food formulations, such as health beverages, protein bars, and other fortified foods designed to deliver specific health benefits.
Collapse
Affiliation(s)
- Sakaewan Ounjaijean
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supakit Chaipoot
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rewat Phongphisutthinant
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Sirinya Taya
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Pairote Wiriyacharee
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand
| | - Kongsak Boonyapranai
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
7
|
Tian Y, Lv X, Oh DH, Kassem JM, Salama M, Fu X. Emulsifying properties of egg proteins: Influencing factors, modification techniques, and applications. Compr Rev Food Sci Food Saf 2024; 23:e70004. [PMID: 39267186 DOI: 10.1111/1541-4337.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 09/14/2024]
Abstract
As an essential food ingredient with good nutritional and functional properties and health benefits, eggs are widely utilized in food formulations. In particular, egg proteins have good emulsification properties and can be commonly used in various food products, such as mayonnaise and baked goods. Egg protein particles can act as stabilizers for Pickering emulsions because they can effectively adsorb at the oil-water interface, reduce interfacial tension, and form a stable physical barrier. Due to their emulsifying properties, biocompatibility, controlled release capabilities, and ability to protect bioactive substances, egg proteins have become ideal carriers for encapsulating and delivering functional substances. The focus of this review is to summarize current advances in using egg proteins as emulsifiers. The effects of influencing factors (temperature, pH, and ionic strength) and various modification methods (physical, chemical, and biological modification) on the emulsifying properties of egg proteins are discussed. In addition, the application of egg proteins as emulsifiers in food products is presented. Through in-depth research on the emulsifying properties of egg proteins, the optimization of their applications in food, biomedical, and other fields can be achieved.
Collapse
Affiliation(s)
- Yujuan Tian
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | | | - Mohamed Salama
- Dairy Department, National Research Centre, Dokki, Giza, Egypt
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
8
|
Li K, Wang J, Zhao P, Julian McClements D, Liu X, Liu F. Effect of ultrasound-assisted Maillard reaction on glycosylation of goat whey protein: Structure and functional properties. Food Chem 2024; 441:138292. [PMID: 38183717 DOI: 10.1016/j.foodchem.2023.138292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/08/2024]
Abstract
Goat whey protein (GWP) has a rich amino acid profile and good techno-functional attributes but still has limited functional performance for certain applications. This study introduces an innovative ultrasound-assisted Maillard reaction to enhance GWP's functional properties by conjugating it with either gum Arabic (GA) or citrus pectin (CP). Sonication accelerated the Maillard reaction, and the glycosylation of GWP was significantly enhanced after optimization of the conjugation conditions. Gel electrophoresis examination verified the creation of GWP-polysaccharide conjugates, while scanning electron microscopy analysis revealed structural modifications caused by polysaccharide grafting and sonication. The use of ultrasound in the Maillard reaction notably enhanced the solubility, foaming capacity, and emulsifying attributes of the GWPs. Among the conjugates, the GWP-GA ones exhibited the best functional properties. Our findings suggest that this approach can notably improve the functional attributes of GWPs, thus broadening their potential uses in the food sector and beyond.
Collapse
Affiliation(s)
- Kun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jiangyue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Pengfei Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | | | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
9
|
Zhang M, Liu Y, Jin M, Li D, Wang Z, Jiang P, Zhou D. The Effect of Heat Treatment on the Digestion and Absorption Properties of Protein in Sea Cucumber Body Wall. Foods 2023; 12:2896. [PMID: 37569165 PMCID: PMC10417355 DOI: 10.3390/foods12152896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
This study was designed, for the first time, to investigate the effect of oxidation on the digestion and absorption properties of protein in boiled sea cucumber body wall (BSCBW) via simulated digestion combined with everted-rat-gut-sac models. Boiling heat treatments led to protein oxidation in SCBW, manifested by increases in free radical intensity, thiobarbituric acid reactive substances, carbonyl groups, disulfide bonds, dityrosine bonds, advanced glycation end products, protein hydrophobicity and aggregation, and declines in both free sulfhydryl groups and secondary structure transition from α-helix to β-sheet. Boiling for 2 h caused anti-digestion collagen unfolding, provided the action site for protease and improved protein digestion and absorption levels. On the contrary, excessive oxidative modification of 4 h BSCBW resulted in decreased protein digestion and absorption levels. From the perspective of texture, digestion and absorption properties, boiling for 2 h can obtain sea cucumber products with better edible and digestible properties, which is considered to be a better processing condition.
Collapse
Affiliation(s)
- Min Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (M.Z.); forever-- (Y.L.); (M.J.); (D.L.); (Z.W.); (P.J.)
| | - Yuxin Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (M.Z.); forever-- (Y.L.); (M.J.); (D.L.); (Z.W.); (P.J.)
- National Engineering Research Center of Seafood, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
| | - Mengling Jin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (M.Z.); forever-- (Y.L.); (M.J.); (D.L.); (Z.W.); (P.J.)
| | - Deyang Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (M.Z.); forever-- (Y.L.); (M.J.); (D.L.); (Z.W.); (P.J.)
- National Engineering Research Center of Seafood, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
| | - Ziye Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (M.Z.); forever-- (Y.L.); (M.J.); (D.L.); (Z.W.); (P.J.)
| | - Pengfei Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (M.Z.); forever-- (Y.L.); (M.J.); (D.L.); (Z.W.); (P.J.)
- National Engineering Research Center of Seafood, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
| | - Dayong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (M.Z.); forever-- (Y.L.); (M.J.); (D.L.); (Z.W.); (P.J.)
- National Engineering Research Center of Seafood, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
| |
Collapse
|
10
|
Yang S, Zhang G, Chu H, Du P, Li A, Liu L, Li C. Changes in the functional properties of casein conjugates prepared by Maillard reaction with pectin or arabinogalactan. Food Res Int 2023; 165:112510. [PMID: 36869514 DOI: 10.1016/j.foodres.2023.112510] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The aim of this study was to prepare conjugates of casein (CA) with pectin (CP) or arabinogalactan (AG) by the Maillard reaction (wet-heating) and to investigate the effects of CP or AG on the structural and functional properties of casein. The results indicated that the highest grafting degree of CA with CP or AG was observed at 90 °C for 1.5 h or 1 h, respectively. Secondary structure showed that grafting with CP or AG reduced the α-helix level and increased the random coil level of CA. Glycosylation treatment of CA-CP and CA-AG exhibited lower surface hydrophobicity and higher absolute ζ-potential values, further significantly improving the functional properties of CA (e.g., solubility, foaming property, emulsifying property, thermal stability, and antioxidant activity). Accordingly, our results indicated that it is feasible for CP or AG to improve the functional properties of CA by the Maillard reaction.
Collapse
Affiliation(s)
- Siqi Yang
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Guofang Zhang
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hong Chu
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Peng Du
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Aili Li
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Libo Liu
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Chun Li
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Academy of Green Food Science, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
11
|
Wang F, Gao Y, Gu X, Luan B, Zhu Y, Huang Y, Zhu X. High-moisture extrusion cooking on soybean-wheat protein mixtures: Effect of sodium alginate/xanthan gum/maltodextrin on promoting a fibrous structure. Front Nutr 2023; 9:1077601. [PMID: 36698475 PMCID: PMC9868749 DOI: 10.3389/fnut.2022.1077601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
At present, the changes in fibrous structure of plant proteins improved by polysaccharides during high-moisture extrusion cooking (HMEC) are still unclear. In this study, different additions (1, 2, 3, 4, and 5%) of sodium alginate (SA), xanthan gum (XG), and maltodextrin (MD) were used in the preparation of organised protein products based on soybean protein and wheat protein under high moisture extrusion conditions. It was revealed that SA-4%, XG-2%, and MD-2% (w/w) significantly enhanced the structural and physical properties of the fibres. The polysaccharides increased the water distribution of extrudates by enhancing protein-water interactions through hydrogen bonding, with MD-2% having the strongest ability to trap free water. The mechanism by which the polysaccharides improved the fibrous structure of extrudates involved the reorganization of molten proteins from the die head region to the cooling region, formation of new molecular bonds and enhancement of thermal stability. XG-2% significantly increased the β-sheet structure in the molten region (48.9 ± 1.35%) and showed the best thermal stability. Overall, SA-4% was able to better maintain the molecular bonding transformation and strong water absorption, which stabilised the protein conformation and formed the highest fibrous degree (2.1 ± 0.03). This suggests that the properties of the three polysaccharides can be used as modifiers of high water extruded plant proteins to improve the extruded materiality, functional and nutritional properties.
Collapse
|