1
|
Qian L, Jiang J, Zhang Y, Huang X, Che Z, Chen G, Liu S. Sublethal exposure to boscalid induced respiratory abnormalities and gut microbiota dysbiosis in adult zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107370. [PMID: 40252307 DOI: 10.1016/j.aquatox.2025.107370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/04/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Boscalid (BO), one of the frequently detected fungicides of succinate dehydrogenase inhibitor in water environments, has unknown effects on the respiratory function and gut health of aquatic organisms. Therefore, zebrafish were exposed to BO solutions (0.01-1.0 mg/L) for 21 days to assess its effects on zebrafish respiration and intestinal microbiota in this study. The results showed that exposure to 0.1 and 1.0 mg/L BO for 21 days resulted in zebrafish exhibiting aggregation of gill filaments, reduction of mucous cells, and significantly decreased opercular movement, linked to a marked decline in the activity of respiratory chain complex II. 16S rRNA gene sequencing revealed significant changes in the intestinal microbiota composition of zebrafish exposed to 1.0 mg/L BO. Specifically, the relative abundance of beneficial bacteria (Cetobacterium) was markedly reduced, while pathogenic bacteria (such as Ralstonia, Legionella, Acinetobacter, Escherichia/Shigella) associated with energy metabolism and immune pathways in zebrafish showed a significant increase in relative abundance. Accordingly, metagenomic functional prediction analysis further revealed the potential impact of BO-induced gut microbiota changes on energy metabolism and immune pathways in zebrafish. Furthermore, histopathological analysis of intestinal tissues revealed that exposure to BO resulted in necrosis and shedding of epithelial cells, as well as a decrease in goblet cell count, which exacerbated adverse effects on intestinal health. In conclusion, sublethal exposure to BO affects the respiratory function and intestinal health of zebrafish. Therefore, the impact of BO in aquatic environments on fish health warrants attention.
Collapse
Affiliation(s)
- Le Qian
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, PR China
| | - Jia Jiang
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, PR China
| | - Yikai Zhang
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, PR China
| | - Xiaobo Huang
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, PR China
| | - Zhiping Che
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, PR China
| | - Genqiang Chen
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, PR China
| | - Shengming Liu
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, PR China.
| |
Collapse
|
2
|
Song Q, Meng Q, Meng X, Wang X, Zhang Y, Zhao T, Cong J. Size- and duration-dependent toxicity of heavy vehicle tire wear particles in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138299. [PMID: 40253784 DOI: 10.1016/j.jhazmat.2025.138299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Tire wear particles (TWPs), as a pervasive environmental pollutant, pose significant risks to aquatic ecosystems. This study investigates the effects of small (HS) and large (HL) TWPs produced by heavy vehicles on zebrafish, focusing on physiological, microbial, and transcriptomic levels, as well as their intergenerational consequences, under short-term (15 days) and long-term (90 days) exposure. Short-term exposure to small particles (HS15) significantly reduced body width and triggered widespread oxidative stress, while long-term exposure to large particles (HL90) increased gut weight and decreased gill weight, reflecting respiratory and digestive disruptions. Tissue-level analyses revealed that smaller particles accumulated more readily in internal organs, whereas larger particles caused localized physiological stress. Gut microbiota profiling indicated a marked decline in microbial diversity, compositional shifts, and network simplification, with HL15 enriched in Acinetobacter and xenobiotic metabolism pathways, and HS15 exhibiting Proteobacteria-dominated dysbiosis and enrichment of LPS biosynthesis genes. Liver transcriptomics revealed group-specific responses: HL15 exposure activated innate immunity via the NOD-MAPK axis, while HS15 induced atypical PI3K-NF-κB signaling, potentially linked to microbial LPS. Notably, all TWP-exposed groups showed enrichment of the herpes simplex virus 1 (HSV-1) infection pathway, suggesting a conserved antiviral-like host response. Transgenerational effects were evidenced by impaired growth and significant downregulation of GH/IGF signaling and upregulation of apoptotic genes in offspring, despite only subtle transcriptomic changes in long-term exposed parents. These findings underscore the importance of particle size, exposure duration, and microbiota-gut-liver axis interactions in mediating TWP toxicity and highlight potential transgenerational risks associated with environmental microplastic exposure.
Collapse
Affiliation(s)
- Qianqian Song
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Qingxuan Meng
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Xinrui Meng
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Xiaolong Wang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Yun Zhang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Tianyu Zhao
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Jing Cong
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| |
Collapse
|
3
|
Yang JH, Park JW, Kim HS, Lee S, Yerke AM, Jaiswal YS, Williams LL, Hwang S, Moon KH. Effects of Antibiotic Residues on Fish Gut Microbiome Dysbiosis and Mucosal Barrier-Related Pathogen Susceptibility in Zebrafish Experimental Model. Antibiotics (Basel) 2024; 13:82. [PMID: 38247641 PMCID: PMC10812462 DOI: 10.3390/antibiotics13010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
The symbiotic community of microorganisms in the gut plays an important role in the health of the host. While many previous studies have been performed on the interactions between the gut microbiome and the host in mammals, studies in fish are still lacking. In this study, we investigated changes in the intestinal microbiome and pathogen susceptibility of zebrafish (Danio rerio) following chronic antibiotics exposure. The chronic antibiotics exposure assay was performed on zebrafish for 30 days using oxytetracycline (Otc), sulfamethoxazole/trimethoprim (Smx/Tmp), or erythromycin (Ery), which are antibiotics widely used in the aquaculture industry. The microbiome analysis indicated that Fusobacteria, Proteobacteria, Firmicutes, and Bacteroidetes were the dominant phyla in the gut microbiome of the zebrafish used in this study. However, in Smx/Tmp-treated zebrafish, the compositions of Fusobacteria and Proteobacteria were changed significantly, and in Ery-treated zebrafish, the compositions of Proteobacteria and Firmicutes were altered significantly. Although alpha diversity analysis showed that there was no significant difference in the richness, beta diversity analysis revealed a community imbalance in the gut microbiome of all chronically antibiotics-exposed zebrafish. Intriguingly, in zebrafish with dysbiosis in the gut microbiome, the pathogen susceptibility to Edwardsiella piscicida, a representative Gram-negative fish pathogen, was reduced. Gut microbiome imbalance resulted in a higher count of goblet cells in intestinal tissue and an upregulation of genes related to the intestinal mucosal barrier. In addition, as innate immunity was enhanced by the increased mucosal barrier, immune and stress-related gene expression in the intestinal tissue was downregulated. In this study, we provide new insight into the effect of gut microbiome dysbiosis on pathogen susceptibility.
Collapse
Affiliation(s)
- Jun Hyeok Yang
- Laboratory of Marine Microbiology, Division of Convergence of Marine Science, Korea Maritime & Ocean University, Busan 49112, Republic of Korea; (J.H.Y.); (J.W.P.); (H.S.K.)
- Department of Marine Bioscience and Environment, Korea Maritime & Ocean University, Busan 49112, Republic of Korea
| | - Jeong Woo Park
- Laboratory of Marine Microbiology, Division of Convergence of Marine Science, Korea Maritime & Ocean University, Busan 49112, Republic of Korea; (J.H.Y.); (J.W.P.); (H.S.K.)
- Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime & Ocean University, Busan 49112, Republic of Korea
| | - Ho Sung Kim
- Laboratory of Marine Microbiology, Division of Convergence of Marine Science, Korea Maritime & Ocean University, Busan 49112, Republic of Korea; (J.H.Y.); (J.W.P.); (H.S.K.)
- Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime & Ocean University, Busan 49112, Republic of Korea
| | - Seungki Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Republic of Korea;
| | - Aaron M. Yerke
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA;
| | - Yogini S. Jaiswal
- Center for Excellence in Post Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA; (Y.S.J.); (L.L.W.)
| | - Leonard L. Williams
- Center for Excellence in Post Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA; (Y.S.J.); (L.L.W.)
| | - Sungmin Hwang
- Division of Practical Research, Honam National Institute Biological Resources, Mokpo-si 58762, Republic of Korea
| | - Ki Hwan Moon
- Laboratory of Marine Microbiology, Division of Convergence of Marine Science, Korea Maritime & Ocean University, Busan 49112, Republic of Korea; (J.H.Y.); (J.W.P.); (H.S.K.)
- Department of Marine Bioscience and Environment, Korea Maritime & Ocean University, Busan 49112, Republic of Korea
- Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime & Ocean University, Busan 49112, Republic of Korea
| |
Collapse
|
4
|
Zhao Y, Li S, Lessing DJ, Chu W. The attenuating effects of synbiotic containing Cetobacterium somerae and Astragalus polysaccharide against trichlorfon-induced hepatotoxicity in crucian carp (Carassius carassius). JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132621. [PMID: 37748306 DOI: 10.1016/j.jhazmat.2023.132621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
This study aimed to investigate the hepatotoxic effects of trichlorfon on crucian carp (Carassius carassius) and the attenuating effects of a synbiotic combination of Cetobacterium somerae and Astragalus polysaccharide on hepatotoxicity. Results showed that trichlorfon did indeed induce hepatotoxicity in crucian carp and the synbiotic reversed this hepatotoxicity caused by trichlorfon. The synbiotic increased TC, TG, LDL-C, ALT and AST levels and decreased serum HDL-C levels caused by trichlorfon. H&E and Oil Red O staining demonstrated that the synbiotic ameliorated liver damage and abnormal lipid accumulation. The activity of antioxidant enzymes (T-SOD, CAT, GSH-Px) in the liver was also enhanced by the administration of the synbiotic. The supplementation of the synbiotic also increased the level of short-chain fatty acids in the intestine. In addition, the synbiotic balanced the gut microbial composition, leading to a reduction in the abundance of potentially pathogenic bacteria and an increase in the abundance of bacteria producing short-chain fatty acids. In conclusion, these findings indicate that trichlorfon can induce hepatotoxicity in crucian carp, whereas synbiotics can regulate gut microbiota, promote the growth of beneficial bacteria and increase the production of SCFAs, and alleviate trichlorfon-induced liver injury.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shipo Li
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Duncan James Lessing
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
5
|
Kizilkaya S, Akpinar G, Sesal NC, Kasap M, Gokalsin B, Kayhan FE. Using proteomics, q-PCR and biochemical methods complementing as a multiapproach to elicit the crucial responses of zebrafish liver exposed to neonicotinoid pesticide. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101103. [PMID: 37399785 DOI: 10.1016/j.cbd.2023.101103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 07/05/2023]
Abstract
Pesticides enter the environment through runoff and leaching and this raises public concern about effects on non-target organisms. Imidacloprid (IMI) a synthetic pesticide, has an unstable half-life, metabolized in minutes to weeks in the water. To evaluate the effects of IMI on the zebrafish liver, we conducted proteomic, molecular and biochemical analysis in a multi-level approach, to highlight the complementary features regarding the results of each method. Adult zebrafish were exposed to 60 mg/L IMI for 48 h and were evaluated using nLC-MS/MS for proteins, q-PCR analysis for expression of cat, gpx, pxr, ache, along with CAT and AChE enzyme activities and GSH and MDA assays. Based on proteomics, the regulation of antioxidant and immune responses, as well as gene transcription were significant processes affected. Apoptosis and ER stress pathways were upregulated and there was a down-regulation of cat and gpx genes. There was also elevated CAT activity and GSH and decreased MDA. Additionally, elevated AChE activity and up regulation of ache expression was observed. The multi-approach results included regulators of antioxidant, xenobiotic response and neuro-protective related proteins (genes and enzymes), which overall reflected harmful effects of IMI. Consequently, this study highlights the effects of IMI on zebrafish liver and reveals new potential biomarkers. In this respect, evaluated outcomes reveal the complementary features emphasizing the importance of studying chemicals using several methods. Our study provides deeper insights for future work in ecotoxicological studies regarding IMI and contribute to existing toxicity literature.
Collapse
Affiliation(s)
- Seyma Kizilkaya
- Marmara University Institute of Pure and Applied Sciences, Istanbul 34722, Turkiye.
| | - Gurler Akpinar
- Kocaeli University Faculty of Medicine, Department of Medical Biology, Kocaeli 41001, Turkiye
| | - Nuzhet Cenk Sesal
- Marmara University Faculty of Science, Department of Biology, Istanbul 34722, Turkiye
| | - Murat Kasap
- Kocaeli University Faculty of Medicine, Department of Medical Biology, Kocaeli 41001, Turkiye
| | - Baris Gokalsin
- Marmara University Faculty of Science, Department of Biology, Istanbul 34722, Turkiye
| | - Figen Esin Kayhan
- Marmara University Faculty of Science, Department of Biology, Istanbul 34722, Turkiye
| |
Collapse
|
6
|
Zhao Y, Li S, Lessing DJ, Guo L, Chu W. Characterization of Cetobacterium somerae CPU-CS01 isolated from the intestine of healthy crucian carp (Carassius auratus) as potential probiotics against Aeromonas hydrophila infection. Microb Pathog 2023; 180:106148. [PMID: 37169311 DOI: 10.1016/j.micpath.2023.106148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Cetobacterium somerae is a commensal bacterium for many fish species. However, research on C. somerae has been limited so far, and its function and beneficial potential require to be further investigated. The objective of this study was to evaluate the probiotic properties of C. somerae CPU-CS01 isolated from the intestinal contents of crucian carp (Carassius auratus). Hemolytic activity, antibiotic susceptibility, acid tolerance, bile salt tolerance, free radical scavenging, and enzyme production properties were tested for in vitro. Caenorhabditis elegans and zebrafish (Danio rerio) model were used to evaluate the antioxidant and anti-infective effects of C. somerae CPU-CS01 in vivo. Our results showed that C. somerae CPU-CS01 had no hemolytic activity, it produced cellulase, amylase, and survived at low pH (2.0-3.0) and in the presence of bile salts. The cell-free culture supernatant (CFCS) of C. somerae CPU-CS01 possessed DPPH radical, hydroxyl radical, and superoxide anion scavenging activity. C. elegans fed with C. somerae CPU-CS01 were more resistant to hydrogen peroxide-induced oxidative stress and Aeromonas hydrophila infection. In addition, zebrafish-fed diets containing C. somerae CPU-CS01 showed improved survival after A.hydrophila infection. Based on these results, the positive probiotic properties of C. somerae CPU-CS01 isolated from the intestinal contents of crucian carp make it a potential candidate for probiotic.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Shipo Li
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Duncan James Lessing
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Liyun Guo
- Department of Microbiology, Nanjing Institute of Fisheries Science, Nanjing, 210036, China
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Sun H, Zhang Q, Xu C, Mao A, Zhao H, Chen M, Sun W, Li G, Zhang T. Different Diet Energy Levels Alter Body Condition, Glucolipid Metabolism, Fecal Microbiota and Metabolites in Adult Beagle Dogs. Metabolites 2023; 13:metabo13040554. [PMID: 37110212 PMCID: PMC10143615 DOI: 10.3390/metabo13040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Diet energy is a key component of pet food, but it is usually ignored during pet food development and pet owners also have limited knowledge of its importance. This study aimed to explore the effect of diet energy on the body condition, glucolipid metabolism, fecal microbiota and metabolites of adult beagles and analyze the relation between diet and host and gut microbiota. Eighteen healthy adult neutered male beagles were selected and randomly divided into three groups. Diets were formulated with three metabolizable energy (ME) levels: the low-energy (Le) group consumed a diet of 13.88 MJ/kg ME; the medium-energy (Me) group consumed a diet of 15.04 MJ/kg ME; and the high-energy (He) group consumed a diet of 17.05 MJ/kg ME. Moreover, the protein content of all these three diets was 29%. The experiment lasted 10 weeks, with a two-week acclimation period and an eight-week test phase. Body weight, body condition score (BCS), muscle condition score (MCS) and body fat index (BFI) decreased in the Le group, and the changes in these factors in the Le group were significantly higher than in the other groups (p < 0.05). The serum glucose and lipid levels of the Le and He groups changed over time (p < 0.05), but those of the Me group were stable (p > 0.05). The fecal pH of the Le and He groups decreased at the end of the trial (p < 0.05) and we found that the profiles of short-chain fatty acids (SCFAs) and bile acids (BAs) changed greatly, especially secondary BAs (p < 0.05). As SCFAs and secondary BAs are metabolites of the gut microbiota, the fecal microbiota was also measured. Fecal 16S rRNA gene sequencing found that the Me group had higher α-diversity indices (p < 0.05). The Me group had notably higher levels of gut probiotics, such as Faecalibacterium prausnitzii, Bacteroides plebeius and Blautia producta (p < 0.05). The diet-host-fecal microbiota interactions were determined by network analysis, and fecal metabolites may help to determine the best physical condition of dogs, assisting pet food development. Overall, feeding dogs low- or high-energy diets was harmful for glucostasis and promoted the relative abundance of pathogenic bacteria in the gut, while a medium-energy diet maintained an ideal body condition. We concluded that dogs that are fed a low-energy diet for an extended period may become lean and lose muscle mass, but diets with low energy levels and 29% protein may not supply enough protein for dogs losing weight.
Collapse
Affiliation(s)
- Haoran Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Qiaoru Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Chao Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Aipeng Mao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Hui Zhao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Miao Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Weili Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266000, China
| | - Guangyu Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266000, China
| | - Tietao Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| |
Collapse
|