1
|
Shirzadi P, Farokh P, Osouli Meinagh S, Izadi-Jorshari G, Hajikarimloo B, Mohammadi G, Parvardeh S, Nassiri-Asl M. The Influence of the Probiotics, Ketogenic Diets, and Gut Microbiota on Epilepsy and Epileptic Models: A Comprehensive Review. Mol Neurobiol 2025:10.1007/s12035-025-04993-4. [PMID: 40316878 DOI: 10.1007/s12035-025-04993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/22/2025] [Indexed: 05/04/2025]
Abstract
About one-third of epilepsies are resistant to antiepileptic drugs; thus, uncovering new pathways in the pathophysiology of epilepsy can reduce the global disease burden. Probiotics are live, non-pathogenic microorganisms that benefit the host by regulating the gut microbiome. This review aims to study the effect of probiotics and ketogenic diets on gut microbiota and their potential as a therapy for epilepsy. We conducted a systematic search of the databases PubMed, Scopus, Embase, and the Web of Science for pertinent studies that have been published. Our search methodology was meticulously structured to be exhaustive, integrating targeted keywords and Boolean operators to guarantee the acquisition of all potentially pertinent articles. Probiotics interact with the gut microbiome, balance its composition, and influence the gut-brain axis. Moreover, they reduce neuroinflammation and oxidative stress. The ketogenic diet (KD) affects gut bacteria, influencing neurotransmitter levels and short-chain fatty acids (SCFAs), which play a role in the gut-brain axis. Studies have shown the positive effects of various probiotics in animal models of epilepsy. They demonstrate improvements in seizure activity, anxiety, and neuroinflammation. In human studies, probiotics reduced seizure frequency and enhanced quality of life in patients with drug-resistant epilepsy. We believe using probiotics or dietary interventions like KD could be a promising therapeutic strategy for managing epilepsy. This could reduce seizure frequency and make life better for patients with epilepsy.
Collapse
Affiliation(s)
- Parmida Shirzadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Farokh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Osouli Meinagh
- Department of Neurology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Izadi-Jorshari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bardia Hajikarimloo
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ghazaleh Mohammadi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neuroscience Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Mirzababaei M, Babaei F, Ghafghazi S, Rahimi Z, Asadi S, Dargahi L, Nassiri-Asl M, Haghnazari L. Saccharomyces Boulardii alleviates neuroinflammation and oxidative stress in PTZ-kindled seizure rat model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1625-1635. [PMID: 39141021 DOI: 10.1007/s00210-024-03361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Previous research have reported that modulating the gut microbiome composition by fecal microbiota transplantation and probiotic administration can alleviate seizure occurrence and severity. Saccharomyces boulardii (SB) is a yeast probiotic that has demonstrated ameliorating effects on anxiety, memory and cognitive deficit, and brain amyloidogenesis. In this research, our goal was to examine the anti-seizure effects of SB on the pentylenetetrazole (PTZ)-kindled male Wistar rats. The animals were randomly categorized into four test groups. The rats were orally administered with saline (control and PTZ groups) or S. boulardii (SB + PTZ and SB groups) for 57 days. From the 29th day of the experiment, the animals received intraperitoneally saline (control and SB groups) or PTZ (PTZ and SB + PTZ groups) on alternate days for 30 days. The administration dose of SB and PTZ was 1010 CFU/ml/day and 35 mg/kg, respectively. We assessed animal seizure behavior, neuroinflammation, oxidative stress, and the levels of matrix metalloproteinase-9 (MMP-9) and brain-derived neurotrophic factor (BDNF) in the hippocampus tissue. S. boulardii hindered the PTZ-induced kindling development. SB treatment elevated glutathione (GSH) and total antioxidant capacity (TAC) and reduced malondialdehyde (MDA) levels. SB also lessened the hippocampal levels of BDNF and MMP-9. Following SB supplementation, proinflammatory cytokines interleukin-1 beta (IL-1β) and IL-6 were lowered, and anti-inflammatory cytokine IL-10 was enhanced. Overall, our data indicated, for the first time, the positive impact of SB on the PTZ-kindled seizure rat model. The anti-seizure activity of SB was mediated by modulating oxidative stress, neuroinflammation, and MMP-9 and BDNF levels.
Collapse
Affiliation(s)
- Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Babaei
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, I.R., Iran
| | - Shiva Ghafghazi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, I.R., Iran
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Asadi
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, I.R., Iran.
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Lida Haghnazari
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Shariatmadari F, Motaghi A, Arjmand Shabestari A, Hashemi SM, Almasi-Hashiani A. The effect of synbiotics in the treatment of drug-resistant epilepsy and the parental burden of caregivers: a single-arm pretest-posttest trial. BMC Pediatr 2024; 24:666. [PMID: 39415135 PMCID: PMC11483994 DOI: 10.1186/s12887-024-05134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND In patients with drug-resistant epilepsy (DRE), the composition of the gut microbiome changes compared to drug-sensitive patients and healthy individuals. Synbiotics, a mixture of probiotics and prebiotics, aim to improve the balance of bacteria in the gut microbiome. This study aimed to assess the effect of synbiotics on the treatment of DRE and the burden on caregivers. METHODS This one-group pretest-posttest quasi-experimental study was conducted in Arak, Iran. Thirty children with DRE, diagnosed by a pediatric neurologist and meeting the inclusion criteria in 2021-22, were included in the study. In addition to anticonvulsant drugs, infants were administered PediLact at a dose of 5-15 drops per day for eight weeks, and KidiLact at a dose of one sachet per day for eight weeks for children aged 2-15 years. Both PediLact and KidiLact are synbiotics. To investigate the burden on caregivers (parents), the Zarit Caregiver Burden Interview was conducted. In addition, the number of epileptic seizures was assessed from mothers before and immediately after the intervention over one month. RESULTS The mean age of the participants in the study was 8.6 years (SD: 3.4). Eighteen participants (60%) were boys, and 12 (40%) were girls. The results of the study showed a statistically significant decrease in the mean burden on caregivers, from 34.20 (SD: 14.4) before the intervention to 30.26 (SD: 15.8) after the intervention (P = 0.017). The mean frequency of seizures decreased significantly, from 15.83 (SD: 12.9) before the intervention to 12.73 (SD: 12.8) after the intervention (P = 0.001). Following the intervention, the seizure frequency stopped in two patients, decreased by 50% in six patients, increased in one patient, and remained unchanged in 21 patients. CONCLUSION The results suggest that Symbiotics in DRE patients are associated with a lower parental burden of caregivers and seizure frequency. Well-designed randomized clinical trial studies are recommended to generate rigorous causal evidence and conclusions.
Collapse
Affiliation(s)
- Fakhreddin Shariatmadari
- Department of Pediatric, School of Medicine, Arak University of Medical Sciences, Basij Square, Arak, Iran
| | - Amirali Motaghi
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Ali Arjmand Shabestari
- Department of Pediatric, School of Medicine, Arak University of Medical Sciences, Basij Square, Arak, Iran
| | - Seyed Mojtaba Hashemi
- Department of Pediatric, School of Medicine, Arak University of Medical Sciences, Basij Square, Arak, Iran.
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
4
|
Riva A, Sahin E, Volpedo G, Petretto A, Lavarello C, Di Sapia R, Barbarossa D, Zaniani NR, Craparotta I, Barbera MC, Sezerman U, Vezzani A, Striano P, Ravizza T. Identification of an epilepsy-linked gut microbiota signature in a pediatric rat model of acquired epilepsy. Neurobiol Dis 2024; 194:106469. [PMID: 38485093 DOI: 10.1016/j.nbd.2024.106469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
A dysfunctional gut microbiota-brain axis is emerging as a potential pathogenic mechanism in epilepsy, particularly in pediatric forms of epilepsy. To add new insights into gut-related changes in acquired epilepsy that develops early in life, we used a multi-omics approach in a rat model with a 56% incidence of epilepsy. The presence of spontaneous seizures was assessed in adult rats (n = 46) 5 months after status epilepticus induced by intra-amygdala kainate at postnatal day 13, by 2 weeks (24/7) ECoG monitoring. Twenty-six rats developed epilepsy (Epi) while the remaining 20 rats (No-Epi) did not show spontaneous seizures. At the end of ECoG monitoring, all rats and their sham controls (n = 20) were sacrificed for quantitative histopathological and immunohistochemical analyses of the gut structure, glia and macrophages, as well as RTqPCR analysis of inflammation/oxidative stress markers. By comparing Epi, No-Epi rats, and sham controls, we found structural, cellular, and molecular alterations reflecting a dysfunctional gut, which were specifically associated with epilepsy. In particular, the villus height-to-crypt depth ratio and number of Goblet cells were reduced in the duodenum of Epi rats vs both No-Epi rats and sham controls (p < 0.01). Villus height and crypt depth in the duodenum and jejunum (p < 0.01) were increased in No-Epi vs both Epi and sham controls. We also detected enhanced Iba1-positive macrophages, together with increased IL1b and NFE2L2 transcripts and TNF protein, in the small intestine of Epi vs both No-Epi and sham control rats (p < 0.01), denoting the presence of inflammation and oxidative stress. Astroglial GFAP-immunostaining was similar in all experimental groups. Metagenomic analysis in the feces collected 5 months after status epilepticus showed that the ratio of two dominant phyla (Bacteroidota-to-Firmicutes) was similarly increased in Epi and No-Epi rats vs sham control rats. Notably, the relative abundance of families, genera, and species associated with SCFA production differed in Epi vs No-Epi rats, describing a bacterial imprint associated with epilepsy. Furthermore, Epi rats showed a blood metabolic signature characterized by changes in lipid metabolism compared to both No-Epi and sham control rats. Our study provides new evidence of long-term gut alterations, along with microbiota-related metabolic changes, occurring specifically in rats that develop epilepsy after brain injury early in life.
Collapse
Affiliation(s)
- Antonella Riva
- IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| | - Eray Sahin
- Acıbadem University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, Istanbul, Turkey
| | - Greta Volpedo
- IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| | | | | | - Rossella Di Sapia
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Davide Barbarossa
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Nasibeh Riahi Zaniani
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Ilaria Craparotta
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Maria Chiara Barbera
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Uğur Sezerman
- Acıbadem University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, Istanbul, Turkey
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| | - Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| |
Collapse
|
5
|
Wlaź P, Wiater A, Majewska M, Wyska E, Grąz M, Śliwa-Dominiak J, Gapińska N, Socała K. Effect of dietary supplementation with Lactobacillus helveticus R0052 on seizure thresholds and antiseizure potency of sodium valproate in mice. Psychopharmacology (Berl) 2024; 241:327-340. [PMID: 37966492 PMCID: PMC10805985 DOI: 10.1007/s00213-023-06489-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVE Both animal and human studies, though limited, showed that multi-strain probiotic supplementation may reduce the number of seizures and/or seizure severity. Here, we evaluated the effect of a single strain probiotic supplementation on seizure susceptibility, antiseizure efficacy of sodium valproate, and several behavioral parameters in mice. METHODS Lactobacillus helveticus R0052 was given orally for 28 days. Its influence on seizure thresholds was evaluated in the ivPTZ- and electrically-induced seizure tests. The effect on the antiseizure potency of valproate was assessed in the scPTZ test. We also investigated the effects of probiotic supplementation on anxiety-related behavior (in the elevated plus maze and light/dark box tests), motor coordination (in the accelerating rotarod test), neuromuscular strength (in the grip-strength test), and spontaneous locomotor activity. Serum and brain concentrations of valproate as well as cecal contents of SCFAs and lactate were determined using HPLC method. RESULTS L. helveticus R0052 significantly increased the threshold for the 6 Hz-induced psychomotor seizure. There was also a slight increase in the threshold for myoclonic and clonic seizure in the ivPTZ test. L. helveticus R0052 did not affect the threshold for tonic seizures both in the maximal electroshock- and ivPTZ-induced seizure tests. No changes in the antiseizure potency of valproate against the PTZ-induced seizures were reported. Interestingly, L. helveticus R0052 increased valproate concentration in serum, but not in the brain. Moreover, L. helveticus R0052 did not produce any significant effects on anxiety-related behavior, motor coordination, neuromuscular strength, and locomotor activity. L. helveticus R0052 supplementation resulted in increased concentrations of total SCFAs, acetate, and butyrate. CONCLUSIONS Altogether, this study shows that a single-strain probiotic - L. helveticus R0052 may decrease seizure susceptibility and this effect can be mediated, at least in part, by increased production of SCFAs. In addition, L. helveticus R0052 may affect bioavailability of valproate, which warrants further investigations.
Collapse
Affiliation(s)
- Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Małgorzata Majewska
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Marcin Grąz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Joanna Śliwa-Dominiak
- R&D and Scientific Department, Sanprobi Sp. z o.o Sp.k., Quality Control and Microbiology Laboratory, Kurza Stopka 5/C, PL 70-535, Szczecin, Poland
| | - Nikola Gapińska
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland.
| |
Collapse
|
6
|
Zhu H, Wang W, Li Y. The interplay between microbiota and brain-gut axis in epilepsy treatment. Front Pharmacol 2024; 15:1276551. [PMID: 38344171 PMCID: PMC10853364 DOI: 10.3389/fphar.2024.1276551] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/12/2024] [Indexed: 08/12/2024] Open
Abstract
The brain-gut axis plays a vital role in connecting the cognitive and emotional centers of the brain with the intricate workings of the intestines. An imbalance in the microbiota-mediated brain-gut axis extends far beyond conditions like Irritable Bowel Syndrome (IBS) and obesity, playing a critical role in the development and progression of various neurological disorders, including epilepsy, depression, Alzheimer's disease (AD), and Parkinson's disease (PD). Epilepsy, a brain disorder characterized by unprovoked seizures, affects approximately 50 million people worldwide. Accumulating evidence suggests that rebuilding the gut microbiota through interventions such as fecal microbiota transplantation, probiotics, and ketogenic diets (KD) can benefit drug-resistant epilepsy. The disturbances in the gut microbiota could contribute to the toxic side effects of antiepileptic drugs and the development of drug resistance in epilepsy patients. These findings imply the potential impact of the gut microbiota on epilepsy and suggest that interventions targeting the microbiota, such as the KD, hold promise for managing and treating epilepsy. However, the full extent of the importance of microbiota in epilepsy treatment is not yet fully understood, and many aspects of this field remain unclear. Therefore, this article aims to provide an overview of the clinical and animal evidence supporting the regulatory role of gut microbiota in epilepsy, and of potential pathways within the brain-gut axis that may be influenced by the gut microbiota in epilepsy. Furthermore, we will discuss the recent advancements in epilepsy treatment, including the KD, fecal microbiota transplantation, and antiseizure drugs, all from the perspective of the gut microbiota.
Collapse
Affiliation(s)
- Hanxiao Zhu
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
- Clinical Medical School, Dali University, Dali, China
| | - Wei Wang
- Neurobiology Laboratory, China Agricultural University, Beijing, China
| | - Yun Li
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
- Clinical Medical School, Dali University, Dali, China
| |
Collapse
|
7
|
Kundu S, Nayak S, Rakshit D, Singh T, Shukla R, Khatri DK, Mishra A. The microbiome-gut-brain axis in epilepsy: pharmacotherapeutic target from bench evidence for potential bedside applications. Eur J Neurol 2023; 30:3557-3567. [PMID: 36880679 DOI: 10.1111/ene.15767] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
The gut-brain axis augments the bidirectional communication between the gut and brain and modulates gut homeostasis and the central nervous system through the hypothalamic-pituitary-adrenal axis, enteroendocrine system, neuroendocrine system, inflammatory and immune pathways. Preclinical and clinical reports showed that gut dysbiosis might play a major regulatory role in neurological diseases such as epilepsy, Parkinson's, multiple sclerosis, and Alzheimer's disease. Epilepsy is a chronic neurological disease that causes recurrent and unprovoked seizures, and numerous risk factors are implicated in developing epilepsy. Advanced consideration of the gut-microbiota-brain axis can reduce ambiguity about epilepsy pathology, antiepileptic drugs, and effective therapeutic targets. Gut microbiota sequencing analysis reported that the level of Proteobacteria, Verrucomicrobia, Fusobacteria, and Firmicutes was increased and the level of Actinobacteria and Bacteroidetes was decreased in epilepsy patients. Clinical and preclinical studies also indicated that probiotics, ketogenic diet, faecal microbiota transplantation, and antibiotics can improve gut dysbiosis and alleviate seizure by enhancing the abundance of healthy biota. This study aims to give an overview of the connection between gut microbiota, and epilepsy, how gut microbiome changes may cause epilepsy, and whether gut microbiome restoration could be used as a treatment for epilepsy.
Collapse
Affiliation(s)
- Snehashis Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Sudipta Nayak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Debarati Rakshit
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| |
Collapse
|
8
|
Gao X, You Z, Huang C, Liu Z, Tan Z, Li J, Liu Y, Liu X, Wei F, Fan Z, Qi S, Sun J. NCBP1 Improves Cognitive Function in Mice by Reducing Oxidative Stress, Neuronal Loss, and Glial Activation After Status Epilepticus. Mol Neurobiol 2023; 60:6676-6688. [PMID: 37474884 DOI: 10.1007/s12035-023-03497-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Status epilepticus (SE) is a severe manifestation of epilepsy which can cause neurologic injury and death. This study aimed to identify key proteins involved in the pathogenesis of epilepsy and find a potential drug target for SE treatment. Tandem mass tag (TMT)-based quantitative proteomic analysis was applied to screen differentially expressed proteins (DEPs) in epilepsy. The adeno-associated virus was employed to overexpress candidate DEP in mice, and kainic acid (KA) was used to generate a mouse model of epilepsy. Then histopathological examination of the hippocampal tissue was performed, and the inflammatory factors levels in serum and hippocampus were measured. The IP-MS analysis was carried out to identify the interacting protein of nuclear cap-binding protein 1 (NCBP1). The results were that NCBP1 was downregulated in the epileptic hippocampus. NCBP1 overexpression alleviated KA-induced cognitive impairment in mice and reduced the apoptosis and damage of hippocampal neurons. Additionally, overexpressed NCBP1 increased the expression of NeuN and reduced the expression of GFAP and IBA-1 in the hippocampus of the mice. Further study indicated that NCBP1 overexpression inhibited the expression of IL-6, IL-1β, and IFN-γ in serum and hippocampus as well as MDA and LDH in the hippocampus, whereas it increased the SOD levels, suggesting that overexpression of NCBP1 could diminish KA-induced inflammatory responses and oxidative stress. The IP-MS analysis identified that ELAVL4 was the NCBP1-interacting protein. In conclusion, this finding suggests that NCBP1 may potentially serve as a drug target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Xiaoying Gao
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhipeng You
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Cong Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhixiong Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zixiao Tan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Jiran Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Xingan Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Fan Wei
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhijie Fan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Sihua Qi
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Jiahang Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
9
|
Łukawski K, Czuczwar SJ. Oxidative Stress and Neurodegeneration in Animal Models of Seizures and Epilepsy. Antioxidants (Basel) 2023; 12:antiox12051049. [PMID: 37237916 DOI: 10.3390/antiox12051049] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Free radicals are generated in the brain, as well as in other organs, and their production is proportional to the brain activity. Due to its low antioxidant capacity, the brain is particularly sensitive to free radical damage, which may affect lipids, nucleic acids, and proteins. The available evidence clearly points to a role for oxidative stress in neuronal death and pathophysiology of epileptogenesis and epilepsy. The present review is devoted to the generation of free radicals in some animal models of seizures and epilepsy and the consequences of oxidative stress, such as DNA or mitochondrial damage leading to neurodegeneration. Additionally, antioxidant properties of antiepileptic (antiseizure) drugs and a possible use of antioxidant drugs or compounds in patients with epilepsy are reviewed. In numerous seizure models, the brain concentration of free radicals was significantly elevated. Some antiepileptic drugs may inhibit these effects; for example, valproate reduced the increase in brain malondialdehyde (a marker of lipid peroxidation) concentration induced by electroconvulsions. In the pentylenetetrazol model, valproate prevented the reduced glutathione concentration and an increase in brain lipid peroxidation products. The scarce clinical data indicate that some antioxidants (melatonin, selenium, vitamin E) may be recommended as adjuvants for patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|
10
|
García-Belenguer S, Grasa L, Palacio J, Moral J, Rosado B. Effect of a Ketogenic Medium Chain Triglyceride-Enriched Diet on the Fecal Microbiota in Canine Idiopathic Epilepsy: A Pilot Study. Vet Sci 2023; 10:vetsci10040245. [PMID: 37104400 PMCID: PMC10144861 DOI: 10.3390/vetsci10040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023] Open
Abstract
Ketogenic diets have been successfully used in people and dogs with idiopathic epilepsy. This study examined the effect of a ketogenic medium chain triglycerides (MCT)- enriched diet administered for one month on the fecal microbiota of epileptic (n = 11) (six with drug-sensitive epilepsy, DSE; five with drug-refractory epilepsy, DRE) and non-epileptic beagle dogs (n = 12). A significant reduction after diet in the relative abundance of bacteria from the Actinobacteria phylum was observed in all dogs. Epileptic dogs showed a higher relative abundance of Lactobacillus compared with non-epileptic dogs at baseline but these differences disappeared after diet. Epileptic dogs also showed a significantly higher abundance of Negativicutes and Selenomonadales after dietary intervention. Baseline microbiota patterns were similar in non-epileptic beagles and dogs with DSE but significantly different from dogs with DRE. In non-epileptic and DSE groups, the MCT diet decreased the relative abundance of Firmicutes and increased that of Bacteroidetes and Fusobacteria, but the opposite effect was observed in dogs with DRE. These results suggest that the MCT diet effect would depend on individual baseline microbiota patterns and that ketogenic diets could help reduce gut microbiota differences between dogs with DRE and DSE.
Collapse
Affiliation(s)
- Sylvia García-Belenguer
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50009 Zaragoza, Spain
| | - Jorge Palacio
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Jon Moral
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Belén Rosado
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
| |
Collapse
|
11
|
Evaluation of the Antioxidant Activity of Levetiracetam in a Temporal Lobe Epilepsy Model. Biomedicines 2023; 11:biomedicines11030848. [PMID: 36979827 PMCID: PMC10045287 DOI: 10.3390/biomedicines11030848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Epilepsy is a neurological disorder in which it has been shown that the presence of oxidative stress (OS) is implicated in epileptogenesis. The literature has shown that some antiseizure drugs (ASD) have neuroprotective properties. Levetiracetam (LEV) is a drug commonly used as an ASD, and in some studies, it has been found to possess antioxidant properties. Because the antioxidant effects of LEV have not been demonstrated in the chronic phase of epilepsy, the objective of this study was to evaluate, for the first time, the effects of LEV on the oxidant–antioxidant status in the hippocampus of rats with temporal lobe epilepsy (TLE). The in vitro scavenging capacity of LEV was evaluated. LEV administration in rats with TLE significantly increased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, but did not change glutathione peroxidase (GPx) activity, and significantly decreased glutathione reductase (GR) activity in comparison with epileptic rats. LEV administration in rats with TLE significantly reduced hydrogen peroxide (H2O2) levels but did not change lipoperoxidation and carbonylated protein levels in comparison with epileptic rats. In addition, LEV showed in vitro scavenging activity against hydroxyl radical (HO•). LEV showed significant antioxidant effects in relation to restoring the redox balance in the hippocampus of rats with TLE. In vitro, LEV demonstrated direct antioxidant activity against HO•.
Collapse
|