1
|
Mahdi AF, Nolan J, O’Connor RÍ, Lowery AJ, Allardyce JM, Kiely PA, McGourty K. Collagen-I influences the post-translational regulation, binding partners and role of Annexin A2 in breast cancer progression. Front Oncol 2023; 13:1270436. [PMID: 37941562 PMCID: PMC10628465 DOI: 10.3389/fonc.2023.1270436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction The extracellular matrix (ECM) has been heavily implicated in the development and progression of cancer. We have previously shown that Annexin A2 is integral in the migration and invasion of breast cancer cells and in the clinical progression of ER-negative breast cancer, processes which are highly influenced by the surrounding tumor microenvironment and ECM. Methods We investigated how modulations of the ECM may affect the role of Annexin A2 in MDA-MB-231 breast cancer cells using western blotting, immunofluorescent confocal microscopy and immuno-precipitation mass spectrometry techniques. Results We have shown that the presence of collagen-I, the main constituent of the ECM, increases the post-translational phosphorylation of Annexin A2 and subsequently causes the translocation of Annexin A2 to the extracellular surface. In the presence of collagen-I, we identified fibronectin as a novel interactor of Annexin A2, using mass spectrometry analysis. We then demonstrated that reducing Annexin A2 expression decreases the degradation of fibronectin by cancer cells and this effect on fibronectin turnover is increased according to collagen-I abundance. Discussion Our results suggest that Annexin A2's role in promoting cancer progression is mediated by collagen-I and Annexin A2 maybe a therapeutic target in the bi-directional cross-talk between cancer cells and ECM remodeling that supports metastatic cancer progression.
Collapse
Affiliation(s)
- Amira F. Mahdi
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Joanne Nolan
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Ruth Í. O’Connor
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Aoife J. Lowery
- Lambe Institute for Translational Research, University of Galway, Galway, Ireland
| | - Joanna M. Allardyce
- Health Research Institute, University of Limerick, Limerick, Ireland
- School of Allied Health, University of Limerick, Limerick, Ireland
| | - Patrick A. Kiely
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Kieran McGourty
- Health Research Institute, University of Limerick, Limerick, Ireland
- Science Foundation Ireland Research Centre in Pharmaceuticals (SSPC), University of Limerick, Limerick, Ireland
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
2
|
Wakefield L, Agarwal S, Tanner K. Preclinical models for drug discovery for metastatic disease. Cell 2023; 186:1792-1813. [PMID: 37059072 DOI: 10.1016/j.cell.2023.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 04/16/2023]
Abstract
Despite many advances, metastatic disease remains essentially uncurable. Thus, there is an urgent need to better understand mechanisms that promote metastasis, drive tumor evolution, and underlie innate and acquired drug resistance. Sophisticated preclinical models that recapitulate the complex tumor ecosystem are key to this process. We begin with syngeneic and patient-derived mouse models that are the backbone of most preclinical studies. Second, we present some unique advantages of fish and fly models. Third, we consider the strengths of 3D culture models for resolving remaining knowledge gaps. Finally, we provide vignettes on multiplexed technologies to advance our understanding of metastatic disease.
Collapse
Affiliation(s)
- Lalage Wakefield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20007, USA.
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Biophysical determinants of cancer organotropism. Trends Cancer 2023; 9:188-197. [PMID: 36494310 DOI: 10.1016/j.trecan.2022.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Metastasis remains the leading cause of cancer lethality. The 'seed/soil' hypothesis provides the framework to explain this cancer phenomenon where the concept of organotropism has been in part mechanistically explained by the properties of the tumor cells and their compatibility with the stromal environment of the distal site. The 'mechanical' hypothesis counters that non-random seeding is driven solely by the circulation patterns and vascular networks of organ systems. We incorporate concepts of mechanobiology and revisit the two hypotheses to provide additional insights into the mechanisms that regulate organ selection during metastatic outgrowth. We focus on the latter stages of the metastatic cascade and examine the role of the endothelium in regulating organ selectivity.
Collapse
|
4
|
Hinkelman K, Yang Y, Zuo W. Design methodologies and engineering applications for ecosystem biomimicry: an interdisciplinary review spanning cyber, physical, and cyber-physical systems. BIOINSPIRATION & BIOMIMETICS 2023; 18:021001. [PMID: 36669206 DOI: 10.1088/1748-3190/acb520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Ecosystem biomimicry is a promising pathway for sustainable development. However, while typical form- and process-level biomimicry is prevalent, system-level ecosystem biomimicry remains a nascent practice in numerous engineering fields. This critical review takes an interdisciplinary approach to synthesize trends across case studies, evaluate design methodologies, and identify future opportunities when applying ecosystem biomimicry to engineering practices, including cyber systems (CS), physical systems (PS), and cyber-physical systems (CPS). After systematically sourcing publications from major databases, the papers were first analyzed at a meta level for their bibliographic context and for statistical correlations among categorical variables. Then, we investigated deeper into the engineering applications and design methodologies. Results indicate that CPS most frequently mimic organisms and ecosystems, while CS and PS frequently mimic populations-communities and molecules-tissues-organ systems, respectively (statistically highly significant). An indirect approach is most often used for mimicry at organizational levels from populations to ecosystems, while a direct approach frequently suits levels from molecules to organisms (highly significant). Dominant themes across engineering applications include symbiotic organism search algorithms for CS and ecological network analysis for CPS, while PS are highly diverse. For design methodologies, this work summarizes and details ten well-documented biomimetic process models among literature, which addresses an outdated concern for a lack of systematic methods for ecosystem biomimicry. In addition to the Biomimetics Standard ISO 18458, these methods include the Natural Step and Techno-Ecological Synergy framework, among others. Further, the analyses revealed future opportunities from less utilized design methods (e.g. interdisciplinary teams tackling indirect, ecosystem-level projects) to well-established engineering concepts ready for technological advancement (e.g. implementing membrane computing for physical applications). For future studies, this review provides a comprehensive reference for ecosystem biomimetic design practices and application opportunities across multiple engineering domains.
Collapse
Affiliation(s)
- Kathryn Hinkelman
- Architectural Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Yizhi Yang
- Architectural Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Wangda Zuo
- Architectural Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
- National Renewable Energy Laboratory, Golden, CO 80401, United States of America
| |
Collapse
|
5
|
Modeling Tumor: Lymphatic Interactions in Lymphatic Metastasis of Triple Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13236044. [PMID: 34885152 PMCID: PMC8656640 DOI: 10.3390/cancers13236044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Lymphatic metastasis is a critical prognostic factor of breast cancer aggressiveness and patient survival. Since existing therapeutic approaches have shown limited efficacy, new strategies to identify effective therapeutic targets for reducing breast cancer lymphatic metastasis are needed. We have used novel culture chambers, designed and fabricated by our group, to develop 3D models in which we can study spat ial interactions between breast cancer cells and lymphatic cells as they occur in real-time. This approach provides information on the complex cell–cell interactions involved in lymphatic metastasis of breast cancers. Factors in the secretome of the lymphatic cells promote invasive outgrowths from 3D cultures of breast cancer cells, suggesting that targeting interactions between breast cancer cells and lymphatic cells could be a potential therapeutic approach for the prevention of lymphatic metastasis. Abstract Breast cancer frequently metastasizes to lymphatics and the presence of breast cancer cells in regional lymph nodes is an important prognostic factor. Delineating the mechanisms by which breast cancer cells disseminate and spatiotemporal aspects of interactions between breast cancer cells and lymphatics is needed to design new therapies to prevent lymphatic metastases. As triple-negative breast cancer (TNBC) has a high incidence of lymphatic metastasis, we used a three-dimensional (3D) coculture model of human TNBC cells and human microvascular lymphatic endothelial cells (LECs) to analyze TNBC:LEC interactions. Non-invasive analyses such as live-cell imaging in real-time and collection of conditioned media for secretomic analysis were facilitated by our novel microfluidic chambers. The volumes of 3D structures formed in TNBC:LEC cocultures are greater than that of 3D structures formed by either LEC or TNBC monocultures. Over 4 days of culture there is an increase in multicellular invasive outgrowths from TNBC spheroids and an association of TNBC spheroids with LEC networks. The increase in invasive phenotype also occurred when TNBC spheroids were cultured in LEC-conditioned media and in wells linked to ones containing LEC networks. Our results suggest that modeling spatiotemporal interactions between TNBC and LECs may reveal paracrine signaling that could be targeted to reduce lymphatic metastasis.
Collapse
|
6
|
Abstract
Cancer is a multi-step process where normal cells become transformed, grow, and may disseminate to establish new lesions within the body. In recent years, the physical properties of individual cells and the tissue microenvironment have been shown to be potent determinants of cancer progression. Biophysical tools have long been used to examine cell and tissue mechanics, morphology, and migration. However, exciting developments have linked these physical traits to gene expression changes that drive metastatic seeding, organ selectivity, and tumor growth. Here, we present some vignettes to address recent studies to show progress in harnessing biophysical tools and concepts to gain insights into metastasis.
Collapse
Affiliation(s)
- Woong Young So
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Collins T, Pyne E, Christensen M, Iles A, Pamme N, Pires IM. Spheroid-on-chip microfluidic technology for the evaluation of the impact of continuous flow on metastatic potential in cancer models in vitro. BIOMICROFLUIDICS 2021; 15:044103. [PMID: 34504636 PMCID: PMC8403013 DOI: 10.1063/5.0061373] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/10/2021] [Indexed: 05/10/2023]
Abstract
The majority of cancer deaths are linked to tumor spread, or metastasis, but 3D in vitro metastasis models relevant to the tumor microenvironment (including interstitial fluid flow) remain an area of unmet need. Microfluidics allows us to introduce controlled flow to an in vitro cancer model to better understand the relationship between flow and metastasis. Here, we report new hybrid spheroid-on-chip in vitro models for the impact of interstitial fluid flow on cancer spread. We designed a series of reusable glass microfluidic devices to contain one spheroid in a microwell under continuous perfusion culture. Spheroids derived from established cancer cell lines were perfused with complete media at a flow rate relevant to tumor interstitial fluid flow. Spheroid viability and migratory/invasive capabilities were maintained on-chip when compared to off-chip static conditions. Importantly, using flow conditions modeled in vitro, we are the first to report flow-induced secretion of pro-metastatic factors, in this case cytokines vascular endothelial growth factor and interleukin 6. In summary, we have developed a new, streamlined spheroid-on-chip in vitro model that represents a feasible in vitro alternative to conventional murine in vivo metastasis assays, including complex tumor environmental factors, such as interstitial fluid flow, extracellular matrices, and using 3D models to model nutrient and oxygen gradients. Our device, therefore, constitutes a robust alternative to in vivo early-metastasis models for determination of novel metastasis biomarkers as well as evaluation of therapeutically relevant molecular targets not possible in in vivo murine models.
Collapse
Affiliation(s)
- Thomas Collins
- Hypoxia and Tumour Microenvironment Lab, Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Emily Pyne
- Hypoxia and Tumour Microenvironment Lab, Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Martin Christensen
- Lab-on-a-Chip Research Group, Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Alexander Iles
- Lab-on-a-Chip Research Group, Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Nicole Pamme
- Lab-on-a-Chip Research Group, Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Isabel M. Pires
- Hypoxia and Tumour Microenvironment Lab, Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| |
Collapse
|
8
|
Cabezas-Sáinz P, Pensado-López A, Sáinz B, Sánchez L. Modeling Cancer Using Zebrafish Xenografts: Drawbacks for Mimicking the Human Microenvironment. Cells 2020; 9:E1978. [PMID: 32867288 PMCID: PMC7564051 DOI: 10.3390/cells9091978] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
The first steps towards establishing xenografts in zebrafish embryos were performed by Lee et al., 2005 and Haldi et al., 2006, paving the way for studying human cancers using this animal species. Since then, the xenograft technique has been improved in different ways, ranging from optimizing the best temperature for xenografted embryo incubation, testing different sites for injection of human tumor cells, and even developing tools to study how the host interacts with the injected cells. Nonetheless, a standard protocol for performing xenografts has not been adopted across laboratories, and further research on the temperature, microenvironment of the tumor or the cell-host interactions inside of the embryo during xenografting is still needed. As a consequence, current non-uniform conditions could be affecting experimental results in terms of cell proliferation, invasion, or metastasis; or even overestimating the effects of some chemotherapeutic drugs on xenografted cells. In this review, we highlight and raise awareness regarding the different aspects of xenografting that need to be improved in order to mimic, in a more efficient way, the human tumor microenvironment, resulting in more robust and accurate in vivo results.
Collapse
Affiliation(s)
- Pablo Cabezas-Sáinz
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (P.C.-S.); (A.P.-L.)
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (P.C.-S.); (A.P.-L.)
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Bruno Sáinz
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain;
- Cancer Stem Cell and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (P.C.-S.); (A.P.-L.)
| |
Collapse
|
9
|
Gonzalez-Avila G, Sommer B, García-Hernández AA, Ramos C. Matrix Metalloproteinases' Role in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:97-131. [PMID: 32266655 DOI: 10.1007/978-3-030-40146-7_5] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer cells evolve in the tumor microenvironment (TME) by the acquisition of characteristics that allow them to initiate their passage through a series of events that constitute the metastatic cascade. For this purpose, tumor cells maintain a crosstalk with TME non-neoplastic cells transforming them into their allies. "Corrupted" cells such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and tumor-associated neutrophils (TANs) as well as neoplastic cells express and secrete matrix metalloproteinases (MMPs). Moreover, TME metabolic conditions such as hypoxia and acidification induce MMPs' synthesis in both cancer and stromal cells. MMPs' participation in TME consists in promoting events, for example, epithelial-mesenchymal transition (EMT), apoptosis resistance, angiogenesis, and lymphangiogenesis. MMPs also facilitate tumor cell migration through the basement membrane (BM) and extracellular matrix (ECM). The aim of the present chapter is to discuss MMPs' contribution to the evolution of cancer cells, their cellular origin, and their influence in the main processes that take place in the TME.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - A Armando García-Hernández
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Carlos Ramos
- Laboratorio de Biología Celular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
10
|
Paul CD, Bishop K, Devine A, Paine EL, Staunton JR, Thomas SM, Thomas JR, Doyle AD, Miller Jenkins LM, Morgan NY, Sood R, Tanner K. Tissue Architectural Cues Drive Organ Targeting of Tumor Cells in Zebrafish. Cell Syst 2019; 9:187-206.e16. [PMID: 31445892 DOI: 10.1016/j.cels.2019.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/28/2019] [Accepted: 06/27/2019] [Indexed: 01/03/2023]
Abstract
Tumor cells encounter a myriad of physical cues upon arrest and extravasation in capillary beds. Here, we examined the role of physical factors in non-random organ colonization using a zebrafish xenograft model. We observed a two-step process by which mammalian mammary tumor cells showed non-random organ colonization. Initial homing was driven by vessel architecture, where greater numbers of cells became arrested in the topographically disordered blood vessels of the caudal vascular plexus (CVP) than in the linear vessels in the brain. Following arrest, bone-marrow- and brain-tropic clones exhibited organ-specific patterns of extravasation. Extravasation was mediated by β1 integrin, where knockdown of β1 integrin reduced extravasation in the CVP but did not affect extravasation of a brain-tropic clone in the brain. In contrast, silencing myosin 1B redirected early colonization from the brain to the CVP. Our results suggest that organ selectivity is driven by both vessel topography and cell-type-dependent extravasation.
Collapse
Affiliation(s)
- Colin D Paul
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Bishop
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexus Devine
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elliott L Paine
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jack R Staunton
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah M Thomas
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joanna R Thomas
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew D Doyle
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Y Morgan
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20814, USA
| | - Raman Sood
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
High-frequency microrheology in 3D reveals mismatch between cytoskeletal and extracellular matrix mechanics. Proc Natl Acad Sci U S A 2019; 116:14448-14455. [PMID: 31266897 DOI: 10.1073/pnas.1814271116] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mechanical homeostasis describes how cells sense physical cues from the microenvironment and concomitantly remodel both the cytoskeleton and the surrounding extracellular matrix (ECM). Such feedback is thought to be essential to healthy development and maintenance of tissue. However, the nature of the dynamic coupling between microscale cell and ECM mechanics remains poorly understood. Here we investigate how and whether cells remodel their cortex and basement membrane to adapt to their microenvironment. We measured both intracellular and extracellular viscoelasticity, generating a full factorial dataset on 5 cell lines in 2 ECMs subjected to 4 cytoskeletal drug treatments at 2 time points. Nonmalignant breast epithelial cells show a similar viscoelasticity to that measured for the local ECM when cultured in 3D laminin-rich ECM. In contrast, the malignant counterpart is stiffer than the local environment. We confirmed that other mammary cancer cells embedded in tissue-mimetic hydrogels are nearly 4-fold stiffer than the surrounding ECM. Perturbation of actomyosin did not yield uniform responses but instead depended on the cell type and chemistry of the hydrogel. The observed viscoelasticity of both ECM and cells were well described by power laws in a frequency range that governs single filament cytoskeletal dynamics. Remarkably, the intracellular and extracellular power law parameters for the entire dataset collectively fall onto 2 parallel master curves described by just 2 parameters. Our work shows that tumor cells are mechanically plastic to adapt to many environments and reveals dynamical scaling behavior in the microscale mechanical responses of both cells and ECM.
Collapse
|
12
|
Jackson S, Meeks C, Vézina A, Robey RW, Tanner K, Gottesman MM. Model systems for studying the blood-brain barrier: Applications and challenges. Biomaterials 2019; 214:119217. [PMID: 31146177 DOI: 10.1016/j.biomaterials.2019.05.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
Abstract
The blood-brain barrier (BBB) poses a serious impediment to the delivery of effective therapies to the central nervous system (CNS). Over time, various model systems have been crafted and used to evaluate the complexities of the BBB, which includes an impermeable physical barrier and a series of energy-dependent efflux pumps. Models of the BBB have mainly sought to assess changes in endothelial cell permeability, the role of ATP-dependent efflux transporters in drug disposition, and alterations in communication between BBB cells and the microenvironment. In the context of disease, various animal models have been utilized to examine real time BBB drug permeability, CNS dynamic changes, and overall treatment response. In this review, we outline the use of these in vitro and in vivo blood-brain barrier model systems to study normal physiology and diseased states. These current models each have their own advantages and disadvantages for studying the response of biologic processes to physiological and pathological conditions. Additional models are needed to mimic more closely the dynamic quality of the BBB, with the goal focused on potential clinical applications.
Collapse
Affiliation(s)
- Sadhana Jackson
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Caitlin Meeks
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Amélie Vézina
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Robert W Robey
- Multidrug Resistance Section, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Kandice Tanner
- Tissue Morphodynamics Unit, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Michael M Gottesman
- Multidrug Resistance Section, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| |
Collapse
|
13
|
Paul CD, Hruska A, Staunton JR, Burr HA, Daly KM, Kim J, Jiang N, Tanner K. Probing cellular response to topography in three dimensions. Biomaterials 2019; 197:101-118. [PMID: 30641262 PMCID: PMC6390976 DOI: 10.1016/j.biomaterials.2019.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 12/18/2022]
Abstract
Biophysical aspects of in vivo tissue microenvironments include microscale mechanical properties, fibrillar alignment, and architecture or topography of the extracellular matrix (ECM). These aspects act in concert with chemical signals from a myriad of diverse ECM proteins to provide cues that drive cellular responses. Here, we used a bottom-up approach to build fibrillar architecture into 3D amorphous hydrogels using magnetic-field driven assembly of paramagnetic colloidal particles functionalized with three types of human ECM proteins found in vivo. We investigated if cells cultured in matrices comprised of fibrils of the same size and arranged in similar geometries will show similar behavior for each of the ECM proteins tested. We were able to resolve spatial heterogeneities in microscale mechanical properties near aligned fibers that were not observed in bulk tissue mechanics. We then used this platform to examine factors contributing to cell alignment in response to topographical cues in 3D laminin-rich matrices. Multiple human cell lines extended protrusions preferentially in directions parallel or perpendicular to aligned fibers independently of the ECM coating. Focal adhesion proteins, as measured by paxillin localization, were mainly diffuse in the cytoplasm, with few puncta localized at the protrusions. Integrin β1 and fascin regulated protrusion extension but not protrusion alignment. Myosin II inhibition did not reduce observed protrusion length. Instead, cells with reduced myosin II activity generated protrusions in random orientations when cultured in hydrogels with aligned fibers. Similarly, myosin II dependence was observed in vivo, where cells no longer aligned along the abluminal surfaces of blood vessels upon treatment with blebbistatin. These data suggest that myosin II can regulate sensing of topography in 3D engineered matrices for both normal and transformed cells.
Collapse
Affiliation(s)
- Colin D Paul
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Alex Hruska
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Jack R Staunton
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Hannah A Burr
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Kathryn M Daly
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Jiyun Kim
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Nancy Jiang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA.
| |
Collapse
|
14
|
Human macrophages survive and adopt activated genotypes in living zebrafish. Sci Rep 2019; 9:1759. [PMID: 30741975 PMCID: PMC6370805 DOI: 10.1038/s41598-018-38186-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 11/29/2018] [Indexed: 12/19/2022] Open
Abstract
The inflammatory response, modulated both by tissue resident macrophages and recruited monocytes from peripheral blood, plays a critical role in human diseases such as cancer and neurodegenerative disorders. Here, we sought a model to interrogate human immune behavior in vivo. We determined that primary human monocytes and macrophages survive in zebrafish for up to two weeks. Flow cytometry revealed that human monocytes cultured at the physiological temperature of the zebrafish survive and differentiate comparable to cohorts cultured at human physiological temperature. Moreover, key genes that encode for proteins that play a role in tissue remodeling were also expressed. Human cells migrated within multiple tissues at speeds comparable to zebrafish macrophages. Analysis of gene expression of in vivo educated human macrophages confirmed expression of activated macrophage phenotypes. Here, human cells adopted phenotypes relevant to cancer progression, suggesting that we can define the real time immune modulation of human tumor cells during the establishment of a metastatic lesion in zebrafish.
Collapse
|
15
|
Singh M, Warita K, Warita T, Faeder JR, Lee REC, Sant S, Oltvai ZN. Shift from stochastic to spatially-ordered expression of serine-glycine synthesis enzymes in 3D microtumors. Sci Rep 2018; 8:9388. [PMID: 29925909 PMCID: PMC6010463 DOI: 10.1038/s41598-018-27266-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/25/2018] [Indexed: 12/15/2022] Open
Abstract
Cell-to-cell differences in protein expression in normal tissues and tumors are a common phenomenon, but the underlying principles that govern this heterogeneity are largely unknown. Here, we show that in monolayer cancer cell-line cultures, the expression of the five metabolic enzymes of serine-glycine synthesis (SGS), including its rate-limiting enzyme, phosphoglycerate dehydrogenase (PHGDH), displays stochastic cell-to-cell variation. By contrast, in cancer cell line-derived three-dimensional (3D) microtumors PHGDH expression is restricted to the outermost part of the microtumors' outer proliferative cell layer, while the four other SGS enzymes display near uniform expression throughout the microtumor. A mathematical model suggests that metabolic stress in the microtumor core activates factors that restrict PHGDH expression. Thus, intracellular enzyme expression in growing cell ecosystems can shift to spatially ordered patterns in 3D structured environments due to emergent cell-cell communication, with potential implications for the design of effective anti-metabolic cancer therapies.
Collapse
Affiliation(s)
- Manjulata Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Katsuhiko Warita
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Tomoko Warita
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - James R Faeder
- Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Robin E C Lee
- Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Department of Bioengineering, Swanson School of Engineering, McGowan Institute for Regenerative Medicine, and UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Zoltán N Oltvai
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
16
|
Tanner K. Perspective: The role of mechanobiology in the etiology of brain metastasis. APL Bioeng 2018; 2:031801. [PMID: 31069312 PMCID: PMC6324204 DOI: 10.1063/1.5024394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
Tumor latency and dormancy are obstacles to effective cancer treatment. In brain
metastases, emergence of a lesion can occur at varying intervals from diagnosis
and in some cases following successful treatment of the primary tumor. Genetic
factors that drive brain metastases have been identified, such as those involved
in cell adhesion, signaling, extravasation, and metabolism. From this wealth of
knowledge, vexing questions still remain; why is there a difference in strategy
to facilitate outgrowth and why is there a difference in latency? One missing
link may be the role of tissue biophysics of the brain microenvironment in
infiltrating cells. Here, I discuss the mechanical cues that may influence
disseminated tumor cells in the brain, as a function of age and disease. I
further discuss in vitro and in vivo
preclinical models such as 3D culture systems and zebrafish to study the role of
the mechanical environment in brain metastasis in an effort of providing novel
targeted therapeutics.
Collapse
Affiliation(s)
- Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
17
|
Wang Z, von Au A, Schnölzer M, Hackert T, Zöller M. CD44v6-competent tumor exosomes promote motility, invasion and cancer-initiating cell marker expression in pancreatic and colorectal cancer cells. Oncotarget 2018; 7:55409-55436. [PMID: 27419629 PMCID: PMC5342426 DOI: 10.18632/oncotarget.10580] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/01/2016] [Indexed: 12/21/2022] Open
Abstract
Cancer-initiating cells (CIC) account for metastatic spread, which may rely mostly on CIC exosomes (TEX) that affect host cells and can transfer CIC features into Non-CIC. The CIC marker CD44 variant isoform v6 (CD44v6) being known for metastasis-promotion, we elaborated in cells its contribution to migration and invasion and in TEX the tranfer of migratory and invasive capacity to Non-CIC, using a CD44v6 knockdown (CD44v6kd) as Non-CIC model.A CD44v6kd in human pancreatic and colorectal cancer (PaCa, CoCa) lines led to loss of CIC characteristics including downregulation of additional CIC markers, particularly Tspan8. This aggravated the loss of CD44v6-promoted motility and invasion. Loss of motility relies on the distorted cooperation of CD44v6 and Tspan8 with associated integrins and loss of invasiveness on reduced protease expression. These deficits, transferred into TEX, severely altered the CD44v6kd-TEX composition. As a consequence, unlike the CIC-TEX, CD44v6kd TEX were not taken up by CD44v6kd cells and CIC. The uptake of CIC-TEX was accompanied by partial correction of CIC marker and protease expression in CD44v6kd cells, which regained migratory, invasive and metastatic competence. CIC-TEX also fostered angiogenesis and expansion of myeloid cells, likely due to a direct impact of CIC-TEX on the host, which could be supported by reprogrammed CD44v6kd cells.Taken together, the striking loss of tumor progression by a CD44v6kd relies on the capacity of CD44v6 to cooperate with associating integrins and proteases and its promotion of additional CIC marker expression. The defects by a CD44v6kd are efficiently corrected upon CIC-TEX uptake.
Collapse
Affiliation(s)
- Zhe Wang
- Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Anja von Au
- Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Martina Schnölzer
- Proteome Analysis Department, German Cancer Research Center, Heidelberg, Germany
| | - Thilo Hackert
- Section Pancreas Research, University Hospital of Surgery, Heidelberg, Germany
| | - Margot Zöller
- Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| |
Collapse
|
18
|
Pradhan S, Keller KA, Sperduto JL, Slater JH. Fundamentals of Laser-Based Hydrogel Degradation and Applications in Cell and Tissue Engineering. Adv Healthc Mater 2017; 6:10.1002/adhm.201700681. [PMID: 29065249 PMCID: PMC5797692 DOI: 10.1002/adhm.201700681] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/13/2017] [Indexed: 12/24/2022]
Abstract
The cell and tissue engineering fields have profited immensely through the implementation of highly structured biomaterials. The development and implementation of advanced biofabrication techniques have established new avenues for generating biomimetic scaffolds for a multitude of cell and tissue engineering applications. Among these, laser-based degradation of biomaterials is implemented to achieve user-directed features and functionalities within biomimetic scaffolds. This review offers an overview of the physical mechanisms that govern laser-material interactions and specifically, laser-hydrogel interactions. The influences of both laser and material properties on efficient, high-resolution hydrogel degradation are discussed and the current application space in cell and tissue engineering is reviewed. This review aims to acquaint readers with the capability and uses of laser-based degradation of biomaterials, so that it may be easily and widely adopted.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark DE 19716, USA
| | - Keely A. Keller
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark DE 19716, USA
| | - John L. Sperduto
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark DE 19716, USA
| | - John H. Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark DE 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
| |
Collapse
|
19
|
Ciavatta ML, Lefranc F, Carbone M, Mollo E, Gavagnin M, Betancourt T, Dasari R, Kornienko A, Kiss R. Marine Mollusk-Derived Agents with Antiproliferative Activity as Promising Anticancer Agents to Overcome Chemotherapy Resistance. Med Res Rev 2017; 37:702-801. [PMID: 27925266 PMCID: PMC5484305 DOI: 10.1002/med.21423] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/18/2022]
Abstract
The chemical investigation of marine mollusks has led to the isolation of a wide variety of bioactive metabolites, which evolved in marine organisms as favorable adaptations to survive in different environments. Most of them are derived from food sources, but they can be also biosynthesized de novo by the mollusks themselves, or produced by symbionts. Consequently, the isolated compounds cannot be strictly considered as "chemotaxonomic markers" for the different molluscan species. However, the chemical investigation of this phylum has provided many compounds of interest as potential anticancer drugs that assume particular importance in the light of the growing literature on cancer biology and chemotherapy. The current review highlights the diversity of chemical structures, mechanisms of action, and, most importantly, the potential of mollusk-derived metabolites as anticancer agents, including those biosynthesized by mollusks and those of dietary origin. After the discussion of dolastatins and kahalalides, compounds previously studied in clinical trials, the review covers potentially promising anticancer agents, which are grouped based on their structural type and include terpenes, steroids, peptides, polyketides and nitrogen-containing compounds. The "promise" of a mollusk-derived natural product as an anticancer agent is evaluated on the basis of its ability to target biological characteristics of cancer cells responsible for poor treatment outcomes. These characteristics include high antiproliferative potency against cancer cells in vitro, preferential inhibition of the proliferation of cancer cells over normal ones, mechanism of action via nonapoptotic signaling pathways, circumvention of multidrug resistance phenotype, and high activity in vivo, among others. The review also includes sections on the targeted delivery of mollusk-derived anticancer agents and solutions to their procurement in quantity.
Collapse
Affiliation(s)
- Maria Letizia Ciavatta
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital ErasmeUniversité Libre de Bruxelles (ULB)1070BrusselsBelgium
| | - Marianna Carbone
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Ernesto Mollo
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Margherita Gavagnin
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Tania Betancourt
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Ramesh Dasari
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Alexander Kornienko
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie ExpérimentaleFaculté de Pharmacie, Université Libre de Bruxelles (ULB)1050BrusselsBelgium
| |
Collapse
|
20
|
Lefranc F, Tabanca N, Kiss R. Assessing the anticancer effects associated with food products and/or nutraceuticals using in vitro and in vivo preclinical development-related pharmacological tests. Semin Cancer Biol 2017; 46:14-32. [PMID: 28602819 DOI: 10.1016/j.semcancer.2017.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
This review is part of a special issue entitled "Role of dietary pattern, foods, nutrients and nutraceuticals in supporting cancer prevention and treatment" and describes a pharmacological strategy to determine the potential contribution of food-related components as anticancer agents against established cancer. Therefore, this review does not relate to chemoprevention, which is analysed in several other reviews in the current special issue, but rather focuses on the following: i) the biological events that currently represent barriers against the treatment of certain types of cancers, primarily metastatic cancers; ii) the in vitro and in vivo pharmacological pre-clinical tests that can be used to analyse the potential anticancer effects of food-related components; and iii) several examples of food-related components with anticancer effects. This review does not represent a catalogue-based listing of food-related components with more or less anticancer activity. By contrast, this review proposes an original pharmacological strategy that researchers can use to analyse the potential anticancer activity of any food-related component-e.g., by considering the crucial characteristics of cancer biological aggressiveness. This review also highlights that cancer patients undergoing chemotherapy should restrict the use of "food complements" without supervision by a medical nutritionist. By contrast, an equilibrated diet that includes the food-related components listed herein would be beneficial for cancer patients who are not undergoing chemotherapy.
Collapse
Affiliation(s)
- Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium.
| | - Nurhayat Tabanca
- U.S Department of Agriculture-Agricultural Research Service, Subtropical Horticulture Research Station,13601 Old Cutler Rd., Miami, FL 33158, USA.
| | - Robert Kiss
- Retired-formerly at the Fonds National de la Recherche Scientifique (FRS-FNRS, Brussels, Belgium), 5 rue d'Egmont, 1000 Brussels, Belgium.
| |
Collapse
|
21
|
Ravi M, Ramesh A, Pattabhi A. Contributions of 3D Cell Cultures for Cancer Research. J Cell Physiol 2017; 232:2679-2697. [PMID: 27791270 DOI: 10.1002/jcp.25664] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/24/2022]
Abstract
Cancer cell lines have contributed immensely in understanding the complex physiology of cancers. They are excellent material for studies as they offer homogenous samples without individual variations and can be utilised with ease and flexibility. Also, the number of assays and end-points one can study is almost limitless; with the advantage of improvising, modifying or altering several variables and methods. Literally, a new dimension to cancer research has been achieved by the advent of 3Dimensional (3D) cell culture techniques. This approach increased many folds the ways in which cancer cell lines can be utilised for understanding complex cancer biology. 3D cell culture techniques are now the preferred way of using cancer cell lines to bridge the gap between the 'absolute in vitro' and 'true in vivo'. The aspects of cancer biology that 3D cell culture systems have contributed include morphology, microenvironment, gene and protein expression, invasion/migration/metastasis, angiogenesis, tumour metabolism and drug discovery, testing chemotherapeutic agents, adaptive responses and cancer stem cells. We present here, a comprehensive review on the applications of 3D cell culture systems for these aspects of cancers. J. Cell. Physiol. 232: 2679-2697, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maddaly Ravi
- Faculty of Biomedical Sciences, Technology and Research, Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, India
| | - Aarthi Ramesh
- Faculty of Biomedical Sciences, Technology and Research, Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, India
| | - Aishwarya Pattabhi
- Faculty of Biomedical Sciences, Technology and Research, Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, India
| |
Collapse
|
22
|
Ravi M, Ramesh A, Pattabhi A. Human Brain Malignant Glioma (BMG-1) 3D Aggregate Morphology and Screening for Cytotoxicity and Anti-Proliferative Effects. J Cell Physiol 2016; 232:685-690. [PMID: 27639069 DOI: 10.1002/jcp.25603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 09/16/2016] [Indexed: 11/12/2022]
Abstract
Two interesting aspects of cell lines grown in 3 Dimensional (3D) conditions are their distinct morphology and production of extracellular matrix (ECM). Also, it is known that 3D aggregates have different susceptibilities to damage-inducing agents compared to their 2D monolayer counterparts. We describe the effect of ECM on 3D aggregate morphology, the effect of cisplatin, bleomycin, and UV on the 3D aggregates and 2 Dimensional (2D) monolayers of the BMG-1 cell line. We also present a rapid method for analyzing cytotoxicity and anti-proliferative effects of 3D aggregates in 96-well plates. We utilized a single-step protocol using the dye resazurin. BMG-1 cells formed floating aggregates on 1% agarose hydrogels. The extent of ECM formed by them was dependent on number of cells seeded irrespective of the seeding density, which in turn directed the 3D aggregate compactness. The 3D aggregates were less susceptible to cisplatin and UV-induced cytotoxicity compared to 2D counterparts. The IC50 value of cisplatin was elevated at 210 μg/ml for the aggregates compared to 170 μg/ml for the monolayers. Exposure to UV for 0, 10, 20, and 30 min gave inhibition values of 2.98%, 8%, 22.99%, and 31.8% for the aggregates as compared to 3.06%, 7.5%, 39.4%, and 46.7% for the monolayers. While bleomycin-induced effects were unapparent when analyzed by vital staining for the doses used, the rapid, single-step method in 96-well plates was able to provide a dose-response for cytotoxicity and anti-proliferative effects. Also, comparative analysis of results obtained from vital staining and the single-step method demonstrates the reliability of the assay described. J. Cell. Physiol. 232: 685-690, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maddaly Ravi
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai, India
| | - Aarthi Ramesh
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai, India
| | - Aishwarya Pattabhi
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai, India
| |
Collapse
|
23
|
Corti D, Kearns JD. Promises and pitfalls for recombinant oligoclonal antibodies-based therapeutics in cancer and infectious disease. Curr Opin Immunol 2016; 40:51-61. [PMID: 26995095 PMCID: PMC7127534 DOI: 10.1016/j.coi.2016.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
Monoclonal antibodies (mAbs) have revolutionized the diagnosis and treatment of many human diseases and the application of combinations of mAbs has demonstrated improved therapeutic activity in both preclinical and clinical testing. Combinations of antibodies have several advantages such as the capacities to target multiple and mutating antigens in complex pathogens and to engage varied epitopes on multiple disease-related antigens (e.g. receptors) to overcome heterogeneity and plasticity. Oligoclonal antibodies are an emerging therapeutic format in which a novel antibody combination is developed as a single drug product. Here, we will provide historical context on the use of oligoclonal antibodies in oncology and infectious diseases and will highlight practical considerations related to their preclinical and clinical development programs.
Collapse
Affiliation(s)
| | - Jeffrey D Kearns
- Merrimack Pharmaceuticals, Inc., One Kendall Square, Suite B7201, Cambridge, MA 02139, USA.
| |
Collapse
|
24
|
Göttlich C, Müller LC, Kunz M, Schmitt F, Walles H, Walles T, Dandekar T, Dandekar G, Nietzer SL. A Combined 3D Tissue Engineered In Vitro/In Silico Lung Tumor Model for Predicting Drug Effectiveness in Specific Mutational Backgrounds. J Vis Exp 2016:e53885. [PMID: 27077967 DOI: 10.3791/53885] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In the present study, we combined an in vitro 3D lung tumor model with an in silico model to optimize predictions of drug response based on a specific mutational background. The model is generated on a decellularized porcine scaffold that reproduces tissue-specific characteristics regarding extracellular matrix composition and architecture including the basement membrane. We standardized a protocol that allows artificial tumor tissue generation within 14 days including three days of drug treatment. Our article provides several detailed descriptions of 3D read-out screening techniques like the determination of the proliferation index Ki67 staining's, apoptosis from supernatants by M30-ELISA and assessment of epithelial to mesenchymal transition (EMT), which are helpful tools for evaluating the effectiveness of therapeutic compounds. We could show compared to 2D culture a reduction of proliferation in our 3D tumor model that is related to the clinical situation. Despite of this lower proliferation, the model predicted EGFR-targeted drug responses correctly according to the biomarker status as shown by comparison of the lung carcinoma cell lines HCC827 (EGFR -mutated, KRAS wild-type) and A549 (EGFR wild-type, KRAS-mutated) treated with the tyrosine-kinase inhibitor (TKI) gefitinib. To investigate drug responses of more advanced tumor cells, we induced EMT by long-term treatment with TGF-beta-1 as assessed by vimentin/pan-cytokeratin immunofluorescence staining. A flow-bioreactor was employed to adjust culture to physiological conditions, which improved tissue generation. Furthermore, we show the integration of drug responses upon gefitinib treatment or TGF-beta-1 stimulation - apoptosis, proliferation index and EMT - into a Boolean in silico model. Additionally, we explain how drug responses of tumor cells with a specific mutational background and counterstrategies against resistance can be predicted. We are confident that our 3D in vitro approach especially with its in silico expansion provides an additional value for preclinical drug testing in more realistic conditions than in 2D cell culture.
Collapse
Affiliation(s)
- Claudia Göttlich
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg
| | - Lena C Müller
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg
| | - Meik Kunz
- Department of Bioinformatics, University Wuerzburg
| | - Franziska Schmitt
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg
| | - Heike Walles
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg; Translational Center Wuerzburg, Fraunhofer Institute Interfacial Engineering and Biotechnology IGB
| | - Thorsten Walles
- Department of Cardiothoracic Surgery, University Hospital Wuerzburg
| | | | - Gudrun Dandekar
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg; Translational Center Wuerzburg, Fraunhofer Institute Interfacial Engineering and Biotechnology IGB;
| | - Sarah L Nietzer
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg
| |
Collapse
|