1
|
Kim NY, Kim MO, Shin S, Kwon WS, Kim B, Lee JY, In Lee S. Effect of atractylenolide III on zearalenone-induced Snail1-mediated epithelial-mesenchymal transition in porcine intestinal epithelium. J Anim Sci Biotechnol 2024; 15:80. [PMID: 38845033 PMCID: PMC11157892 DOI: 10.1186/s40104-024-01038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The intestinal epithelium performs essential physiological functions, such as nutrient absorption, and acts as a barrier to prevent the entry of harmful substances. Mycotoxins are prevalent contaminants found in animal feed that exert harmful effects on the health of livestock. Zearalenone (ZEA) is produced by the Fusarium genus and induces gastrointestinal dysfunction and disrupts the health and immune system of animals. Here, we evaluated the molecular mechanisms that regulate the effects of ZEA on the porcine intestinal epithelium. RESULTS Treatment of IPEC-J2 cells with ZEA decreased the expression of E-cadherin and increased the expression of Snai1 and Vimentin, which induced Snail1-mediated epithelial-to-mesenchymal transition (EMT). In addition, ZEA induces Snail-mediated EMT through the activation of TGF-β signaling. The treatment of IPEC-J2 cells with atractylenolide III, which were exposed to ZEA, alleviated EMT. CONCLUSIONS Our findings provide insights into the molecular mechanisms of ZEA toxicity in porcine intestinal epithelial cells and ways to mitigate it.
Collapse
Affiliation(s)
- Na Yeon Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-sangbuk-do, 37224, Republic of Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-sangbuk-do, 37224, Republic of Korea
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Sangsu Shin
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-sangbuk-do, 37224, Republic of Korea
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-sangbuk-do, 37224, Republic of Korea
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Bomi Kim
- National Institute for Korean Medicine Development, Gyeongsan, 38540, Republic of Korea
| | - Joon Yeop Lee
- National Institute for Korean Medicine Development, Gyeongsan, 38540, Republic of Korea
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-sangbuk-do, 37224, Republic of Korea.
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea.
| |
Collapse
|
2
|
Mukerjee N, Nag S, Bhattacharya B, Alexiou A, Mirgh D, Mukherjee D, Adhikari MD, Anand K, Muthusamy R, Gorai S, Thorat N. Clinical impact of epithelial–mesenchymal transition for cancer therapy. CLINICAL AND TRANSLATIONAL DISCOVERY 2024; 4. [DOI: 10.1002/ctd2.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2025]
Abstract
AbstractThe epithelial–mesenchymal transition (EMT) represents a pivotal frontier in oncology, playing a central role in the metastatic cascade of cancer—a leading global health challenge. This comprehensive review delves into the complexities of EMT, a process where cancer cells gain exceptional mobility, facilitating their invasion into distant organs and the establishment of secondary malignancies. We thoroughly examine the myriad of factors influencing EMT, encompassing transcription factors, signalling pathways, metabolic alterations, microRNAs, long non‐coding RNAs, epigenetic changes, exosomal interactions and the intricate dynamics of the tumour microenvironment. Particularly, the review emphasises the advanced stages of EMT, crucial for the development of highly aggressive cancer phenotypes. During this phase, cancer cells penetrate the vascular barrier and exploit the bloodstream to propagate life‐threatening metastases through the mesenchymal–epithelial transition. We also explore EMT's significant role in fostering tumour dormancy, senescence, the emergence of cancer stem cells and the formidable challenge of therapeutic resistance. Our review transcends a mere inventory of EMT‐inducing elements; it critically assesses the current state of EMT‐focused clinical trials, revealing both the hurdles and significant breakthroughs. Highlighting the potential of EMT research, we project its transformative impact on the future of cancer therapy. This exploration is aimed at paving the way towards an era of effectively managing this relentless disease, positioning EMT at the forefront of innovative cancer research strategies.
Collapse
Affiliation(s)
- Nobendu Mukerjee
- Department of Microbiology West Bengal State University, Barasat Kolkata India
| | - Sagnik Nag
- Department of Bio‐Sciences School of Biosciences & Technology Vellore Institute of Technology Vellore Tamil Nadu India
| | - Bikramjit Bhattacharya
- Department of Applied Microbiology School of Biosciences and Technology Vellore Institute of Technology Vellore Tamil Nadu India
| | - Athanasios Alexiou
- Department of Science and Engineering Novel Global Community Educational Foundation Hebersham New South Wales Australia
| | - Divya Mirgh
- Vaccine and Immunotherapy Canter Massachusetts General Hospital Boston Massachusetts USA
| | | | - Manab Deb Adhikari
- Department of Biotechnology University of North Bengal Darjeeling West Bengal India
| | - Krishnan Anand
- Department of Chemical Pathology School of Pathology Faculty of Health Sciences University of the Free State Bloemfontein South Africa
| | - Raman Muthusamy
- Center for Global Health Research Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India
| | | | - Nanasaheb Thorat
- Limerick Digital Cancer Research Centre and Department of Physics Bernal Institute University of Limerick, Castletroy Limerick Ireland
| |
Collapse
|
3
|
Mazziotta C, Iaquinta MR, Tramarin ML, Badiale G, Cervellera CF, Tonnini G, Patergnani S, Pinton P, Lanza G, Gafà R, Tognon M, Martini F, De Mattei M, Rotondo JC. Hsa-microRNA-1249-3p/Homeobox A13 axis modulates the expression of β-catenin gene in human epithelial cells. Sci Rep 2023; 13:22872. [PMID: 38129477 PMCID: PMC10739948 DOI: 10.1038/s41598-023-49837-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Intercellular adhesion is a key function for epithelial cells. The fundamental mechanisms relying on epithelial cell adhesion have been partially uncovered. Hsa-microRNA-1249-3p (hsa-miR-1249-3p) plays a role in the epithelial mesenchymal transition in carcinoma cells, but its physiological function in epithelial cells is unknown. We aimed to investigate the role and molecular mechanisms of hsa-miR-1249-3p on epithelial cell functions. Hsa-miR-1249-3p was overexpressed in human epithelial cells and uterine cervical tissues, compared to cervical carcinoma cells and precancerous tissues, respectively. Hsa-miR-1249-3p was analyzed to verify its regulatory function on Homeobox A13 (HOXA13) target gene and its downstream cell adhesion gene β-catenin. Functional experiments indicated that hsa-miR-1249-3p inhibition prompted the mRNA and protein overexpression of HOXA13 which, in turn, led to the β-catenin protein expression. Moreover, hsa-miR-1249-3p inhibition induced a strong colony forming ability in epithelial cells, suggesting the miR involvement in cell adhesion machinery. These data indicate that hsa-miR-1249-3p regulates the expression of HOXA13 and its downstream cell adhesion gene β-catenin, possible resulting in cell adhesion modification in epithelial cells. This study will allow the set-up of further investigations aimed at exploring the relationship between the hsa-miR-1249-3p/HOXA13 axis and downstream cell adhesion genes.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Maria Letizia Tramarin
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Giada Badiale
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Christian Felice Cervellera
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Giulia Tonnini
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy
| | - Giovanni Lanza
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Roberta Gafà
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy
| | - Monica De Mattei
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
4
|
Gulia S, Chandra P, Das A. The Prognosis of Cancer Depends on the Interplay of Autophagy, Apoptosis, and Anoikis within the Tumor Microenvironment. Cell Biochem Biophys 2023; 81:621-658. [PMID: 37787970 DOI: 10.1007/s12013-023-01179-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Within the tumor microenvironment, the fight between the immune system and cancer influences tumor transformation. Metastasis formation is an important stage in the progression of cancer. This process is aided by cellular detachment and resistance to anoikis, which are achieved by altering intercellular signaling. Autophagy, specifically pro-survival autophagy, aids cancer cells in developing treatment resistance. Numerous studies have shown that autophagy promotes tumor growth and resistance to anoikis. To regulate protective autophagy, cancer-related genes phosphorylate both pro- and anti-apoptotic proteins. Apoptosis, a type of controlled cell death, eliminates damaged or unwanted cells. Anoikis is a type of programmed cell death in which cells lose contact with the extracellular matrix. The dysregulation of these cellular pathways promotes tumor growth and spread. Apoptosis, anoikis, and autophagy interact meticulously and differently depending on the cellular circumstances. For instance, autophagy can protect cancer cells from apoptosis by removing cellular components that are damaged and might otherwise trigger apoptotic pathways. Similarly, anoikis dysregulation can trigger autophagy by causing cellular harm and metabolic stress. In order to prevent or treat metastatic disease, specifically, targeting these cellular mechanisms may present a promising prospect for cancer therapy. This review discourses the state of our understanding of the molecular and cellular mechanisms underlying tumor transformation and the establishment of metastatic tumors. To enhance the prognosis for cancer, we highlight and discuss potential therapeutic approaches that target these processes and genes involved in them.
Collapse
Affiliation(s)
- Shweta Gulia
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| |
Collapse
|
5
|
Šeklić DS, Đukić T, Milenković D, Jovanović MM, Živanović MN, Marković Z, Filipović N. Numerical modelling of WNT/β-catenin signal pathway in characterization of EMT of colorectal carcinoma cell lines after treatment with Pt(IV) complexes. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107158. [PMID: 36198204 DOI: 10.1016/j.cmpb.2022.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Colorectal cancer (CRC) is at the top of the most common cancer types in the world, with significant mortality rates among both men and women. Deregulation of Wnt/β-catenin pathway and cell-cell junctions' components, acquisition of invasive phenotype, epithelial-mesenchymal transition (EMT) and invasion are important for development and progression of colorectal cancer. Numerical simulation presents method for estimation of the Wnt pathway via its individual components in cells, thus providing information about EMT, migratory and invasive potential. By using this numerical model, the effectiveness of treatment in EMT suppression can be assessed. Furthermore, the model can be adapted to ``every'' cell type, application time or duration of treatment can be also modified. METHODS We characterized colorectal cancer (CRC) cell lines (HCT-116, SW-480) from the aspect of EMT, via markers β-catenin and E-cadherin using numerical modeling. To confirm the numerical model, cells were treated with sublethal concentrations of platinum(IV) complexes and their ligands. We confirmed β-catenin regulated expression of mesenchymal markers: N-cadherin, Vimentin and MMP-9, and decreased E-cadherin expression. Treatment-induced changes were determined in the protein expression of tested markers and results showed cell-specific responses. Molecular docking was performed to investigate exact effects of treatments on E-cadherin and β-catenin in cell-cell junctions and individually in tested cells. RESULTS The application of the numerical model via β-catenin and E-cadherin (experimentally measured), is largely valid for the categorization of EMT progression in cells. This numerical modeling better characterizes cells with single cell migration, higher expression of mesenchymal markers, and advanced mesenchymal phenotype like HCT-116 cell line. The model was validated for the treatments and results show HCT-116 cells as more sensitive to applied compounds, among which ligands were more potent in reducing migration and invasiveness. Anti-migratory/invasive effects were due to increased E-cadherin, cytoplasmic β-catenin expression and suppressed mesenchymal markers. In silico methods showed higher affinity of tested chemicals towards free β-catenin, which is the key for regulation of migratory/invasive potential. CONCLUSIONS Our study shows that, no matter individual properties of cell lines and EMT degree, de novo formation of intercellular junctions stands in the basis of anti-migratory/invasive process.
Collapse
Affiliation(s)
- Dragana S Šeklić
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijia bb, 34 000, Kragujevac, Serbia.
| | - Tijana Đukić
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijia bb, 34 000, Kragujevac, Serbia.
| | - Dejan Milenković
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijia bb, 34 000, Kragujevac, Serbia.
| | - Milena M Jovanović
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34 000, Kragujevac, Serbia.
| | - Marko N Živanović
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijia bb, 34 000, Kragujevac, Serbia
| | - Zoran Marković
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijia bb, 34 000, Kragujevac, Serbia.
| | - Nenad Filipović
- Faculty of Engineering Science, University of Kragujevac, Sestre Janjić 6, 34 000, Kragujevac, Serbia; Bioengineering Research and Development Center (BioIRC), Prvoslava Stojanovića 6, 34 000, Kragujevac, Serbia.
| |
Collapse
|
6
|
Malchiodi ZX, Cao H, Gay MD, Safronenka A, Bansal S, Tucker RD, Weinberg BA, Cheema A, Shivapurkar N, Smith JP. Cholecystokinin Receptor Antagonist Improves Efficacy of Chemotherapy in Murine Models of Pancreatic Cancer by Altering the Tumor Microenvironment. Cancers (Basel) 2021; 13:4949. [PMID: 34638432 PMCID: PMC8508339 DOI: 10.3390/cancers13194949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is resistant to chemotherapy in part due to the dense desmoplastic fibrosis surrounding the tumor, the immunosuppressive cells in the tumor microenvironment (TME), and the early rate of metastases. In this study, we examined the effects of a CCK receptor antagonist, proglumide, alone and in combination with gemcitabine in murine models of pancreatic cancer. Tumor growth rate, metastases, and survival were assessed in mice bearing syngeneic murine or human pancreatic tumors treated with PBS (control), gemcitabine, proglumide, or the combination of gemcitabine and proglumide. Excised tumors were evaluated histologically for fibrosis, immune cells, molecular markers, and uptake of chemotherapy by mass spectroscopy. Peripheral blood was analyzed with a microRNAs biomarker panel associated with fibrosis and oncogenesis. Differentially expressed genes between tumors of mice treated with gemcitabine monotherapy and combination therapy were compared by RNAseq. When given in combination the two compounds exhibited inhibitory effects by decreasing tumor growth rate by 70%, metastases, and prolonging survival. Proglumide monotherapy altered the TME by decreasing fibrosis, increasing intratumoral CD8+ T-cells, and decreasing arginase-positive cells, thus rendering the tumor sensitive to chemotherapy. Proglumide altered the expression of genes involved in fibrosis, epithelial-mesenchymal transition, and invasion. CCK-receptor antagonism with proglumide renders pancreatic cancer susceptible to chemotherapy.
Collapse
Affiliation(s)
- Zoe X. Malchiodi
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (Z.X.M.); (S.B.); (A.C.)
| | - Hong Cao
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Martha D. Gay
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Anita Safronenka
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Sunil Bansal
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (Z.X.M.); (S.B.); (A.C.)
| | - Robin D. Tucker
- Department of Pathology, Georgetown University, Washington, DC 20057, USA;
| | - Benjamin A. Weinberg
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Amrita Cheema
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (Z.X.M.); (S.B.); (A.C.)
| | - Narayan Shivapurkar
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Jill P. Smith
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (Z.X.M.); (S.B.); (A.C.)
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| |
Collapse
|
7
|
Rakowski M, Porębski S, Grzelak A. Silver Nanoparticles Modulate the Epithelial-to-Mesenchymal Transition in Estrogen-Dependent Breast Cancer Cells In Vitro. Int J Mol Sci 2021; 22:9203. [PMID: 34502112 PMCID: PMC8431224 DOI: 10.3390/ijms22179203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Silver nanoparticles (AgNPs) are frequently detected in many convenience goods, such as cosmetics, that are applied directly to the skin. AgNPs accumulated in cells can modulate a wide range of molecular pathways, causing direct changes in cells. The aim of this study is to assess the capability of AgNPs to modulate the metastasis of breast cancer cells through the induction of epithelial-to-mesenchymal transition (EMT). The effect of the AgNPs on MCF-7 cells was investigated via the sulforhodamine B method, the wound healing test, generation of reactive oxygen species (ROS), the standard cytofluorimetric method of measuring the cell cycle, and the expression of EMT marker proteins and the MTA3 protein via Western blot. To fulfill the results, calcium flux and HDAC activity were measured. Additionally, mitochondrial membrane potential was measured to assess the direct impact of AgNPs on mitochondria. The results indicated that the MCF-7 cells are resistant to the cytotoxic effect of AgNPs and have higher mobility than the control cells. Treatment with AgNPs induced a generation of ROS; however, it did not affect the cell cycle but modulated the expression of EMT marker proteins and the MTA3 protein. Mitochondrial membrane potential and calcium flux were not altered; however, the AgNPs did modulate the total HDAC activity. The presented data support our hypothesis that AgNPs modulate the metastasis of MCF-7 cells through the EMT pathway. These results suggest that AgNPs, by inducing reactive oxygen species generation, alter the metabolism of breast cancer cells and trigger several pathways related to metastasis.
Collapse
Affiliation(s)
- Michał Rakowski
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Szymon Porębski
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Agnieszka Grzelak
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
8
|
Parol-Kulczyk M, Gzil A, Maciejewska J, Bodnar M, Grzanka D. Clinicopathological significance of the EMT-related proteins and their interrelationships in prostate cancer. An immunohistochemical study. PLoS One 2021; 16:e0253112. [PMID: 34157052 PMCID: PMC8219170 DOI: 10.1371/journal.pone.0253112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 05/29/2021] [Indexed: 11/19/2022] Open
Abstract
The chronic inflammation influences a microenvironment, where as a result of losing control over tissue homeostatic mechanisms, the carcinogenesis process may be induced. Inflammatory response cells can secrete a number of factors that support both initiation and progression of cancer and also they may consequently induct an epithelial-mesenchymal transition (EMT), the process responsible for development of distant metastasis. Macrophage migration inhibitory factor (MIF) acts as a pro-inflammatory cytokine that is considered as a link between chronic inflammation and tumor development. MIF can function as a modulator of important cancer-related genes expression, as well as an activator of signaling pathways that promotes the development of prostate cancer. The study was performed on FFPE tissues resected from patients who underwent radical prostatectomy. To investigate the relationship of studied proteins with involvement in tumor progression and initiation of epithelial-to-mesenchymal transition (EMT) process, we selected clinicopathological parameters related to tumor progression. Immunohistochemical analyses of MIF, SOX-4, β-catenin and E-cadherin were performed on TMA slides. We found a statistically significant correlation of overall β-catenin expression with the both lymph node metastasis (p<0.001) and presence of angioinvasion (p = 0.012). Membrane β-catenin expression was associated with distant metastasis (p = 0.021). In turn, nuclear MIF was correlated with lymph node metastasis (p = 0.003). The positive protein-protein correlations have been shown between the total β-catenin protein expression level with level of nuclear SOX-4 protein expression (r = 0.27; p<0.05) as well as negative correlation of β-catenin expression with level of nuclear MIF protein expression (r = -0.23; p<0.05). Our results seem promising and strongly highlight the potential role of MIF in development of nodal metastases as well as may confirm an involvement of β-catenin in disease spread in case of prostate cancer.
Collapse
Affiliation(s)
- Martyna Parol-Kulczyk
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Arkadiusz Gzil
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Joanna Maciejewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| |
Collapse
|
9
|
Song C, Wang X, Zhao X, Ai J, Qi Y, Chen A. MicroRNA-325-3p contributes to colorectal carcinoma by targeting cytokeratin 18. Oncol Lett 2021; 21:248. [PMID: 33664812 PMCID: PMC7882876 DOI: 10.3892/ol.2021.12509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal carcinoma (CRC) is one of the most common malignant tumors. The present study aimed to investigate a non-invasive molecular marker that can evaluate the diagnosis and potential molecular mechanism of CRC. Microarray assays and reverse transcription-quantitative PCR analysis demonstrated that microRNA (miR)-325-3p expression was significantly increased in both tissues and serum samples of patients with CRC. In addition, miR-325-3p expression in the tissues and serum was significantly associated with differentiation, TNM stage and lymph node metastasis. The results of the dual-luciferase reporter assay and western blot analysis revealed that cytokeratin 18 (CK18) is a target gene of miR-325-3p. Furthermore, treatment with transforming growth factor (TGF)-β increased miR-325-3p expression in a time-dependent manner. Conversely, TGF-β decreased CK18 expression at 48 and 72 h. Western blot analysis demonstrated that TGF-β1 significantly decreased the expression of the epithelial marker, CK18, and increased the expression of the mesenchymal markers, α-SMA and vimentin. Notably, these effects were reversed following inhibition of miR-325-3p expression. Taken together, the results of the present study suggest that miR-325-3p is a key regulator of TGF-β-induced CK18 downregulation. Thus, elevated levels of miR-325-3p is an important factor affecting epithelial-to-mesenchymal transition, and is likely to be a molecular marker in the progression of CRC and act as a potential therapeutic target.
Collapse
Affiliation(s)
- Chuanfang Song
- Department of Gastroenterology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xiujie Wang
- Department of Gastroenterology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xinxin Zhao
- Department of Gastroenterology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jiang Ai
- Department of Gastroenterology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yixuan Qi
- Department of Gastroenterology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Aidong Chen
- Department of Gastroenterology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
10
|
Scavo MP, Rizzi F, Depalo N, Fanizza E, Ingrosso C, Curri ML, Giannelli G. A Possible Role of FZD10 Delivering Exosomes Derived from Colon Cancers Cell Lines in Inducing Activation of Epithelial-Mesenchymal Transition in Normal Colon Epithelial Cell Line. Int J Mol Sci 2020; 21:E6705. [PMID: 32933173 PMCID: PMC7555665 DOI: 10.3390/ijms21186705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes belong to the family of extracellular vesicles released by every type of cell both in normal and pathological conditions. Growing interest in studies indicates that extracellular vesicles, in particular, the fraction named exosomes containing lipids, proteins and nucleic acid, represent an efficient way to transfer functional cargoes between cells, thus combining all the other cell-cell interaction mechanisms known so far. Only a few decades ago, the involvement of exosomes in the carcinogenesis in different tissues was discovered, and very recently it was also observed how they carry and modulate the presence of Wnt pathway proteins, involved in the carcinogenesis of gastrointestinal tissues, such as Frizzled 10 protein (FZD10), a membrane receptor for Wnt. Here, we report the in vitro study on the capability of tumor-derived exosomes to induce neoplastic features in normal cells. Exosomes derived from two different colon cancer cell lines, namely the non-metastatic CaCo-2 and the metastatic SW620, were found to deliver, in both cases, FZD10, thus demonstrating the ability to reprogram normal colonic epithelial cell line (HCEC-1CT). Indeed, the acquisition of specific mesenchymal characteristics, such as migration capability and expression of FZD10 and markers of mesenchymal cells, was observed. The exosomes derived from the metastatic cell line, characterized by a level of FZD10 higher than the exosomes extracted from the non-metastatic cells, were also more efficient in stimulating EMT activation. The overall results suggest that FZD10, delivered by circulating tumor-derived exosomes, can play a relevant role in promoting the CRC carcinogenesis and propagation.
Collapse
Affiliation(s)
- Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. De Bellis” Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Federica Rizzi
- Institute for Chemical-Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy; (F.R.); (E.F.); (C.I.); (M.L.C.)
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy; (F.R.); (E.F.); (C.I.); (M.L.C.)
| | - Elisabetta Fanizza
- Institute for Chemical-Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy; (F.R.); (E.F.); (C.I.); (M.L.C.)
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Chiara Ingrosso
- Institute for Chemical-Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy; (F.R.); (E.F.); (C.I.); (M.L.C.)
| | - Maria Lucia Curri
- Institute for Chemical-Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy; (F.R.); (E.F.); (C.I.); (M.L.C.)
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology “S. De Bellis” Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy;
| |
Collapse
|
11
|
EMT and EndMT: Emerging Roles in Age-Related Macular Degeneration. Int J Mol Sci 2020; 21:ijms21124271. [PMID: 32560057 PMCID: PMC7349630 DOI: 10.3390/ijms21124271] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) and endothelial–mesenchymal transition (EndMT) are physiological processes required for normal embryogenesis. However, these processes can be hijacked in pathological conditions to facilitate tissue fibrosis and cancer metastasis. In the eye, EMT and EndMT play key roles in the pathogenesis of subretinal fibrosis, the end-stage of age-related macular degeneration (AMD) that leads to profound and permanent vision loss. Predominant in subretinal fibrotic lesions are matrix-producing mesenchymal cells believed to originate from the retinal pigment epithelium (RPE) and/or choroidal endothelial cells (CECs) through EMT and EndMT, respectively. Recent evidence suggests that EMT of RPE may also be implicated during the early stages of AMD. Transforming growth factor-beta (TGFβ) is a key cytokine orchestrating both EMT and EndMT. Investigations in the molecular mechanisms underpinning EMT and EndMT in AMD have implicated a myriad of contributing factors including signaling pathways, extracellular matrix remodelling, oxidative stress, inflammation, autophagy, metabolism and mitochondrial dysfunction. Questions arise as to differences in the mesenchymal cells derived from these two processes and their distinct mechanistic contributions to the pathogenesis of AMD. Detailed discussion on the AMD microenvironment highlights the synergistic interactions between RPE and CECs that may augment the EMT and EndMT processes in vivo. Understanding the differential regulatory networks of EMT and EndMT and their contributions to both the dry and wet forms of AMD can aid the development of therapeutic strategies targeting both RPE and CECs to potentially reverse the aberrant cellular transdifferentiation processes, regenerate the retina and thus restore vision.
Collapse
|