1
|
Monchusi B, Dube P, Takundwa MM, Kenmogne VL, Thimiri Govinda Raj DB. Advances in CRISPR-Cas systems for blood cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:261-284. [PMID: 39266186 DOI: 10.1016/bs.pmbts.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
CRISPR-Cas systems have revolutionised precision medicine by enabling personalised treatments tailored to an individual's genetic profile. Various CRISPR technologies have been developed to target specific disease-causing genes in blood cancers, and some have advanced to clinical trials. Although some studies have explored the in vivo applications of CRISPR-Cas systems, several challenges continue to impede their widespread use. Furthermore, CRISPR-Cas technology has shown promise in improving the response of immunotherapies to blood cancers. The emergence of CAR-T cell therapy has shown considerable success in the targeting and correcting of disease-causing genes in blood cancers. Despite the promising potential of CRISPR-Cas in the treatment of blood cancers, issues related to safety, ethics, and regulatory approval remain significant hurdles. This comprehensive review highlights the transformative potential of CRISPR-Cas technology to revolutionise blood cancer therapy.
Collapse
Affiliation(s)
- Bernice Monchusi
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Phumuzile Dube
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Mutsa Monica Takundwa
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Vanelle Larissa Kenmogne
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa; Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa
| | - Deepak Balaji Thimiri Govinda Raj
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa.
| |
Collapse
|
2
|
Torres DG, Barbosa Alves EV, Araújo de Sousa M, Laranjeira WH, Paes J, Alves E, Canté D, Costa AG, Malheiro A, Abreu R, Nascimento L, Fraiji NA, Silva GA, Mourão LPDS, Tarragô AM. Molecular landscape of the JAK2 gene in chronic myeloproliferative neoplasm patients from the state of Amazonas, Brazil. Biomed Rep 2023; 19:98. [PMID: 37954635 PMCID: PMC10633817 DOI: 10.3892/br.2023.1680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/22/2023] [Indexed: 11/14/2023] Open
Abstract
JAK2V617F (dbSNP: rs77375493) is the most frequent and most-studied variant in BCR::ABL1 negative myeloproliferative neoplasms and in the JAK2 gene. The present study aimed to molecularly characterize variants in the complete coding region of the JAK2 gene in patients with BCR::ABL1 negative chronic myeloproliferative neoplasms. The study included 97 patients with BCR::ABL1 negative myeloproliferative neoplasms, including polycythemia vera (n=38), essential thrombocythemia (n=55), and myelofibrosis (n=04). Molecular evaluation was performed using conventional PCR and Sanger sequencing to detect variants in the complete coding region of the JAK2 gene. The presence of missense variants in the JAK2 gene including rs907414891, rs2230723, rs77375493 (JAK2V617F), and rs41316003 were identified. The coexistence of variants was detected in polycythemia vera and essential thrombocythemia. Thus, individuals with high JAK2V617F variant allele frequency (≥50% VAF) presented more thrombo-hemorrhagic events and manifestations of splenomegaly compared with those with low JAK2V617F variant allele frequency (<50% VAF). In conclusion, individuals with BCR::ABL1 negative neoplasms can display >1 variant in the JAK2 gene, especially rs2230722, rs2230724, and rs77375493 variants, and those with high JAK2V617F VAF show alterations in the clinical-laboratory profile compared with those with low JAK2V617F VAF.
Collapse
Affiliation(s)
- Dania G. Torres
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
- Molecular Biology Center, University of Central America, Managua 14003, Nicaragua
| | - Emanuela V. Barbosa Alves
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Miliane Araújo de Sousa
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Wanessa H. Laranjeira
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Jhemerson Paes
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Erycka Alves
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Deborah Canté
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Allyson G. Costa
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
- Post-graduate Program in Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas State 69067-005, Brazil
- Manaus School of Nursing, Federal University of Amazonas, Manaus, Amazonas State 69057-070, Brazil
- Amazon Genomic Health Surveillance Network Coordination, Manaus, Amazonas State 69040-010, Brazil
| | - Adriana Malheiro
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
- Post-graduate Program in Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas State 69067-005, Brazil
- Amazon Genomic Health Surveillance Network Coordination, Manaus, Amazonas State 69040-010, Brazil
| | - Rosângela Abreu
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Leny Nascimento
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Nelson A. Fraiji
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - George A.V. Silva
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Amazon Genomic Health Surveillance Network Coordination, Manaus, Amazonas State 69040-010, Brazil
- Leonidas and Maria Deane Institute, Oswaldo Cruz Foundation, Manaus, Amazonas State 69027-070, Brazil
| | - Lucivana P. de Souza Mourão
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Superior School of Health Sciences, Amazonas State University, Manaus, Amazonas State 69065-001, Brazil
| | - Andréa M. Tarragô
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
- Post-graduate Program in Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas State 69067-005, Brazil
- Amazon Genomic Health Surveillance Network Coordination, Manaus, Amazonas State 69040-010, Brazil
| |
Collapse
|
3
|
Palumbo GA, Duminuco A. Myelofibrosis: In Search for BETter Targeted Therapies. J Clin Oncol 2023; 41:5044-5048. [PMID: 37751563 DOI: 10.1200/jco.23.00833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 09/28/2023] Open
Affiliation(s)
- Giuseppe A Palumbo
- Department of Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia," University of Catania, Catania, Italy
| | - Andrea Duminuco
- Postgraduate School of Hematology, University of Catania, Catania, Italy
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
4
|
Fulvio G, Baldini C, Mosca M, di Paolo A, Bocci G, Palumbo GA, Cacciola E, Migliorini P, Cacciola R, Galimberti S. Philadelphia chromosome-negative myeloproliferative chronic neoplasms: is clonal hematopoiesis the main determinant of autoimmune and cardio-vascular manifestations? Front Med (Lausanne) 2023; 10:1254868. [PMID: 37915324 PMCID: PMC10616863 DOI: 10.3389/fmed.2023.1254868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023] Open
Abstract
In this article, we reviewed the possible mechanisms linking the clonal hematopoiesis of indeterminate potential (CHIP) to chronic myeloproliferative neoplasms (MPNs), autoimmune diseases (ADs), and cardiovascular diseases (CADs). CHIP is characterized by the presence of clonal mutations with an allelic frequency >2% in the peripheral blood without dysplasia, overt hematological neoplasms, or abnormalities in blood cell count. The prevalence may reach 20% of elderly healthy individuals and is considered a risk factor for myelodysplastic neoplasms and acute leukemia. In MPNs, CHIP is often associated with mutations such as JAK2V617F or DNMT3A, TET2, or ASXL1, which exhibit a 12.1- and 1.7-2-fold increase in CADs. Specifically, JAK2-mutated cells produce excessive cytokines and reactive oxygen species, leading to proinflammatory modifications in the bone marrow microenvironment. Consequently, the likelihood of experiencing thrombosis is influenced by the variant allele frequency (VAF) of the JAK2V617F mutation, which also appears to be correlated with anti-endothelial cell antibodies that sustain thrombosis. However, DNMT3A mutations induce pro-inflammatory T-cell polarization and activate the inflammasome complex, while TET2 downregulation leads to endothelial cell autophagy and inflammatory factor upregulation. As a result, in patients with TET2 and DNMT3A-related CHIP, the inflammasome hyperactivation represents a potential cause of CADs. CHIP also occurs in patients with large and small vessel vasculitis, while ADs are more frequently associated with MPNs. In these diseases, monocytes and neutrophils play a key role in the formation of neutrophil extracellular trap (NET) as well as anti-endothelial cell antibodies, resulting in a final procoagulant effect. ADs, such as systemic lupus erythematosus, psoriasis, and arthritis, are also characterized by an overexpression of the Rho-associated coiled-coil containing protein kinase 2 (ROCK2), a serine/threonine kinase that can hyperactivate the JAK-STAT pathway. Interestingly, hyperactivation of ROCK2 has also been observed in myeloid malignancies, where it promotes the growth and survival of leukemic cells. In summary, the presence of CHIP, with or without neoplasia, can be associated with autoimmune manifestations and thrombosis. In the presence of these manifestations, it is necessary to consider a "disease-modifying therapy" that may either reduce the clonal burden or inhibit the clonally activated JAK pathway.
Collapse
Affiliation(s)
- Giovanni Fulvio
- Department of Clinical and Experimental Medicine, Rheumatology, University of Pisa, Pisa, Italy
- Department of Clinical and Translational Science, University of Pisa, Pisa, Italy
| | - Chiara Baldini
- Department of Clinical and Experimental Medicine, Rheumatology, University of Pisa, Pisa, Italy
| | - Marta Mosca
- Department of Clinical and Experimental Medicine, Rheumatology, University of Pisa, Pisa, Italy
| | - Antonello di Paolo
- Department of Clinical and Experimental Medicine, Clinical Pharmacology, University of Pisa, Pisa, Italy
| | - Guido Bocci
- Department of Clinical and Experimental Medicine, Clinical Pharmacology, University of Pisa, Pisa, Italy
| | - Giuseppe Alberto Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia” Hematology, University of Catania, Catania, Italy
| | - Emma Cacciola
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia” Hemostasis, University of Catania, Catania, Italy
| | - Paola Migliorini
- Department of Clinical and Experimental Medicine, Clinical Immunology, University of Pisa, Pisa, Italy
| | - Rossella Cacciola
- Department of Clinical and Experimental Medicine, Hemostasis, University of Catania, Catania, Italy
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, Hematology, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Duminuco A, Vetro C, Giallongo C, Palumbo GA. The pharmacotherapeutic management of patients with myelofibrosis: looking beyond JAK inhibitors. Expert Opin Pharmacother 2023; 24:1449-1461. [PMID: 37341682 DOI: 10.1080/14656566.2023.2228695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION The approach to myelofibrosis (MF) has been revolutionized in recent years, overcoming the traditional therapies, often not very effective. Janus kinase inhibitors (JAKi - from ruxolitinib up to momelotinib) were the first class of drugs with considerable results. AREAS COVERED Ongoing, new molecules are being tested that promise to give hope even to those patients not eligible for bone marrow transplants who become intolerant or are refractory to JAKi, for which therapeutic hopes are currently limited. Telomerase, murine double minute 2 (MDM2), phosphatidylinositol 3-kinase δ (PI3Kδ), BCL-2/xL, and bromodomain and extra-terminal motif (BET) inhibitors are the drugs with promising results in clinical trials and close to closure with consequent placing on the market, finally allowing JAK to look beyond. The novelty of the MF field was searched in the PubMed database, and the recently completed/ongoing trials are extrapolated from the ClinicalTrial website. EXPERT OPINION From this point of view, the use of new molecules widely described in this review, probably in association with JAKi, will represent the future treatment of choice in MF, leaving, in any case, the potential new approaches actually in an early stage of development, such as the use of immunotherapy in targeting CALR, which is coming soon.
Collapse
Affiliation(s)
- Andrea Duminuco
- Hematology with BMT Unit, A.O.U. "G. Rodolico-San Marco", Catania, Italy
| | - Calogero Vetro
- Hematology with BMT Unit, A.O.U. "G. Rodolico-San Marco", Catania, Italy
| | - Cesarina Giallongo
- Dipartimento di Scienze Mediche Chirurgiche E Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Giuseppe Alberto Palumbo
- Hematology with BMT Unit, A.O.U. "G. Rodolico-San Marco", Catania, Italy
- Dipartimento di Scienze Mediche Chirurgiche E Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania, Italy
| |
Collapse
|
6
|
Pettersson H, Adamsson J, Johansson P, Nilsson S, Palmqvist L, Andréasson B, Asp J. The clinical relevance of broad mutational screening of myeloproliferative neoplasms at diagnosis. Front Oncol 2023; 13:1190305. [PMID: 37637067 PMCID: PMC10451068 DOI: 10.3389/fonc.2023.1190305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Myeloproliferative neoplasm (MPN) is a heterogenous group of hematological malignancies including polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). JAK2V617F is the most frequent driver mutation in all three entities, but in PMF and ET mutations in CALR and MPL are also frequent. Mutations seen in additional genes are also often the same regardless of subtype of MPN. The aim of this study was to analyze a population based MPN cohort for genetic variants with prognostic value that can guide clinical decisions. Methods MPN patients from Western Sweden diagnosed between 2008-2013 (n=248) were screened for mutations in 54 genes associated with myeloid malignancy. Results Mutations in the genes SRSF2 and U2AF1 correlated significantly with impaired overall survival but did not correlate to increased risk for vascular events, neither before nor after diagnosis. Rather, mutations in these genes showed an association with disease transformation. Several recurrent gene variants with allele frequency close to 50% were confirmed to be germline. However, none of these variants was found to have an earlier onset of MPN. Discussion In conclusion, we identified gene mutations to be independent markers of impaired survival in MPN. This indicates the need for more individualized assessment and treatment of MPN patients and a wider gene mutation screening already at diagnosis. This could ensure the identification of patients with high-risk mutations early on. In addition, several genetic variants were also identified as germline in this study but gave no obvious clinical relevance. To avoid conclusions from non-informative genetic variants, a simultaneous analysis of normal cell DNA from patients at diagnosis should be considered.
Collapse
Affiliation(s)
- Helna Pettersson
- Hematology Section, Department of Medicine, NU Hospital Group, Uddevalla, Sweden
| | - Jenni Adamsson
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Johansson
- Hematology and Coagulation Section, Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Lars Palmqvist
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Björn Andréasson
- Hematology Section, Department of Medicine, NU Hospital Group, Uddevalla, Sweden
| | - Julia Asp
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
7
|
Pennisi MS, Di Gregorio S, Tirrò E, Romano C, Duminuco A, Garibaldi B, Giuffrida G, Manzella L, Vigneri P, Palumbo GA. Additional Genetic Alterations and Clonal Evolution of MPNs with Double Mutations on the MPL Gene: Two Case Reports. Hematol Rep 2023; 15:317-324. [PMID: 37367082 DOI: 10.3390/hematolrep15020033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are two of the main BCR-ABL1-negative chronic myeloproliferative neoplasms (MPNs) characterized by abnormal megakaryocytic proliferation. Janus kinase 2 (JAK2) mutations are detected in 50-60% of ET and PMF, while myeloproliferative leukemia (MPL) virus oncogene mutations are present in 3-5% of cases. While Sanger sequencing is a valuable diagnostic tool to discriminate the most common MPN mutations, next-generation sequencing (NGS) is a more sensitive technology that also identifies concurrent genetic alterations. In this report, we describe two MPN patients with simultaneous double MPL mutations: a woman with ET presenting both MPLV501A-W515R and JAK2V617F mutations and a man with PMF displaying an uncommon double MPLV501A-W515L. Using colony-forming assays and NGS analyses, we define the origin and mutational landscape of these two unusual malignancies and uncover further gene alterations that may contribute to the pathogenesis of ET and PMF.
Collapse
Affiliation(s)
- Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Sandra Di Gregorio
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Andrea Duminuco
- Postgraduate School of Hematology, University of Catania, 95123 Catania, Italy
| | - Bruno Garibaldi
- Postgraduate School of Hematology, University of Catania, 95123 Catania, Italy
| | - Gaetano Giuffrida
- Hematology Unit and Bone Marrow Transplant, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Giuseppe A Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies, "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| |
Collapse
|
8
|
Duminuco A, Nardo A, Giuffrida G, Leotta S, Markovic U, Giallongo C, Tibullo D, Romano A, Di Raimondo F, Palumbo GA. Myelofibrosis and Survival Prognostic Models: A Journey between Past and Future. J Clin Med 2023; 12:jcm12062188. [PMID: 36983189 PMCID: PMC10053868 DOI: 10.3390/jcm12062188] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Among the myeloproliferative diseases, myelofibrosis is a widely heterogeneous entity characterized by a highly variable prognosis. In this context, several prognostic models have been proposed to categorize these patients appropriately. Identifying who deserves more invasive treatments, such as bone marrow transplantation, is a critical clinical need. Age, complete blood count (above all, hemoglobin value), constitutional symptoms, driver mutations, and blast cells have always represented the milestones of the leading models still used worldwide (IPSS, DIPSS, MYSEC-PM). Recently, the advent of new diagnostic techniques (among all, next-generation sequencing) and the extensive use of JAK inhibitor drugs have allowed the development and validation of new models (MIPSS-70 and version 2.0, GIPSS, RR6), which are continuously updated. Finally, the new frontier of artificial intelligence promises to build models capable of drawing an overall survival perspective for each patient. This review aims to collect and summarize the existing standard prognostic models in myelofibrosis and examine the setting where each of these finds its best application.
Collapse
Affiliation(s)
- Andrea Duminuco
- Hematology Unit with BMT, A.O.U. Policlinico “G. Rodolico-San Marco”, Via S. Sofia 78, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-095-3782981; Fax: +39-095-3782982
| | - Antonella Nardo
- Hematology Unit with BMT, A.O.U. Policlinico “G. Rodolico-San Marco”, Via S. Sofia 78, 95123 Catania, Italy
| | - Gaetano Giuffrida
- Hematology Unit with BMT, A.O.U. Policlinico “G. Rodolico-San Marco”, Via S. Sofia 78, 95123 Catania, Italy
| | - Salvatore Leotta
- Hematology Unit with BMT, A.O.U. Policlinico “G. Rodolico-San Marco”, Via S. Sofia 78, 95123 Catania, Italy
| | - Uros Markovic
- Hematology Unit with BMT, A.O.U. Policlinico “G. Rodolico-San Marco”, Via S. Sofia 78, 95123 Catania, Italy
| | - Cesarina Giallongo
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy
| | - Daniele Tibullo
- Dipartimento di Scienze Biomediche e Biotecnologiche, University of Catania, 95123 Catania, Italy
| | - Alessandra Romano
- Hematology Unit with BMT, A.O.U. Policlinico “G. Rodolico-San Marco”, Via S. Sofia 78, 95123 Catania, Italy
- Dipartimento di Specialità Medico-Chirurgiche, CHIRMED, Sezione di Ematologia, University of Catania, 95123 Catania, Italy
| | - Francesco Di Raimondo
- Hematology Unit with BMT, A.O.U. Policlinico “G. Rodolico-San Marco”, Via S. Sofia 78, 95123 Catania, Italy
- Dipartimento di Specialità Medico-Chirurgiche, CHIRMED, Sezione di Ematologia, University of Catania, 95123 Catania, Italy
| | - Giuseppe A. Palumbo
- Hematology Unit with BMT, A.O.U. Policlinico “G. Rodolico-San Marco”, Via S. Sofia 78, 95123 Catania, Italy
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy
| |
Collapse
|
9
|
Mutational Landscape of Patients Referred for Elevated Hemoglobin Level. Curr Oncol 2022; 29:7209-7217. [PMID: 36290845 PMCID: PMC9600330 DOI: 10.3390/curroncol29100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 01/13/2023] Open
Abstract
Background: Since the identification of JAK2 V617F and exon 12 mutations as driver mutations in polycythemia vera (PV) in 2005, molecular testing of these mutations for patients with erythrocytosis has become a routine clinical practice. However, the incidence of myeloid mutations other than the common JAK2 V617F mutation in unselected patients referred for elevated hemoglobin is not well studied. This study aimed to characterize the mutational landscape in a real-world population of patients referred for erythrocytosis using a targeted next-generation sequencing (NGS)-based assay. Method: A total of 529 patients (hemoglobin levels >160 g/L in females or >165 g/L in males) were assessed between January 2018 and May 2021 for genetic variants using the Oncomine Myeloid Research Assay (ThermoFisher Scientific, Waltham, MA, USA) targeting 40 key genes with diagnostic and prognostic implications in hematological conditions (17 full genes and 23 genes with clinically relevant "hotspot" regions) and a panel of 29 fusion driver genes (>600 fusion partners). Results: JAK2 mutations were detected in 10.9% (58/529) of patients, with 57 patients positive for JAK2 V617F, while one patient had a JAK2 exon 12 mutation. Additional mutations were detected in 34.5% (20/58) of JAK2-positive patients: TET2 (11; 19%), DNMT3A (2;3.4%), ASXL1 (2; 3.4%), SRSF2 (2; 3.4%), BCOR (1; 1.7%), TP53 (1; 1.7%), and ZRSR2 (1; 1.7%). Diagnosis of PV was suspected in 2 JAK2-negative patients based on the 2016 World Health Organization (WHO) diagnostic criteria. Notably, one patient carried mutations in the SRSF2 and TET2 genes, and the other patient carried mutations in the SRSF2, IDH2, and ASXL1 genes. Three JAK2-negative patients with elevated hemoglobin who tested positive for BCR/ABL1 fusion were diagnosed with chronic myeloid leukemia (CML) and excluded from further analysis. The remaining 466 JAK2-negative patients were diagnosed with secondary erythrocytosis and mutations were found in 6% (28/466) of these cases. Conclusion: Mutations other than JAK2 mutations were frequently identified in patients referred for erythrocytosis, with mutations in the TET2, DNMT3A, and ASXL1 genes being detected in 34.5% of JAK2-positive PV patients. The presence of additional mutations, such as ASXL1 mutations, in this population has implications for prognosis. Both the incidence and mutation type identified in patients with secondary erythrocytosis likely reflects incidental, age-associated clonal hematopoiesis of indeterminate potential (CHIP).
Collapse
|
10
|
Bhai P, Hsia CC, Schenkel LC, Hedley BD, Levy MA, Kerkhof J, Santos S, Stuart A, Lin H, Broadbent R, Nan S, Yang P, Xenocostas A, Chin-Yee I, Sadikovic B. Clinical Utility of Implementing a Frontline NGS-Based DNA and RNA Fusion Panel Test for Patients with Suspected Myeloid Malignancies. Mol Diagn Ther 2022; 26:333-343. [PMID: 35381971 DOI: 10.1007/s40291-022-00581-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The use of molecular genetic biomarkers is rapidly advancing to aid diagnosis, prognosis, and clinical management of hematological disorders. We have implemented a next-generation sequencing (NGS) assay for detection of genetic variants and fusions as a frontline test for patients suspected with myeloid malignancy. In this study, we summarize the findings and assess the clinical impact in the first 1613 patients tested. METHODS All patients were assessed using NGS based Oncomine Myeloid Research Assay (ThermoFisher) including 40 genes (17 full genes and 23 genes with clinically relevant "hotspot" regions), along with a panel of 29 fusion driver genes (including over fusion 600 partners). RESULTS Among 1613 patients with suspected myeloid malignancy, 43% patients harbored at least one clinically relevant variant: 91% (90/100) in acute myeloid leukemia patients, 71.7% (160/223) in myelodysplastic syndrome (MDS), 77.5% (308/397) in myeloproliferative neoplasm (MPN), 83% (34/41) in MPN/MDS, and 100% (40/40) in chronic myeloid leukemia patients. Comparison of NGS and cytogenetics results revealed a high degree of concordance in gene fusion detection. CONCLUSIONS Our findings demonstrate clinical utility and feasibility of integrating a NGS-based gene mutation and fusion testing assay as a frontline diagnostic test in a large reported cohort of patients with suspected myeloid malignancy, in a clinical laboratory setting. Overlap with cytogenetic test results provides opportunity for testing reduction and streamlining.
Collapse
Affiliation(s)
- Pratibha Bhai
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Cyrus C Hsia
- Division of Hematology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Laila C Schenkel
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Benjamin D Hedley
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael A Levy
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Jennifer Kerkhof
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Stephanie Santos
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Alan Stuart
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Hanxin Lin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Robert Broadbent
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Shirley Nan
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ping Yang
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Anargyros Xenocostas
- Division of Hematology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ian Chin-Yee
- Division of Hematology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Victoria Hospital, London Health Sciences Centre, 800 Commissioners Road East, Room E6-211, London, ON, N6A 5W9, Canada.
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada.
| |
Collapse
|
11
|
Liso A, Venuto S, Coda ARD, Giallongo C, Palumbo GA, Tibullo D. IGFBP-6: At the Crossroads of Immunity, Tissue Repair and Fibrosis. Int J Mol Sci 2022; 23:ijms23084358. [PMID: 35457175 PMCID: PMC9030159 DOI: 10.3390/ijms23084358] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Insulin-like growth factors binding protein-6 (IGFBP-6) is involved in a relevant number of cellular activities and represents an important factor in the immune response, particularly in human dendritic cells (DCs). Over the past several years, significant insights into the IGF-independent effects of IGFBP-6 were discovered, such as the induction of chemotaxis, capacity to increase oxidative burst and neutrophils degranulation, ability to induce metabolic changes in DCs, and, more recently, the regulation of the Sonic Hedgehog (SHH) signaling pathway during fibrosis. IGFBP-6 has been implicated in different human diseases, and it plays a rather controversial role in the biology of tumors. Notably, well established relationships between immunity, stroma activity, and fibrosis are prognostic and predictive of response to cancer immunotherapy. This review aims at describing the current understanding of mechanisms that link IGFBP-6 and fibrosis development and at highlighting the multiple roles of IGFBP-6 to provide an insight into evolutionarily conserved mechanisms that can be relevant for inflammation, tumor immunity, and immunological diseases.
Collapse
Affiliation(s)
- Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (S.V.); (A.R.D.C.)
- Correspondence:
| | - Santina Venuto
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (S.V.); (A.R.D.C.)
| | - Anna Rita Daniela Coda
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (S.V.); (A.R.D.C.)
| | - Cesarina Giallongo
- Department of Medical Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.G.); (G.A.P.)
| | - Giuseppe Alberto Palumbo
- Department of Medical Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.G.); (G.A.P.)
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
12
|
Torres DG, Paes J, da Costa AG, Malheiro A, Silva GV, Mourão LPDS, Tarragô AM. JAK2 Variant Signaling: Genetic, Hematologic and Immune Implication in Chronic Myeloproliferative Neoplasms. Biomolecules 2022; 12:291. [PMID: 35204792 PMCID: PMC8961666 DOI: 10.3390/biom12020291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
The JAK2V617F variant constitutes a genetic alteration of higher frequency in BCR/ABL1 negative chronic myeloproliferative neoplasms, which is caused by a substitution of a G ˃ T at position 1849 and results in the substitution of valine with phenylalanine at codon 617 of the polypeptide chain. Clinical, morphological and molecular genetic features define the diagnosis criteria of polycythemia vera, essential thrombocythemia and primary myelofibrosis. Currently, JAK2V617F is associated with clonal hematopoiesis, genomic instability, dysregulations in hemostasis and immune response. JAK2V617F clones induce an inflammatory immune response and lead to a process of immunothrombosis. Recent research has shown great interest in trying to understand the mechanisms associated with JAK2V617F signaling and activation of cellular and molecular responses that progressively contribute to the development of inflammatory and vascular conditions in association with chronic myeloproliferative neoplasms. Thus, the aim of this review is to describe the main genetic, hematological and immunological findings that are linked to JAK2 variant signaling in chronic myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Dania G. Torres
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Jhemerson Paes
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Allyson G. da Costa
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - George V. Silva
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Fundação Oswaldo Cruz–Instituto Leônidas e Maria Deane (Fiocruz), Manaus 69027-070, AM, Brazil
- Fundação Centro de Controle de Oncologia do Amazonas (FCECON), Manaus 69040-010, AM, Brazil
| | - Lucivana P. de Souza Mourão
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Andréa M. Tarragô
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus 69050-001, AM, Brazil
| |
Collapse
|
13
|
Singh S, Jain K. MPN-Unclassified: A view into MPN biology. CANCER RESEARCH, STATISTICS, AND TREATMENT 2022. [DOI: 10.4103/crst.crst_106_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Belčič Mikič T, Vratanar B, Pajič T, Anžej Doma S, Debeljak N, Preložnik Zupan I, Sever M, Zver S. Is It Possible to Predict Clonal Thrombocytosis in Triple-Negative Patients with Isolated Thrombocytosis Based Only on Clinical or Blood Findings? J Clin Med 2021; 10:jcm10245803. [PMID: 34945099 PMCID: PMC8706709 DOI: 10.3390/jcm10245803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022] Open
Abstract
JAK2, MPL, and CALR mutations define clonal thrombocytosis in about 90% of patients with sustained isolated thrombocytosis. In the remainder of patients (triple-negative patients) diagnosing clonal thrombocytosis is especially difficult due to the different underlying conditions and possible inconclusive bone marrow biopsy results. The ability to predict patients with sustained isolated thrombocytosis with a potential clonal origin has a prognostic value and warrants further examination. The aim of our study was to define a non-invasive clinical or blood parameter that could help predict clonal thrombocytosis in triple-negative patients. We studied 237 JAK2 V617-negative patients who were diagnosed with isolated thrombocytosis and referred to the haematology service. Sixteen routine clinical and blood parameters were included in the logistic regression model which was used to predict the type of thrombocytosis (reactive/clonal). Platelet count and lactate dehydrogenase (LDH) were the only statistically significant predictors of clonal thrombocytosis. The platelet count threshold for the most accurate prediction of clonal or reactive thrombocytosis was 449 × 109/L. Other tested clinical and blood parameters were not statistically significant predictors of clonal thrombocytosis. The level of LDH was significantly higher in CALR-positive patients compared to CALR-negative patients. We did not identify any new clinical or blood parameters that could distinguish clonal from reactive thrombocytosis. When diagnosing clonal thrombocytosis triple-negative patients are most likely to be misdiagnosed. Treatment in patients with suspected triple negative clonal thrombocytosis should not be delayed if cardiovascular risk factors or pregnancy coexist, even in the absence of firm diagnostic criteria. In those cases the approach “better treat more than less” should be followed.
Collapse
Affiliation(s)
- Tanja Belčič Mikič
- Department of Haematology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (T.P.); (S.A.D.); (I.P.Z.); (M.S.); (S.Z.)
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| | - Bor Vratanar
- Institute of Biomedical Statistics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Tadej Pajič
- Department of Haematology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (T.P.); (S.A.D.); (I.P.Z.); (M.S.); (S.Z.)
- Clinical Institute for Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Clinical Biochemistry, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Saša Anžej Doma
- Department of Haematology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (T.P.); (S.A.D.); (I.P.Z.); (M.S.); (S.Z.)
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Irena Preložnik Zupan
- Department of Haematology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (T.P.); (S.A.D.); (I.P.Z.); (M.S.); (S.Z.)
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Matjaž Sever
- Department of Haematology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (T.P.); (S.A.D.); (I.P.Z.); (M.S.); (S.Z.)
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Samo Zver
- Department of Haematology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (T.P.); (S.A.D.); (I.P.Z.); (M.S.); (S.Z.)
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Easwar A, Siddon AJ. Genetic Landscape of Myeloproliferative Neoplasms with an Emphasis on Molecular Diagnostic Laboratory Testing. Life (Basel) 2021; 11:1158. [PMID: 34833034 PMCID: PMC8625510 DOI: 10.3390/life11111158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic myeloproliferative neoplasms (MPNs) are hematopoietic stem cell neoplasms with driver events including the BCR-ABL1 translocation leading to a diagnosis of chronic myeloid leukemia (CML), or somatic mutations in JAK2, CALR, or MPL resulting in Philadelphia-chromosome-negative MPNs with constitutive activation of the JAK-STAT signaling pathway. In the Philadelphia-chromosome-negative MPNs, modern sequencing panels have identified a vast molecular landscape including additional mutations in genes involved in splicing, signal transduction, DNA methylation, and chromatin modification such as ASXL1, SF3B1, SRSF2, and U2AF1. These additional mutations often influence prognosis in MPNs and therefore are increasingly important for risk stratification. This review focuses on the molecular alterations within the WHO classification of MPNs and laboratory testing used for diagnosis.
Collapse
Affiliation(s)
- Arti Easwar
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Alexa J. Siddon
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510, USA;
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
16
|
Palumbo GA, Galimberti S, Barcellini W, Cilloni D, Di Renzo N, Elli EM, Finelli C, Maurillo L, Ricco A, Musto P, Russo R, Latagliata R. From Biology to Clinical Practice: Iron Chelation Therapy With Deferasirox. Front Oncol 2021; 11:752192. [PMID: 34692534 PMCID: PMC8527180 DOI: 10.3389/fonc.2021.752192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/08/2021] [Indexed: 01/19/2023] Open
Abstract
Iron chelation therapy (ICT) has become a mainstay in heavily transfused hematological patients, with the aim to reduce iron overload (IOL) and prevent organ damage. This therapeutic approach is already widely used in thalassemic patients and in low-risk Myelodysplastic Syndrome (MDS) patients. More recently, ICT has been proposed for high-risk MDS, especially when an allogeneic bone marrow transplantation has been planned. Furthermore, other hematological and hereditary disorders, characterized by considerable transfusion support to manage anemia, could benefit from this therapy. Meanwhile, data accumulated on how iron toxicity could exacerbate anemia and other clinical comorbidities due to oxidative stress radical oxygen species (ROS) mediated by free iron species. Taking all into consideration, together with the availability of approved oral iron chelators, we envision a larger use of ICT in the near future. The aim of this review is to better identify those non-thalassemic patients who can benefit from ICT and give practical tips for management of this therapeutic strategy.
Collapse
Affiliation(s)
- Giuseppe A. Palumbo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia, ” University of Catania, Catania, Italy
| | - Sara Galimberti
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Wilma Barcellini
- Hematology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico di Milano and University of Milan, Milan, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Nicola Di Renzo
- Hematology and Transplant Unit, Ospedale Vito Fazzi, Lecce, Italy
| | - Elena Maria Elli
- Division of Hematology and Bone Marrow Unit, Ospedale San Gerardo, Aziende Socio Sanitarie Territoriali (ASST), Monza, Italy
| | - Carlo Finelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Luca Maurillo
- Department of Onco-hematology, Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Alessandra Ricco
- Unit of Hematology and Stem Cell Transplantation, Azienda Ospedaliera Universitaria (AOU) Consorziale Policlinico, Bari, Italy
| | - Pellegrino Musto
- Unit of Hematology and Stem Cell Transplantation, Azienda Ospedaliera Universitaria (AOU) Consorziale Policlinico, Bari, Italy
- Department of Emergency and Organ Transplantation, “Aldo Moro” University School of Medicine, Bari, Italy
| | - Rodolfo Russo
- Clinica Nefrologica, Dialisi e Trapianto, Department of Integrated Medicine with the Territory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberto Latagliata
- Unità Operativa Complessa (UOC) Ematologia, Ospedale Belcolle, Viterbo and Division of Cellular Biotechnology and Hematology, Sapienza University, Rome, Italy
| |
Collapse
|
17
|
Wu S, Luo P, Yu Y, Xiong B, Wang Y, Zuo X. Next-generation sequencing redefines the diagnosis of triple-negative myeloproliferative neoplasms. Ann Hematol 2021; 101:705-708. [PMID: 34518917 DOI: 10.1007/s00277-021-04561-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Sanyun Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Donghu Road, No. 169, Wuhan, China
| | - Ping Luo
- Department of Hematology, Zhongnan Hospital of Wuhan University, Donghu Road, No. 169, Wuhan, China
| | - Yalan Yu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Donghu Road, No. 169, Wuhan, China
| | - Bei Xiong
- Department of Hematology, Zhongnan Hospital of Wuhan University, Donghu Road, No. 169, Wuhan, China
| | - Yingying Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Donghu Road, No. 169, Wuhan, China
| | - Xuelan Zuo
- Department of Hematology, Zhongnan Hospital of Wuhan University, Donghu Road, No. 169, Wuhan, China.
| |
Collapse
|
18
|
Naseem S, Binota J, Varma N, Satyarthi P, Rana P, Malhotra P. Polymerase chain reaction-restriction fragment length polymorphism method for detection of Calreticulin type-1 and type-2 mutations in myeloproliferative neoplasm. J Hematop 2021. [DOI: 10.1007/s12308-021-00462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Stuckey R, Gómez-Casares MT. Recent Advances in the Use of Molecular Analyses to Inform the Diagnosis and Prognosis of Patients with Polycythaemia Vera. Int J Mol Sci 2021; 22:5042. [PMID: 34068690 PMCID: PMC8126083 DOI: 10.3390/ijms22095042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/07/2023] Open
Abstract
Genetic studies in the past decade have improved our understanding of the molecular basis of the BCR-ABL1-negative myeloproliferative neoplasm (MPN) polycythaemia vera (PV). Such breakthroughs include the discovery of the JAK2V617F driver mutation in approximately 95% of patients with PV, as well as some very rare cases of familial hereditary MPN caused by inherited germline mutations. Patients with PV often progress to fibrosis or acute myeloid leukaemia, both associated with very poor clinical outcome. Moreover, thrombosis and major bleeding are the principal causes of morbidity and mortality. As a result of increasingly available and economical next-generation sequencing technologies, mutational studies have revealed the prognostic relevance of a few somatic mutations in terms of thrombotic risk and risk of transformation, helping to improve the risk stratification of patients with PV. Finally, knowledge of the molecular basis of PV has helped identify targets for directed therapy. The constitutive activation of the tyrosine kinase JAK2 is targeted by ruxolitinib, a JAK1/JAK2 tyrosine kinase inhibitor for PV patients who are resistant or intolerant to cytoreductive treatment with hydroxyurea. Other molecular mechanisms have also been revealed, and numerous agents are in various stages of development. Here, we will provide an update of the recent published literature on how molecular testing can improve the diagnosis and prognosis of patients with PV and present recent advances that may have prognostic value in the near future.
Collapse
Affiliation(s)
- Ruth Stuckey
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas, Spain
| | | |
Collapse
|
20
|
Davis AR, Stone SL, Oran AR, Sussman RT, Bhattacharyya S, Morrissette JJD, Bagg A. Targeted massively parallel sequencing of mature lymphoid neoplasms: assessment of empirical application and diagnostic utility in routine clinical practice. Mod Pathol 2021; 34:904-921. [PMID: 33311649 DOI: 10.1038/s41379-020-00720-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Massively parallel sequencing (MPS) has become a viable diagnostic tool to interrogate genetic profiles of numerous tumors but has yet to be routinely adopted in the setting of lymphoma. Here, we report the empirical application of a targeted 40-gene panel developed for use in mature lymphoid neoplasms (MLNs) and report our experience on over 500 cases submitted for MPS during the first year of its clinical use. MPS was applied to both fresh and fixed specimens. The most frequent diagnoses were diffuse large B-cell lymphoma (116), chronic lymphocytic leukemia/small lymphocytic lymphoma (60), marginal zone lymphoma (52), and follicular lymphoma (43), followed by a spectrum of mature T-cell neoplasms (40). Of 534 cases submitted, 471 generated reportable results in MLNs, with disease-associated variants (DAVs) detected in 241 cases (51.2%). The most frequent DAVs affected TP53 (30%), CREBBP (14%), MYD88 (14%), TNFRSF14 (10%), TNFAIP3 (10%), B2M (7%), and NOTCH2 (7%). The bulk of our findings confirm what is reported in the scientific literature. While a substantial majority of mutations did not directly impact diagnosis, MPS results were utilized to either change, refine, or facilitate the final diagnosis in ~10.8% of cases with DAVs and 5.5% of cases overall. In addition, we identified preanalytic variables that significantly affect assay performance highlighting items for specimen triage. We demonstrate the technical viability and utility of the judicious use of a targeted MPS panel that may help to establish general guidelines for specimen selection and diagnostic application in MLNs in routine clinical practice.
Collapse
Affiliation(s)
- Adam R Davis
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sara L Stone
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda R Oran
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Robyn T Sussman
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Siddharth Bhattacharyya
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer J D Morrissette
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Dunphy K, Dowling P, Bazou D, O’Gorman P. Current Methods of Post-Translational Modification Analysis and Their Applications in Blood Cancers. Cancers (Basel) 2021; 13:1930. [PMID: 33923680 PMCID: PMC8072572 DOI: 10.3390/cancers13081930] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTMs) add a layer of complexity to the proteome through the addition of biochemical moieties to specific residues of proteins, altering their structure, function and/or localization. Mass spectrometry (MS)-based techniques are at the forefront of PTM analysis due to their ability to detect large numbers of modified proteins with a high level of sensitivity and specificity. The low stoichiometry of modified peptides means fractionation and enrichment techniques are often performed prior to MS to improve detection yields. Immuno-based techniques remain popular, with improvements in the quality of commercially available modification-specific antibodies facilitating the detection of modified proteins with high affinity. PTM-focused studies on blood cancers have provided information on altered cellular processes, including cell signaling, apoptosis and transcriptional regulation, that contribute to the malignant phenotype. Furthermore, the mechanism of action of many blood cancer therapies, such as kinase inhibitors, involves inhibiting or modulating protein modifications. Continued optimization of protocols and techniques for PTM analysis in blood cancer will undoubtedly lead to novel insights into mechanisms of malignant transformation, proliferation, and survival, in addition to the identification of novel biomarkers and therapeutic targets. This review discusses techniques used for PTM analysis and their applications in blood cancer research.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| |
Collapse
|
22
|
The Contemporary Approach to CALR-Positive Myeloproliferative Neoplasms. Int J Mol Sci 2021; 22:ijms22073371. [PMID: 33806036 PMCID: PMC8038093 DOI: 10.3390/ijms22073371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Abstract
CALR mutations are a revolutionary discovery and represent an important hallmark of myeloproliferative neoplasms (MPN), especially essential thrombocythemia and primary myelofibrosis. To date, several CALR mutations were identified, with only frameshift mutations linked to the diseased phenotype. It is of diagnostic and prognostic importance to properly define the type of CALR mutation and subclassify it according to its structural similarities to the classical mutations, a 52-bp deletion (type 1 mutation) and a 5-bp insertion (type 2 mutation), using a statistical approximation algorithm (AGADIR). Today, the knowledge on the pathogenesis of CALR-positive MPN is expanding and several cellular mechanisms have been recognized that finally cause a clonal hematopoietic expansion. In this review, we discuss the current basis of the cellular effects of CALR mutants and the understanding of its implementation in the current diagnostic laboratorial and medical practice. Different methods of CALR detection are explained and a diagnostic algorithm is shown that aids in the approach to CALR-positive MPN. Finally, contemporary methods joining artificial intelligence in accordance with molecular-genetic biomarkers in the approach to MPN are presented.
Collapse
|
23
|
Singh S, Kaur K, Paul D, Jain K, Singh J, Narang V, Garg B, Sood N, Dhillon B. Clinical and Molecular Attributes of Patients With BCR/ABL1-negative Myeloproliferative Neoplasms in India: Real-world Data and Challenges. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:e569-e578. [PMID: 33757770 DOI: 10.1016/j.clml.2021.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Classic BCR/ABL1-negative myeloproliferative neoplasms (MPNs) are characterized by clinical and genetic heterogeneity and include 4 distinct constituents. Very little data on clinical presentation and epidemiology of the same is available from the Indian setting. PATIENTS AND METHODS Patients referred to Hematology-Oncology from January 2018 to August 2020 with suspected MPNs were included in the analysis and prospectively followed-up. All patients were initially screened, and only those meeting the updated World Health Organization 2016 criteria were included in the analysis. Epidemiologic, clinical, and molecular characteristics were documented, and patients were followed-up prospectively. RESULTS A total of 233 patients were referred for evaluation of MPN, of which 63 were included in the analysis, including 39 males and 24 females. The median age at diagnosis was 57 years (range, 28-82 years), and 38% patients were younger than 50 years of age. The most common presentations were incidental detection in 35 (55.5%), abdominal symptoms in 13 (20%), fatiguability in 7 (11%), and recent vascular events in 6 (9.5%) patients. Final diagnosis was polycythemia vera in 27, essential thrombocytosis (ET) in 21, prefibrotic myelofibrosis in 9, and myelofibrosis in 6 patients. The frequency of driver mutations in polycythemia vera included JAK2 in 75%; in ET, JAK2 in 33%, CALR in 33%, and MPL in 4%; and in prefibrotic myelofibrosis, JAK2 in 66% and CALR in 33%. Aspirin was used for all patients along with risk-adapted cytoreduction with hydroxyurea. Ruxolitinib was reserved for symptoms refractory to hydroxyurea. After a median follow-up of 15 months (interquartile range, 10-28 months) from diagnosis, disease progression was noted in 4 patients. Two patients died at the end of the follow-up period, including 1 with secondary acute myeloid leukemia post myelofibrosis and one with ET and coexistent oral malignancy. The remaining 61 patients are alive and on regular treatment. RESULTS This is one of the first systematic descriptions and prospective follow-up of patients with BCR/ABL-negative MPNs from India. Our study indicates a younger median age of presentation and higher proportion of JAK2-unmutated disease across all subtypes. The primary role of bone marrow morphology and supportive role of somatic mutations in differentiating MPN subtypes is indicated. CONCLUSIONS This study sets the stage for a collaborative registry for defining epidemiologic data and long-term outcomes with MPN in India.
Collapse
Affiliation(s)
- Suvir Singh
- Department of Clinical Haematology and Stem Cell Transplantation, Dayanand Medical College and Hospital, Ludhiana, Punjab, India.
| | - Komalpreet Kaur
- Department of Clinical Haematology and Stem Cell Transplantation, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Davinder Paul
- Department of Medical Oncology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Kunal Jain
- Department of Medical Oncology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Jagdeep Singh
- Department of Medical Oncology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Vikram Narang
- Department of Pathology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Bhavna Garg
- Department of Pathology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Neena Sood
- Department of Pathology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Barjinderjit Dhillon
- Molecular Genetics, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| |
Collapse
|
24
|
Manzella L, Tirrò E, Vitale SR, Puma A, Consoli ML, Tambè L, Pennisi MS, DI Gregorio S, Romano C, Tomarchio C, DI Raimondo F, Stagno F. Optimal Response in a Patient With CML Expressing BCR-ABL1 E6A2 Fusion Transcript With Nilotinib Therapy: A Case Report. In Vivo 2021; 34:1481-1486. [PMID: 32354950 DOI: 10.21873/invivo.11933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIM The Philadelphia chromosome is considered the hallmark of chronic myeloid leukemia (CML). However, although most patients with CML are diagnosed with the e13a2 or e14a2 breakpoint cluster region (BCR)-Abelson 1 (ABL1) fusion transcripts, about 5% of them carry rare BCR-ABL1 fusion transcripts, such as e19a2, e8a2, e13a3, e14a3, e1a3 and e6a2. In particular, the e6a2 fusion transcript has been associated with clinically aggressive disease frequently presenting in accelerated or blast crisis phases; there is limited evidence on the efficacy of front-line second-generation tyrosine kinase inhibitors for this genotype. CASE REPORT We describe a case of atypical BCR-ABL1 e6a2 fusion transcript in a 46-year-old woman with CML. RESULTS The use of primers recognizing more distant exons from the common BCR-ABL1 breakpoint region correctly identified the atypical BCR-ABL1 e16a2 fusion transcript. Treatment with second-generation tyrosine kinase inhibitor nilotinib was effective in this patient expressing the atypical e6a2 BCR-ABL1 fusion transcript.
Collapse
Affiliation(s)
- Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy .,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Maria Letizia Consoli
- Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Loredana Tambè
- Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Sandra DI Gregorio
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Cristina Tomarchio
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Francesco DI Raimondo
- Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy.,Department of Surgery, Medical and Surgical Specialities, University of Catania, Catania, Italy
| | - Fabio Stagno
- Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| |
Collapse
|
25
|
Spampinato M, Giallongo C, Romano A, Longhitano L, La Spina E, Avola R, Scandura G, Dulcamare I, Bramanti V, Di Rosa M, Vicario N, Parenti R, Li Volti G, Tibullo D, Palumbo GA. Focus on Osteosclerotic Progression in Primary Myelofibrosis. Biomolecules 2021; 11:biom11010122. [PMID: 33477816 PMCID: PMC7832894 DOI: 10.3390/biom11010122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/22/2022] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by hematopoietic stem-cell-derived clonal proliferation, leading to bone marrow (BM) fibrosis. Hematopoiesis alterations are closely associated with modifications of the BM microenvironment, characterized by defective interactions between vascular and endosteal niches. As such, neoangiogenesis, megakaryocytes hyperplasia and extensive bone marrow fibrosis, followed by osteosclerosis and bone damage, are the most relevant consequences of PMF. Moreover, bone tissue deposition, together with progressive fibrosis, represents crucial mechanisms of disabilities in patients. Although the underlying mechanisms of bone damage observed in PMF are still unclear, the involvement of cytokines, growth factors and bone marrow microenvironment resident cells have been linked to disease progression. Herein, we focused on the role of megakaryocytes and their alterations, associated with cytokines and chemokines release, in modulating functions of most of the bone marrow cell populations and in creating a complex network where impaired signaling strongly contributes to progression and disabilities.
Collapse
Affiliation(s)
- Mariarita Spampinato
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Roberto Avola
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Ilaria Dulcamare
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Vincenzo Bramanti
- Division of Clinical Pathology, “Giovanni Paolo II” Hospital–A.S.P. Ragusa, 97100 Ragusa, Italy;
| | - Michelino Di Rosa
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.V.); (R.P.)
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.V.); (R.P.)
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
- Correspondence: (G.L.V.); (G.A.P.)
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Giuseppe A. Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
- Correspondence: (G.L.V.); (G.A.P.)
| |
Collapse
|
26
|
Spampinato M, Giallongo C, Romano A, Longhitano L, La Spina E, Avola R, Scandura G, Dulcamare I, Bramanti V, Di Rosa M, Vicario N, Parenti R, Li Volti G, Tibullo D, Palumbo GA. Focus on Osteosclerotic Progression in Primary Myelofibrosis. Biomolecules 2021. [PMID: 33477816 DOI: 10.3390/biom11010122.pmid:33477816;pmcid:pmc7832894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by hematopoietic stem-cell-derived clonal proliferation, leading to bone marrow (BM) fibrosis. Hematopoiesis alterations are closely associated with modifications of the BM microenvironment, characterized by defective interactions between vascular and endosteal niches. As such, neoangiogenesis, megakaryocytes hyperplasia and extensive bone marrow fibrosis, followed by osteosclerosis and bone damage, are the most relevant consequences of PMF. Moreover, bone tissue deposition, together with progressive fibrosis, represents crucial mechanisms of disabilities in patients. Although the underlying mechanisms of bone damage observed in PMF are still unclear, the involvement of cytokines, growth factors and bone marrow microenvironment resident cells have been linked to disease progression. Herein, we focused on the role of megakaryocytes and their alterations, associated with cytokines and chemokines release, in modulating functions of most of the bone marrow cell populations and in creating a complex network where impaired signaling strongly contributes to progression and disabilities.
Collapse
Affiliation(s)
- Mariarita Spampinato
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Roberto Avola
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Ilaria Dulcamare
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Vincenzo Bramanti
- Division of Clinical Pathology, "Giovanni Paolo II" Hospital-A.S.P. Ragusa, 97100 Ragusa, Italy
| | - Michelino Di Rosa
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe A Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| |
Collapse
|
27
|
Feng Y, Chen X, Cassady K, Zou Z, Yang S, Wang Z, Zhang X. The Role of mTOR Inhibitors in Hematologic Disease: From Bench to Bedside. Front Oncol 2021; 10:611690. [PMID: 33489922 PMCID: PMC7821787 DOI: 10.3389/fonc.2020.611690] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/27/2020] [Indexed: 02/05/2023] Open
Abstract
The mTOR pathway plays a central role in many cellular processes, such as cellular growth, protein synthesis, glucose, and lipid metabolism. Aberrant regulation of mTOR is a hallmark of many cancers, including hematological malignancies. mTOR inhibitors, such as Rapamycin and Rapamycin analogs (Rapalogs), have become a promising class of agents to treat malignant blood diseases-either alone or in combination with other treatment regimens. This review highlights experimental evidence underlying the molecular mechanisms of mTOR inhibitors and summarizes their evolving role in the treatment of hematologic disease, including leukemia, lymphoma, myeloma, immune hemocytopenia, and graft-versus-host disease (GVHD). Based on data presented in this review, we believe that mTOR inhibitors are becoming a trusted therapeutic in the clinical hematologist's toolbelt and should be considered more routinely in combination therapy for the management of hematologic disease.
Collapse
Affiliation(s)
- Yimei Feng
- Medical Center of Hematology, The Xinqiao Hospital of Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
- Chongqing Sub-center of National Clinical Research Center for Hematologic Disease, Chongqing, China
| | - Xiaoli Chen
- Medical Center of Hematology, The Xinqiao Hospital of Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
- Chongqing Sub-center of National Clinical Research Center for Hematologic Disease, Chongqing, China
| | - Kaniel Cassady
- Irell and Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, United States
| | - Zhongmin Zou
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Shijie Yang
- Medical Center of Hematology, The Xinqiao Hospital of Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
- Chongqing Sub-center of National Clinical Research Center for Hematologic Disease, Chongqing, China
| | - Zheng Wang
- Medical Center of Hematology, The Xinqiao Hospital of Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
- Chongqing Sub-center of National Clinical Research Center for Hematologic Disease, Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, The Xinqiao Hospital of Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
- Chongqing Sub-center of National Clinical Research Center for Hematologic Disease, Chongqing, China
| |
Collapse
|
28
|
Molecular Pathogenesis and Treatment Perspectives for Hypereosinophilia and Hypereosinophilic Syndromes. Int J Mol Sci 2021; 22:ijms22020486. [PMID: 33418988 PMCID: PMC7825323 DOI: 10.3390/ijms22020486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/25/2022] Open
Abstract
Hypereosinophilia (HE) is a heterogeneous condition with a persistent elevated eosinophil count of >350/mm3, which is reported in various (inflammatory, allergic, infectious, or neoplastic) diseases with distinct pathophysiological pathways. HE may be associated with tissue or organ damage and, in this case, the disorder is classified as hypereosinophilic syndrome (HES). Different studies have allowed for the discovery of two major pathogenetic variants known as myeloid or lymphocytic HES. With the advent of molecular genetic analyses, such as T-cell receptor gene rearrangement assays and Next Generation Sequencing, it is possible to better characterize these syndromes and establish which patients will benefit from pharmacological targeted therapy. In this review, we highlight the molecular alterations that are involved in the pathogenesis of eosinophil disorders and revise possible therapeutic approaches, either implemented in clinical practice or currently under investigation in clinical trials.
Collapse
|
29
|
Rabie H, Othman W, Elsabaawy DM, Elshemy EE, Abdelmageed N, Khalaf FA, Bedair HM. Janus Kinase-2 Mutation Associated Portal Vein Thrombosis Complicating Liver Cirrhosis and Hepatocellular Carcinoma. Asian Pac J Cancer Prev 2021; 22:267-275. [PMID: 33507708 PMCID: PMC8184185 DOI: 10.31557/apjcp.2021.22.1.267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 11/29/2022] Open
Abstract
Background: Portal vein thrombosis (PVT) might be a catastrophic event complicating liver cirrhosis and hepatocellular carcinoma (HCC). Aim: role of JAK2 RS V617F mutation as a risk factor for PVT development in liver cirrhosis and HCC. Methods: A case control study conducted on 100 PVT patients (76 HCC and 24 liver cirrhosis) additionally, 100 healthy individuals used as a control group. PVT was diagnosed incidentally by Doppler ultrasound during routine follow-up HCC screening. ProthrombinG20210A mutation, MTHFR mutation, Factor V Leiden mutation (VFL), antithrombin III (ATIII), protein C, S, and antiphospholipid antibodies, along with JAK2 RS V617F mutation by real-time polymerase chain reaction all were analyzed. Results: Patients with PVT were significantly older (p<0.001), thrombocytopenic (p<0.001), with high alkaline phosphatase (p<0.001). JAK2 RS V617F mutation was found in 28/100 (28%) in idiopathic PVT complicating liver cirrhosis and hepatocellular carcinoma. Cases with positive JAK2 rs V617F mutation were significantly accompanied by protein S deficiency (P 0.03), LA absence (p 0.06), and high frequency of ascites (P 0.03). While, the MTHFR heterozygous mutation (p0.001), ATIII (P 0.02), and VFL (P 0.01) were more frequent with negative JAK2 rs V617F mutation. The comparison between demographic data and thrombophilic parameters in PVT cases revealed that no significant differences were recorded except for male gender, Diabetes Mellitus, splenomegaly significantly increased among HCC cases (p<0.05). Conclusions: JAK2 rs V617F mutation must be considered in any case of PVT with liver cirrhosis and hepatocellular carcinoma without identified thrombophilic risk factors, with potential considerations of evolving myeloproliferative disorders. New diagnostic and therapeutic implications are still awaited.
Collapse
Affiliation(s)
- Hatem Rabie
- Departments of Clinical Pathology, National Liver Institute, Menoufia University, Egypt
| | - Warda Othman
- Hepatology, National Liver Institute-Menoufia University, Egypt
| | - Dalia M Elsabaawy
- Lecturer of Clinical Pharmacy, National Liver Institute, Menoufia University, Egypt
| | - Eman E Elshemy
- Hepatogastroentrology and Infectious Diseases, Faculty of Medicine for girls, AL-Azhar University, Egypt
| | - Neamat Abdelmageed
- Hepatogastroentrology and Infectious Diseases, Faculty of Medicine for girls, AL-Azhar University, Egypt
| | - Fatma A Khalaf
- Department of Biochemistry , National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Hanan M Bedair
- Departments of Clinical Pathology, National Liver Institute, Menoufia University, Egypt
| |
Collapse
|
30
|
Atli EI, Gurkan H, Atli E, Kirkizlar HO, Yalcintepe S, Demir S, Demirci U, Eker D, Mail C, Kalkan R, Demir AM. The Importance of Targeted Next-Generation Sequencing Usage in Cytogenetically Normal Myeloid Malignancies. Mediterr J Hematol Infect Dis 2021; 13:e2021013. [PMID: 33489052 PMCID: PMC7813283 DOI: 10.4084/mjhid.2021.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023] Open
Abstract
Advanced diagnostic methods give an advantage for the identification of abnormalities in myeloid malignancies. Various researchers have shown the potential importance of genetic tests before the disease's onset and in remission. Large testing panels prevent false-negative results in myeloid malignancies. However, the critical question is how the results of conventional cytogenetic and molecular cytogenetic techniques can be merged with NGS technologies. In this paper, we drew an algorithm for the evaluation of myeloid malignancies. To evaluate genetic abnormalities, we performed cytogenetics, molecular cytogenetics, and NGS testing in myeloid malignancies. In this study, we analyzed 100 patients admitted to the Medical Genetics Laboratory with different myeloid malignancies. We highlighted the possible diagnostic algorithm for cytogenetically normal cases. We applied NGS 141 gene panel for cytogenetically normal patients, and we detected two or more pathogenic variations in 61 out of 100 patients (61%). NGS's pathogenic variation detection rate varies in disease groups: they were present in 85% of A.M.L. and 23% of M.D.S. Here, we identified 24 novel variations out of total pathogenic variations in myeloid malignancies. A total of 18 novel variations were identified in A.M.L., and 6 novel variations were identified in M.D.S. Despite long turnaround times, conventional techniques are still a golden standard for myeloid malignancies but sometimes cryptic gene fusions or complex abnormalities cannot be easily identified by conventional techniques. In these conditions, advanced technologies like NGS are highly recommended.
Collapse
Affiliation(s)
- Emine Ikbal Atli
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Hakan Gurkan
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Engin Atli
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Hakki Onur Kirkizlar
- Faculty of Medicine, Department of Hematology, Trakya University, Edirne, Turkey
| | - Sinem Yalcintepe
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Selma Demir
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Ufuk Demirci
- Faculty of Medicine, Department of Hematology, Trakya University, Edirne, Turkey
| | - Damla Eker
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Cisem Mail
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Rasime Kalkan
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, Cyprus
| | - Ahmet Muzaffer Demir
- Faculty of Medicine, Department of Hematology, Trakya University, Edirne, Turkey
| |
Collapse
|
31
|
Longhitano L, Li Volti G, Giallongo C, Spampinato M, Barbagallo I, Di Rosa M, Romano A, Avola R, Tibullo D, Palumbo GA. The Role of Inflammation and Inflammasome in Myeloproliferative Disease. J Clin Med 2020; 9:E2334. [PMID: 32707883 PMCID: PMC7464195 DOI: 10.3390/jcm9082334] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022] Open
Abstract
Polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF) are rare hematological conditions known as myeloproliferative neoplasms (MPNs). They are characterized for being BCR-ABL negative malignancies and affected patients often present with symptoms which can significantly impact their quality of life. MPNs are characterized by a clonal proliferation of an abnormal hematopoietic stem/progenitor cell. In MPNs; cells of all myeloid lineages; including those involved in the immune and inflammatory response; may belong to the malignant clone thus leading to an altered immune response and an overexpression of cytokines and inflammatory receptors; further worsening chronic inflammation. Many of these cytokines; in particular, IL-1β and IL-18; are released in active form by activating the inflammasome complexes which in turn mediate the inflammatory process. Despite this; little is known about the functional effects of stem cell-driven inflammasome signaling in MPN pathogenesis. In this review we focused on the role of inflammatory pathway and inflammasome in MPN diseases. A better understanding of the inflammatory-state-driving MPNs and of the role of the inflammasome may provide new insights on possible therapeutic strategies.
Collapse
Affiliation(s)
- Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (G.L.V.); (M.S.); (R.A.)
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (G.L.V.); (M.S.); (R.A.)
| | - Cesarina Giallongo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Mariarita Spampinato
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (G.L.V.); (M.S.); (R.A.)
| | - Ignazio Barbagallo
- Section of Biochemistry, Department of Drug Sciences, University of Catania, 95123 Catania, Italy;
| | - Michelino Di Rosa
- Section of Human Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Alessandra Romano
- Division of Hematology, Department of General Surgery and Medical-Surgical Specialties, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy;
| | - Roberto Avola
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (G.L.V.); (M.S.); (R.A.)
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (G.L.V.); (M.S.); (R.A.)
| | - Giuseppe Alberto Palumbo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
32
|
Leiva O, Connors JM, Al-Samkari H. Impact of Tumor Genomic Mutations on Thrombotic Risk in Cancer Patients. Cancers (Basel) 2020; 12:cancers12071958. [PMID: 32707653 PMCID: PMC7409200 DOI: 10.3390/cancers12071958] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Venous thromboembolism (VTE) is common in patients with cancer and is an important contributor to morbidity and mortality in these patients. Early thromboprophylaxis initiated only in those cancer patients at highest risk for VTE would be optimal. Risk stratification scores incorporating tumor location, laboratory values and patient characteristics have attempted to identify those patients most likely to benefit from thromboprophylaxis but even well-validated scores are not able to reliably distinguish the highest-risk patients. Recognizing that tumor genetics affect the biology and behavior of malignancies, recent studies have explored the impact of specific molecular aberrations on the rate of VTE in cancer patients. The presence of certain molecular aberrations in a variety of different cancers, including lung, colon, brain and hematologic tumors, have been associated with an increased risk of VTE and arterial thrombotic events. This review examines the findings of these studies and discusses the implications of these findings on decisions relating to thromboprophylaxis use in the clinical setting. Ultimately, the integration of tumor molecular genomic information into clinical VTE risk stratification scores in cancer patients may prove to be a major advancement in the prevention of cancer-associated thrombosis.
Collapse
Affiliation(s)
- Orly Leiva
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02215, USA;
- Harvard Medical School, Boston, MA 02215, USA;
| | - Jean M. Connors
- Harvard Medical School, Boston, MA 02215, USA;
- Hematology Division, Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Hanny Al-Samkari
- Harvard Medical School, Boston, MA 02215, USA;
- Division of Hematology Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
- Correspondence: ; Tel.: +1-617-643-6214
| |
Collapse
|
33
|
Di Rosa M, Giallongo C, Romano A, Tibullo D, Li Volti G, Musumeci G, Barbagallo I, Imbesi R, Castrogiovanni P, Palumbo GA. Immunoproteasome Genes Are Modulated in CD34 + JAK2 V617F Mutated Cells from Primary Myelofibrosis Patients. Int J Mol Sci 2020; 21:2926. [PMID: 32331228 PMCID: PMC7216198 DOI: 10.3390/ijms21082926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
Primary myelofibrosis (PMF) is a rare myeloproliferative neoplasm characterized by stem-cell-derived clonal over-proliferation of mature myeloid lineages, bone marrow fibrosis, osteosclerosis, defective erythropoiesis, and pro-inflammatory cytokine over-expression. The aim of the present study was to highlight possible differences in the transcriptome among CD34+ cells from peripheral blood (PB) of PMF patients. Therefore, we merged two microarray datasets of healthy control subjects and PMF (34 JAK2V617F MUTATED and 28 JAK2 wild-type). The GO analysis of upregulated genes revealed enrichment for JAK2/STAT1 pathway gene set in PB CD34+ cells of PMF patients with and without the JAK2V617F mutation comparing to the healthy control subjects, and in particular a significant upregulation of immunoproteasome (IP)-belonging genes as PSMB8, PSMB9, and PSMB10. A more detailed investigation of the IFN-gamma (IFNG) pathway also revealed that IFNG, IRF1, and IFNGR2 were significantly upregulated in PB CD34+ cells of PMF patients carrying the mutation for JAK2V617F compared to JAK2 wild-type PMF patients. Finally, we showed an upregulation of HLA-class I genes in PB CD34+ cells from PMF JAK2V617F mutated patients compared to JAK2 wild-type and healthy controls. In conclusion, our results demonstrate that IPs and IFNG pathways could be involved in PMF disease and in particular in patients carrying the JAK2V617F mutation.
Collapse
Affiliation(s)
- Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, 95125 Catania, Italy; (R.I.); (P.C.)
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95125 Catania, Italy; (C.G.); (G.A.P.)
| | - Alessandra Romano
- Division of Hematology, A.O.U. Policlinic-OVE, University of Catania, 95122 Catania, Italy;
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Medical Biochemistry Section, University of Catania, 95125 Catania, Italy; (D.T.); (G.L.V.)
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Medical Biochemistry Section, University of Catania, 95125 Catania, Italy; (D.T.); (G.L.V.)
| | - Giuseppe Musumeci
- Research Center on Motor Activities (CRAM), University of Catania, 95125 Catania, Italy;
| | - Ignazio Barbagallo
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy;
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, 95125 Catania, Italy; (R.I.); (P.C.)
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, 95125 Catania, Italy; (R.I.); (P.C.)
| | - Giuseppe A. Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95125 Catania, Italy; (C.G.); (G.A.P.)
| |
Collapse
|
34
|
Segura-Díaz A, Stuckey R, Florido Y, González-Martín JM, López-Rodríguez JF, Sánchez-Sosa S, González-Pérez E, Sáez Perdomo MN, Perera MDM, de la Iglesia S, Molero-Labarta T, Gómez-Casares MT, Bilbao-Sieyro C. Thrombotic Risk Detection in Patients with Polycythemia Vera: The Predictive Role of DNMT3A/TET2/ASXL1 Mutations. Cancers (Basel) 2020; 12:E934. [PMID: 32290079 PMCID: PMC7226609 DOI: 10.3390/cancers12040934] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/25/2022] Open
Abstract
The development of thrombotic events is common among patients with polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). We studied the influence of pathogenic mutations frequently associated with myeloid malignancies on thrombotic events using next-generation sequencing (NGS) in an initial cohort of 68 patients with myeloproliferative neoplasms (MPN). As expected, the presence of mutations in DNMT3A, TET2, and ASXL1 (DTA genes) was positively associated with age for the whole cohort (p = 0.025, OR: 1.047, 95% CI: 1.006-1.090). Also, while not related with events in the whole cohort, DTA mutations were strongly associated with the development of vascular events in PV patients (p = 0.028). To confirm the possible association between the presence of DTA mutation and thrombotic events, we performed a case-control study on 55 age-matched patients with PV (including 12 PV patients from the initial cohort, 25 with event vs. 30 no event). In the age-matched case-control PV cohort, the presence of ≥1 DTA mutation significantly increased the risk of a thrombotic event (OR: 6.333, p = 0.0024). Specifically, mutations in TET2 were associated with thrombotic events in the PV case-control cohort (OR: 3.56, 95% CI: 1.15-11.83, p = 0.031). Our results suggest that pathogenic DTA mutations, and particularly TET2 mutations, may be an independent risk factor for thrombosis in patients with PV. However, the predictive value of TET2 and DTA mutations in ET and PMF was inconclusive and should be determined in a larger cohort.
Collapse
Affiliation(s)
- Adrián Segura-Díaz
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | - Ruth Stuckey
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | - Yanira Florido
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | - Jesús María González-Martín
- Investigation Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | | | - Santiago Sánchez-Sosa
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | - Elena González-Pérez
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | - María Nieves Sáez Perdomo
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | - María Del Mar Perera
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | - Silvia de la Iglesia
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | - Teresa Molero-Labarta
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
- Department of Medical Sciences, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - María Teresa Gómez-Casares
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
- Department of Medical Sciences, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Cristina Bilbao-Sieyro
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
- Morphology Department, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
35
|
Elli EM, Baratè C, Mendicino F, Palandri F, Palumbo GA. Mechanisms Underlying the Anti-inflammatory and Immunosuppressive Activity of Ruxolitinib. Front Oncol 2019; 9:1186. [PMID: 31788449 PMCID: PMC6854013 DOI: 10.3389/fonc.2019.01186] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022] Open
Abstract
The JAK-STAT signaling pathway plays a central role in signal transduction in hematopoietic cells, as well as in cells of the immune system. The occurrence in most patients affected by myeloproliferative neoplasms (MPNs) of driver mutations resulting in the constitutive activation of JAK2-dependent signaling identified the deregulated JAK-STAT signal transduction pathway as the major pathogenic mechanism of MPNs. It also prompted the development of targeted drugs for MPNs. Ruxolitinib is a potent and selective oral inhibitor of both JAK2 and JAK1 protein kinases. Its use in patients with myelofibrosis is associated with a substantial reduction in spleen volume, attenuation of symptoms and decreased mortality. With growing clinical experience, concerns about infectious complications, and increased risk of B-cell lymphoma, presumably caused by the effects of JAK1/2 inhibition on immune response and immunosurveillance, have been raised. Evidence shows that ruxolitinib exerts potent anti-inflammatory and immunosuppressive effects. Cellular targets of ruxolitinib include various components of both the innate and adaptive immune system, such as natural killer cells, dendritic cells, T helper, and regulatory T cells. On the other hand, immunomodulatory properties have proven beneficial in some instances, as highlighted by the successful use of ruxolitinib in corticosteroid-resistant graft vs. host disease. The objective of this article is to provide an overview of published evidence addressing the key question of the mechanisms underlying ruxolitinib-induced immunosuppression.
Collapse
Affiliation(s)
- Elena Maria Elli
- Hematology Division and Bone Marrow Transplant Unit, Ospedale San Gerardo, ASST Monza, Monza, Italy
| | - Claudia Baratè
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Francesco Mendicino
- Hematology Unit, Department of Hemato-Oncology, Ospedale Annunziata, Cosenza, Italy
| | - Francesca Palandri
- Institute of Hematology "L. and A. Seràgnoli", Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Giuseppe Alberto Palumbo
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania, Italy
| |
Collapse
|
36
|
Iurlo A, Elli EM, Palandri F, Cattaneo D, Bossi A, Cortinovis I, Bucelli C, Orofino N, Brioschi F, Auteri G, Bianchi P, Fabris S, Isimbaldi G, Sabattini E, Baldini L, Gianelli U. Integrating clinical, morphological, and molecular data to assess prognosis in patients with primary myelofibrosis at diagnosis: A practical approach. Hematol Oncol 2019; 37:424-433. [PMID: 31359447 DOI: 10.1002/hon.2658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/29/2022]
Abstract
Currently available prognostic scoring systems in primary myelofibrosis (PMF) do not integrate clinical, histological, and molecular data, or they also required information on "other" mutations that are available in the clinical practice only in a very limited number of laboratories. In the present multicenter study, including 401 PMF patients, an integrated International Prognostic Scoring System (I-IPSS) was developed by combining IPSS, grade of bone marrow fibrosis (GBMF), and driver mutations molecular status (MS) to define PMF prognosis at diagnosis. Four prognostic categories were identified: I-IPSS-low risk (113 patients), I-IPSS-intermediate-1 risk (56 patients), I-IPSS-intermediate-2 risk (154 patients), and I-IPSS-high risk (78 patients). Median overall survival was 26.7 years in I-IPSS-intermediate-1, 10.8 in I-IPSS-intermediate-2, and 6.4 in I-IPSS-high-risk patients (log-rank test <0.0001); instead, it was not reached in the I-IPSS-low-risk cohort because of the extremely low number of registered deaths. The addition of GBMF and MS to IPSS improved the efficacy for predicting the risk of death. Indeed, the sensitivity of I-IPSS was significantly higher (P < .05) than that of IPSS, considering both total deaths and 5- and 10-year mortality. This comprehensive approach allows clinicians to evaluate mutual interactions between IPSS, GBMF, and MS and identify high-risk patients with poor prognosis who may benefit from aggressive treatments. More importantly, this integrated score can be easily applicable worldwide as it only required information that represent the good clinical practice in the management of PMF patients.
Collapse
Affiliation(s)
- Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Elena Maria Elli
- Hematology Division, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Francesca Palandri
- Institute of Hematology, "L. and A. Seràgnoli", S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Anna Bossi
- Laboratory G. A. Maccacaro, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Ivan Cortinovis
- Laboratory G. A. Maccacaro, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Cristina Bucelli
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Nicola Orofino
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Filippo Brioschi
- Hematology Division, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Giuseppe Auteri
- Institute of Hematology, "L. and A. Seràgnoli", S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Paola Bianchi
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Sonia Fabris
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Elena Sabattini
- Institute of Hematology, "L. and A. Seràgnoli", S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Luca Baldini
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Umberto Gianelli
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, and Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|