1
|
Akkaya PN, Miranda M, Almansa I, Elmas C, Trifunovic D, Hosseinzadeh Z, Sahaboglu A. PARP inhibition preserves cone photoreceptors in rd2 retina. Acta Neuropathol Commun 2025; 13:68. [PMID: 40170065 PMCID: PMC11963520 DOI: 10.1186/s40478-025-01982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/08/2025] [Indexed: 04/03/2025] Open
Abstract
The rd2 mouse model, characterized by a mutation in the Prph2 gene, exhibits abnormal development of photoreceptor outer segments, resulting in progressive retinal degeneration. While the correlation between poly-ADP-ribose polymerase (PARP) activity and the degeneration of rod photoreceptors is established in the rd2 model, the specific mechanism driving cone degeneration in this model remains unclear. Furthermore, it is yet to be determined whether inhibiting PARP activity can effectively impede the degeneration of cone photoreceptors in this context. We demonstrated that PARP inhibitors Olaparib, BMN-673, and 3-aminobenzamide (3AB), effectively reduced photoreceptor cell loss in the rd2 retina. Notably, rd2 retinas exhibited decreased cone density, but treatment with PARP inhibitors significantly protected cone photoreceptors. The PARP inhibitors, particularly BMN-673, demonstrated a significant protective effect as evidenced by increased rhodopsin expression within the outer segment and a concurrent decrease in Müller cell activity indicated by GFAP expression. The treatment also resulted in significant changes for markers of oxidative stress, such as glutathione (GSH), and oxidized glutathione (GSSG). Notably, the administration of PARP inhibitors also reduced CD9 expression (extracellular vesicle marker), which were significantly increased within the outer nuclear layer (ONL) in the rd2 retinas. Among PARP inhibitors, BMN-673 demonstrated the highest efficacy in preserving photoreceptors, particularly benefiting cone cells.
Collapse
Affiliation(s)
- Pakize Nur Akkaya
- Department of Histology-Embryology, Balikesir University Faculty of Medicine, Balikesir, Türkiye
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, Netherlands
| | - María Miranda
- Departamento Ciencias Biomédicas, Facultad de Ciencias de La Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Inmaculada Almansa
- Departamento Ciencias Biomédicas, Facultad de Ciencias de La Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Cigdem Elmas
- Department of Histology-Embryology, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Dragana Trifunovic
- Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University, Tübingen, Germany
| | - Zohreh Hosseinzadeh
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Ayse Sahaboglu
- Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
2
|
Zhu S, Zhu R, Wang Y, Zhu J, Zong Y, Zhu L, Guo W. Comprehensive systems biology analysis reveals splicing factor contributions to cutaneous melanoma progression. Sci Rep 2025; 15:9486. [PMID: 40108329 PMCID: PMC11923367 DOI: 10.1038/s41598-025-93695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Cutaneous melanoma (CM) is an aggressive skin cancer with high metastatic potential and poor prognosis. Splicing factors, which regulate pre-mRNA alternative splicing (AS) events, have been suggested as potential therapeutic targets in CM. The objective of this study was to identify candidate splicing factors involved in CM through a systems biology approach and to elucidate their roles in CM progression. 390 AS events associated with patient survival were identified using bivariate Cox regression and receiver operating characteristic (ROC) analyses. 121 splicing factors significantly associated with patient prognosis were screened by univariate Cox regression analysis. A bipartite association network between AS events and splicing factors was constructed using Spearman correlation analysis. Based on the network topology, five candidate splice factors were identified. Among them, U2SURP, a poorly characterized serine/arginine-rich protein family member, was selected for further analysis in CM. Results indicated that U2SURP gene expression was significantly negatively correlated with the Immune Infiltration Score, the infiltration levels of dendritic cells, gamma-delta T cells, natural killer (NK) cells, and cytotoxic cells, as well as the expression of the immune checkpoint gene PD-1, suggesting that U2SURP may serve as a potential target for CM immunotherapy. Experimental validation showed that U2SURP mRNA and protein were overexpressed in CM cells, and silencing of U2SURP using siRNA significantly reduced CM cell survival, proliferation and migration. Furthermore, single-cell functional analysis showed that U2SURP gene expression was positively correlated with CM cell proliferation and differentiation. This study systematically identified candidate splicing factors involved in CM and provided new insights into the role of U2SURP in CM progression. These findings contribute to a deeper understanding of the pathogenesis of CM and establish new approaches for identifying splicing-related cancer therapeutic targets.
Collapse
Affiliation(s)
- Shuting Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Rui Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yanna Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Junru Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yifan Zong
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Liucun Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Li Y, Sun Y, Jia B, Ma Z, Zhou R. MED23 depletion induces premature senescence in NSCLC cells by interacting with BCLAF1 and then suppressing NUPR1 expression. Biochem Biophys Res Commun 2024; 734:150754. [PMID: 39366174 DOI: 10.1016/j.bbrc.2024.150754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Lung cancer is the leading cause of cancer death worldwide. 85 % of lung cancers are categorized by their histological types as a non-small cell lung cancer (NSCLC) subtype. While the MED23 subunit of the mediator complex has been implicated in lung cancer development, the precise underlying mechanism remains unclear. Our research indicates that elevated MED23 expression is linked to reduced overall survival rates in NSCLC. Depletion of MED23 triggers premature senescence in NSCLC cells. Furthermore, through co-IP and mass spectrometry analyses, we have identified BCLAF1 as a binding partner of MED23, with subsequent confirmation via PLA assays. Subsequently, NUPR1, a transcriptional cofactor known to induce premature senescence in lung cancer cells by disrupting autophagic processes, was validated as a downstream target of the MED23/BCLAF1 complex through RNA-seq and ChIP assays. Thus, the interaction between MED23 and BCLAF1 regulates NUPR1 expression, impacting autophagic flux and leading to premature senescence in NSCLC cells.
Collapse
Affiliation(s)
- Yanzhe Li
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yanan Sun
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Bona Jia
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhenyi Ma
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ruimin Zhou
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
4
|
Schulz D, Feulner L, Santos Rubenich D, Heimer S, Rohrmüller S, Reinders Y, Falchetti M, Wetzel M, Braganhol E, Lummertz da Rocha E, Schäfer N, Stöckl S, Brockhoff G, Wege AK, Fritsch J, Pohl F, Reichert TE, Ettl T, Bauer RJ. Subcellular localization of PD-L1 and cell-cycle-dependent expression of nuclear PD-L1 variants: implications for head and neck cancer cell functions and therapeutic efficacy. Mol Oncol 2024; 18:431-452. [PMID: 38103190 PMCID: PMC10850815 DOI: 10.1002/1878-0261.13567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/24/2023] [Accepted: 12/13/2023] [Indexed: 12/18/2023] Open
Abstract
The programmed cell death 1 ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) axis is primarily associated with immunosuppression in cytotoxic T lymphocytes (CTLs). However, mounting evidence is supporting the thesis that PD-L1 not only functions as a ligand but mediates additional cellular functions in tumor cells. Moreover, it has been demonstrated that PD-L1 is not exclusively localized at the cellular membrane. Subcellular fractionation revealed the presence of PD-L1 in various cellular compartments of six well-characterized head and neck cancer (HNC) cell lines, including the nucleus. Via Western blotting, we detected PD-L1 in its well-known glycosylated/deglycosylated state at 40-55 kDa. In addition, we detected previously unknown PD-L1 variants with a molecular weight at approximately 70 and > 150 kDa exclusively in nuclear protein fractions. These in vitro findings were confirmed with primary tumor samples from head and neck squamous cell carcinoma (HNSCC) patients. Furthermore, we demonstrated that nuclear PD-L1 variant expression is cell-cycle-dependent. Immunofluorescence staining of PD-L1 in different cell cycle phases of synchronized HNC cells supported these observations. Mechanisms of nuclear PD-L1 trafficking remain less understood; however, proximity ligation assays showed a cell-cycle-dependent interaction of the cytoskeletal protein vimentin with PD-L1, whereas vimentin could serve as a potential shuttle for nuclear PD-L1 transportation. Mass spectrometry after PD-L1 co-immunoprecipitation, followed by gene ontology analysis, indicated interaction of nuclear PD-L1 with proteins involved in DNA remodeling and messenger RNA (mRNA) splicing. Our results in HNC cells suggest a highly complex regulation of PD-L1 and multiple tumor cell-intrinsic functions, independent of immune regulation. These observations bear significant implications for the therapeutic efficacy of immune checkpoint inhibition.
Collapse
Affiliation(s)
- Daniela Schulz
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| | - Laura Feulner
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| | - Dominique Santos Rubenich
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
- Postgraduation program in BiosciencesFederal University of Health Sciences from Porto AlegreBrazil
| | - Sina Heimer
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
| | - Sophia Rohrmüller
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| | - Yvonne Reinders
- Leibniz‐Institute for Analytical Sciences, ISAS e.V.DortmundGermany
| | - Marcelo Falchetti
- Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Martin Wetzel
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| | - Elizandra Braganhol
- Department of Basic Health SciencesFederal University of Health Sciences from Porto AlegreBrazil
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Nicole Schäfer
- Department of Orthopaedic Surgery, Experimental OrthopaedicsUniversity of RegensburgGermany
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| | - Sabine Stöckl
- Department of Orthopaedic Surgery, Experimental OrthopaedicsUniversity of RegensburgGermany
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| | - Gero Brockhoff
- Department of Gynecology and ObstetricsUniversity Medical Center RegensburgGermany
| | - Anja K. Wege
- Department of Gynecology and ObstetricsUniversity Medical Center RegensburgGermany
| | - Jürgen Fritsch
- Department of Infection Prevention and Infectious DiseasesUniversity Medical Center RegensburgGermany
| | - Fabian Pohl
- Department of RadiotherapyUniversity Medical Center RegensburgGermany
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
| | - Tobias Ettl
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
| | - Richard J. Bauer
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| |
Collapse
|
5
|
Pait MC, Kaye SD, Su Y, Kumar A, Singh S, Gironda SC, Vincent S, Anwar M, Carroll CM, Snipes JA, Lee J, Furdui CM, Deep G, Macauley SL. Novel method for collecting hippocampal interstitial fluid extracellular vesicles (EV ISF ) reveals sex-dependent changes in microglial EV proteome in response to Aβ pathology. J Extracell Vesicles 2024; 13:e12398. [PMID: 38191961 PMCID: PMC10774707 DOI: 10.1002/jev2.12398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
Brain-derived extracellular vesicles (EVs) play an active role in Alzheimer's disease (AD), relaying important physiological information about their host tissues. The internal cargo of EVs is protected from degradation, making EVs attractive AD biomarkers. However, it is unclear how circulating EVs relate to EVs isolated from disease-vulnerable brain regions. We developed a novel method for collecting EVs from the hippocampal interstitial fluid (ISF) of live mice. EVs (EVISF ) were isolated via ultracentrifugation and characterized by nanoparticle tracking analysis, immunogold labelling, and flow cytometry. Mass spectrometry and proteomic analyses were performed on EVISF cargo. EVISF were 40-150 nm in size and expressed CD63, CD9, and CD81. Using a model of cerebral amyloidosis (e.g., APPswe, PSEN1dE9 mice), we found protein concentration increased but protein diversity decreased with Aβ deposition. Genotype, age, and Aβ deposition modulated proteostasis- and immunometabolic-related pathways. Changes in the microglial EVISF proteome were sexually dimorphic and associated with a differential response of plaque associated microglia. We found that female APP/PS1 mice have more amyloid plaques, less plaque associated microglia, and a less robust- and diverse- EVISF microglial proteome. Thus, in vivo microdialysis is a novel technique for collecting EVISF and offers a unique opportunity to explore the role of EVs in AD.
Collapse
Affiliation(s)
- Morgan C. Pait
- Department of Physiology & PharmacologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Sarah D. Kaye
- Department of Physiology & PharmacologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Yixin Su
- Department of Cancer BiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Ashish Kumar
- Department of Cancer BiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Sangeeta Singh
- Department of Cancer BiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Stephen C. Gironda
- Department of Physiology & PharmacologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Samantha Vincent
- Department of Physiology & PharmacologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Maria Anwar
- Department of Physiology & PharmacologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Caitlin M. Carroll
- Department of Physiology & PharmacologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - James Andy Snipes
- Department of Physiology & PharmacologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jingyun Lee
- Department of Internal MedicineSection on Molecular MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Proteomics and Metabolomics Shared ResourceWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Cristina M. Furdui
- Department of Internal MedicineSection on Molecular MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Proteomics and Metabolomics Shared ResourceWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Atrium Health Wake Forest Baptist Comprehensive Cancer CenterWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Gagan Deep
- Department of Cancer BiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Atrium Health Wake Forest Baptist Comprehensive Cancer CenterWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Center for Research on Substance Use and AddictionWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- J Paul Sticht Center for Healthy Aging and Alzheimer's PreventionWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Shannon L. Macauley
- Department of Physiology & PharmacologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- J Paul Sticht Center for Healthy Aging and Alzheimer's PreventionWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Internal MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Alzheimer's Disease Research CenterWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Center for Diabetes and MetabolismWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Cardiovascular Sciences CenterWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
6
|
Yao B, Lu Y, Li Y, Bai Y, Wei X, Yang Y, Yao D. BCLAF1-induced HIF-1α accumulation under normoxia enhances PD-L1 treatment resistances via BCLAF1-CUL3 complex. Cancer Immunol Immunother 2023; 72:4279-4292. [PMID: 37906282 PMCID: PMC10700218 DOI: 10.1007/s00262-023-03563-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023]
Abstract
Bcl-2-associated transcription factor-1 (BCLAF1), an apoptosis-regulating protein of paramount significance, orchestrates the progression of various malignancies. This study reveals increased BCLAF1 expression in hepatocellular carcinoma (HCC) patients, in whom elevated BCLAF1 levels are linked to escalated tumor grades and diminished survival rates. Moreover, novel BCLAF1 expression is particularly increased in HCC patients who were not sensitive to the combined treatment of atezolizumab and bevacizumab, but not in patients who had tumors that responded to the combined regimen. Notably, overexpression of BCLAF1 increases HCC cell proliferation in vitro and in vivo, while the conditioned medium derived from cells overexpressing BCLAF1 strikingly enhances the tube-formation capacity of human umbilical vein endothelial cells. Furthermore, compelling evidence demonstrates that BCLAF1 attenuates the expression of prolyl hydroxylase domain protein 2 (PHD2) and governs the stability of hypoxia-inducible factor-1α (HIF-1α) under normoxic conditions without exerting any influence on transcription, as determined by Western blot and RT‒qPCR analyses. Subsequently, employing coimmunoprecipitation and immunofluorescence, we validated the reciprocal interaction between BCLAF1 and Cullin 3 (CUL3), through which BCLAF1 actively upregulates the ubiquitination and degradation of PHD2. The Western blot and RT‒qPCR results suggests that programmed death ligand-1 (PD-L1) is one of the downstream responders to HIF-1α in HCC. Thus, we reveal the pivotal role of BCLAF1 in promoting PD-L1 transcription and, through binding to CUL3, in promoting the accumulation of HIF-1α under normoxic conditions, thereby facilitating the ubiquitination and degradation of PHD2.
Collapse
Affiliation(s)
- Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ye Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yazhao Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yixue Bai
- Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinyu Wei
- Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yuanyuan Yang
- Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Demao Yao
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
7
|
Gao L, Lu Y, Chen HN, Li Z, Hu M, Zhang R, Wang X, Xu Z, Gong Y, Wang R, Du D, Hai S, Li S, Su D, Li Y, Xu H, Zhou ZG, Dai L. Deciphering the Clinical Significance and Kinase Functions of GSK3α in Colon Cancer by Proteomics and Phosphoproteomics. Mol Cell Proteomics 2023; 22:100545. [PMID: 37031867 PMCID: PMC10196724 DOI: 10.1016/j.mcpro.2023.100545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/11/2023] Open
Abstract
GSK3α and GSK3β are two GSK3 isoforms with 84% overall identity and 98% identity in their catalytic domains. GSK3β plays important roles in the pathogenesis of cancer, while GSK3α has long been considered a functionally redundant protein of GSK3β. Few studies have specifically investigated the functions of GSK3α. In this study, unexpectedly, we found that the expression of GSK3α, but not GSK3β, was significantly correlated with the overall survival of colon cancer patients in 4 independent cohorts. To decipher the roles of GSK3α in colon cancer, we profiled the phosphorylation substrates of GSK3α and uncovered 156 phosphosites from 130 proteins specifically regulated by GSK3α. A number of these GSK3α-mediated phosphosites have never been reported before or have been incorrectly identified as substrates of GSK3β. Among them, the levels of HSF1S303p, CANXS583p, MCM2S41p, POGZS425p, SRRM2T983p, and PRPF4BS431p were significantly correlated with the overall survival of colon cancer patients. Further pull-down assays identified 23 proteins, such as THRAP3, BCLAF1, and STAU1, showing strong binding affinity to GSK3α. The interaction between THRAP3 and GSK3α was verified by biochemical experiments. Notably, among the 18 phosphosites of THRAP3, phosphorylation at S248, S253, and S682 is specifically mediated by GSK3α. Mutation of S248 to D (S248D), which mimics the effect of phosphorylation, obviously increased cancer cell migration and the binding affinity to proteins related to DNA damage repair. Collectively, this work not only discloses the specific function of GSK3α as a kinase but also suggests GSK3α as a promising therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Li Gao
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Lu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hai-Ning Chen
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhigui Li
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Hu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rou Zhang
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiuxuan Wang
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiqiang Xu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Wang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Hai
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Su
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Li
- Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zong-Guang Zhou
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China; Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Fackenthal JD. Alternative mRNA Splicing and Promising Therapies in Cancer. Biomolecules 2023; 13:biom13030561. [PMID: 36979496 PMCID: PMC10046298 DOI: 10.3390/biom13030561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Cancer is among the leading causes of mortality worldwide. While considerable attention has been given to genetic and epigenetic sources of cancer-specific cellular activities, the role of alternative mRNA splicing has only recently received attention as a major contributor to cancer initiation and progression. The distribution of alternate mRNA splicing variants in cancer cells is different from their non-cancer counterparts, and cancer cells are more sensitive than non-cancer cells to drugs that target components of the splicing regulatory network. While many of the alternatively spliced mRNAs in cancer cells may represent "noise" from splicing dysregulation, certain recurring splicing variants have been shown to contribute to tumor progression. Some pathogenic splicing disruption events result from mutations in cis-acting splicing regulatory sequences in disease-associated genes, while others may result from shifts in balance among naturally occurring alternate splicing variants among mRNAs that participate in cell cycle progression and the regulation of apoptosis. This review provides examples of cancer-related alternate splicing events resulting from each step of mRNA processing and the promising therapies that may be used to address them.
Collapse
Affiliation(s)
- James D Fackenthal
- Department of Biological Sciences, College of Science and Health, Benedictine University, Lisle, IL 60532, USA
| |
Collapse
|
9
|
Gastric cancer derived mesenchymal stem cells promoted DNA repair and cisplatin resistance through up-regulating PD-L1/Rad51 in gastric cancer. Cell Signal 2023; 106:110639. [PMID: 36842523 DOI: 10.1016/j.cellsig.2023.110639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
Chemotherapy resistance in advanced gastric cancer (GC) patients has largely limited the effectiveness of therapy, resulting in disease recurrence and poor prognosis. Gastric cancer derived mesenchymal stem cells (GCMSC) are widely believed to promote GC invasion, metastasis and immune escape via up-regulating programmed death ligand 1 (PD-L1). However, the mechanism by which PD-L1 mediated by GCMSC might regulate the chemoresistance is unknown in GC. Herein, higher half maximal inhibitory concentrations (IC50) and less apoptotic rate were observed in GCMSC conditioned medium (GCMSC-CM) treated GC cells exposed to cisplatin (DDP), along with high expression of multi-drug resistance 1 (MDR1) and DNA repair related genes such as Rad51. The knockdown of PD-L1 reversed the increase of Rad51 mediated by GCMSC-CM, resulting in the increased sensitivity of GC cells to DDP. In addition, inhibition of heat shock protein 90 (HSP90) regulated the expression of PD-L1 and Rad51, revealing the important role of HSP90 in GCMSC-CM mediated DDP resistance. Consistent with the observations in vitro, analysis of patient samples and xenograft models further confirmed that reduction of PD-L1 or HSP90 weakened DDP tolerance mediated by GCMSC-CM, along with decrease of Rad51 and MDR1. In conclusion, we demonstrated that GCMSC-CM enhanced DDP resistance in GC cells through regulating PD-L1-Rad51. It is the first to report this particular mechanism of DDP resistance induced by GCMSC in GC, suggesting a potential therapeutic targets for DDP resistant GC cells.
Collapse
|
10
|
Systematic proximal mapping of the classical RAD51 paralogs unravel functionally and clinically relevant interactors for genome stability. PLoS Genet 2022; 18:e1010495. [DOI: 10.1371/journal.pgen.1010495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2022] Open
Abstract
Homologous recombination (HR) plays an essential role in the maintenance of genome stability by promoting the repair of cytotoxic DNA double strand breaks (DSBs). More recently, the HR pathway has emerged as a core component of the response to replication stress, in part by protecting stalled replication forks from nucleolytic degradation. In that regard, the mammalian RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) have been involved in both HR-mediated DNA repair and collapsed replication fork resolution. Still, it remains largely obscure how they participate in both processes, thereby maintaining genome stability and preventing cancer development. To gain better insight into their contribution in cellulo, we mapped the proximal interactome of the classical RAD51 paralogs using the BioID approach. Aside from identifying the well-established BCDX2 and CX3 sub-complexes, the spliceosome machinery emerged as an integral component of our proximal mapping, suggesting a crosstalk between this pathway and the RAD51 paralogs. Furthermore, we noticed that factors involved RNA metabolic pathways are significantly modulated within the BioID of the classical RAD51 paralogs upon exposure to hydroxyurea (HU), pointing towards a direct contribution of RNA processing during replication stress. Importantly, several members of these pathways have prognostic potential in breast cancer (BC), where their RNA expression correlates with poorer patient outcome. Collectively, this study uncovers novel functionally relevant partners of the different RAD51 paralogs in the maintenance of genome stability that could be used as biomarkers for the prognosis of BC.
Collapse
|
11
|
Shi C, Qin K, Lin A, Jiang A, Cheng Q, Liu Z, Zhang J, Luo P. The role of DNA damage repair (DDR) system in response to immune checkpoint inhibitor (ICI) therapy. J Exp Clin Cancer Res 2022; 41:268. [PMID: 36071479 PMCID: PMC9450390 DOI: 10.1186/s13046-022-02469-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/18/2022] [Indexed: 11/10/2022] Open
Abstract
As our understanding of the mechanisms of cancer treatment has increased, a growing number of studies demonstrate pathways through which DNA damage repair (DDR) affects the immune system. At the same time, the varied response of patients to immune checkpoint blockade (ICB) therapy has prompted the discovery of various predictive biomarkers and the study of combination therapy. Here, our investigation explores the interactions involved in combination therapy, accompanied by a review that summarizes currently identified and promising predictors of response to immune checkpoint inhibitors (ICIs) that are useful for classifying oncology patients. In addition, this work, which discusses immunogenicity and several components of the tumor immune microenvironment, serves to illustrate the mechanism by which higher response rates and improved efficacy of DDR inhibitors (DDRi) in combination with ICIs are achieved.
Collapse
|
12
|
PD-1 blockade enhances chemotherapy toxicity in oesophageal adenocarcinoma. Sci Rep 2022; 12:3259. [PMID: 35228614 PMCID: PMC8885636 DOI: 10.1038/s41598-022-07228-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/01/2022] [Indexed: 12/17/2022] Open
Abstract
Chemotherapy upregulates immune checkpoint (IC) expression on the surface of tumour cells and IC-intrinsic signalling confers a survival advantage against chemotherapy in several cancer-types including oesophageal adenocarcinoma (OAC). However, the signalling pathways mediating chemotherapy-induced IC upregulation and the mechanisms employed by ICs to protect OAC cells against chemotherapy remain unknown. Longitudinal profiling revealed that FLOT-induced IC upregulation on OE33 OAC cells was sustained for up to 3 weeks post-treatment, returning to baseline upon complete tumour cell recovery. Pro-survival MEK signalling mediated FLOT-induced upregulation of PD-L1, TIM-3, LAG-3 and A2aR on OAC cells promoting a more immune-resistant phenotype. Single agent PD-1, PD-L1 and A2aR blockade decreased OAC cell viability, proliferation and mediated apoptosis. Mechanistic insights demonstrated that blockade of the PD-1 axis decreased stem-like marker ALDH and expression of DNA repair genes. Importantly, combining single agent PD-1, PD-L1 and A2aR blockade with FLOT enhanced cytotoxicity in OAC cells. These findings reveal novel mechanistic insights into the immune-independent functions of IC-intrinsic signalling in OAC cells with important clinical implications for boosting the efficacy of the first-line FLOT chemotherapy regimen in OAC in combination with ICB, to not only boost anti-tumour immunity but also to suppress IC-mediated promotion of key hallmarks of cancer that drive tumour progression.
Collapse
|
13
|
Xia S, Li X, Xu S, Ni X, Zhan W, Zhou W. Sublethal heat treatment promotes breast cancer metastasis and its molecular mechanism revealed by quantitative proteomic analysis. Aging (Albany NY) 2022; 14:1389-1406. [PMID: 35150481 PMCID: PMC8876919 DOI: 10.18632/aging.203884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 10/03/2021] [Indexed: 11/30/2022]
Abstract
Radiofrequency ablation (RFA) is a frequently used thermal ablation technique for breast tumors. The study aimed to identify the effect of sublethal heat treatment on biological function of breast cancer cells and reveal its potential molecular mechanism. The expression profile of dysregulated proteins in sublethal heat treated breast cancer cells was analyzed by quantitative proteomic analysis. The differentially expressed proteins in the sublethal heat treated breast cancer were identified. The potential biological functions of these proteins were evaluated. The proliferation and invasion ability of breast cancer cells were enhanced after sublethal heat treatment. The expression profile of proteins in sublethal heat treated breast cancer cells was abundant, and most of which were newly discovered. A total of 206 differentially expressed proteins were identified. Among them, 101 proteins were downregulated while 105 proteins were upregulated. GO and KEGG analysis indicated that various systems were involved in the process of sublethal heat treatment including cancer, immune system, et al. Immunohistochemistry staining showed that the expression of Heat shock protein 1B, NOB1 and CRIP1 was highly expressed while the expression of BCLAF1 was lower in sublethal heat treated group. The proliferation and invasion ability of breast cancer cells were enhanced after sublethal heat treatment. Sublethal heat treatment caused gene alterations in cancer and immune system. Heat shock protein 1B, NOB1 and CRIP1 were upregulated while BCLAF1 was downregulated in breast cancer after sublethal heat treatment.
Collapse
Affiliation(s)
- Shujun Xia
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Li
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shangyan Xu
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Ni
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Zhan
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Ultrasound, Ruijin Hospital Luwan Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
An ATM/CHK2 Signaling Pathway Induces Nuclear Translocation of SRPK2 in Cisplatin-Treated HeLa Cells. Processes (Basel) 2021. [DOI: 10.3390/pr9122223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chemotherapeutic agents are frequently used to treat various cancers, but the mechanisms mediating the cellular response to the drugs are still not fully understood. We previously reported that the nuclear translocation of serine/arginine protein kinases (SRPKs), triggered by the exposure of cells to DNA damage-inducers, plays a pivotal role in drug responsiveness. Here, we investigated the mechanism linking the nuclear accumulation of SRPK2 to the cisplatin treatment of HeLa cells. We present experimental evidence that nuclear SRPK2 acts downstream of Chk2 in the ATM/Chk2 cascade. The inhibition of ATM or Chk2 kinase activity by specific low-molecular-weight inhibitors restricted SRPK2 to the cytoplasm and conferred tolerance to cisplatin treatment. A similar effect was achieved by treating cells with SRPIN340, a selective SRPK1/2 inhibitor, thus confirming previous findings that kinase activity is indispensable for the nuclear import of SRPKs. These data add to previous findings that support a decisive role of SRPKs in coordinating cellular response to DNA damage.
Collapse
|
15
|
Li Y, Kardell MB, Wang F, Wang L, Zhu S, Bessho T, Peng A. The Sm core components of small nuclear ribonucleoproteins promote homologous recombination repair. DNA Repair (Amst) 2021; 108:103244. [PMID: 34768043 DOI: 10.1016/j.dnarep.2021.103244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/01/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022]
Abstract
DNA Double strand breaks (DSBs) are highly hazardous to the cell, and are repaired predominantly via non-homologous end joining (NHEJ) and homologous recombination (HR). Using DSB-mimicking DNA templates, our proteomic studies identified a group of Sm core proteins of small nuclear ribonucleoproteins (snRNPs) as potential DSB-associated proteins. We further confirmed that these Sm proteins were recruited to laser-induced DNA damage sites, and co-localized with established DNA damage repair factors. Depletion of Sm-D3 or Sm-B induced accumulation of γ-H2AX, and impaired the repair efficiency of HR, but not NHEJ. Furthermore, disruption of Sm-D3 reduced the protein level of HR factors, especially RAD51 and CHK1, but caused no change in the expression of repair factors involved in NHEJ. Mechanistically, Sm-D3 proteins bound RAD51, suppressed the ubiquitination of RAD51, and mediated the stabilization of RAD51; Sm-D3 depletion particularly impacted the level of RAD51 and CHK1 on damaged chromatin. As such, our studies characterized a role of Sm proteins in HR repair, via a new mechanism that is distinct from their conventional functions in RNA processing and gene regulation, but consistent with their direct recruitment to DNA damage sites and association with repair factors.
Collapse
Affiliation(s)
- Yanqiu Li
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Mary Bridget Kardell
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Feifei Wang
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Ling Wang
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Songli Zhu
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Tadayoshi Bessho
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aimin Peng
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA.
| |
Collapse
|
16
|
Kang HJ, Eom HJ, Kim H, Myung K, Kwon HM, Choi JH. Thrap3 promotes R-loop resolution via interaction with methylated DDX5. Exp Mol Med 2021; 53:1602-1611. [PMID: 34697388 PMCID: PMC8569202 DOI: 10.1038/s12276-021-00689-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/03/2022] Open
Abstract
Transcription-replication conflicts lead to DNA damage and genomic instability, which are closely related to human diseases. A major source of these conflicts is the formation of R-loops, which consist of an RNA-DNA hybrid and a displaced single-stranded DNA. Although these structures have been studied, many aspects of R-loop biology and R-loop-mediated genome instability remain unclear. Here, we demonstrate that thyroid hormone receptor-associated protein 3 (Thrap3) plays a critical role in regulating R-loop resolution. In cancer cells, Thrap3 interacts with DEAD-box helicase 5 (DDX5) and localizes to R-loops. Arginine-mediated methylation of DDX5 is required for its interaction with Thrap3, and the Thrap3-DDX5 axis induces the recruitment of 5'-3' exoribonuclease 2 (XRN2) into R-loops. Loss of Thrap3 increases R-loop accumulation and DNA damage. These findings suggest that Thrap3 mediates resistance to cell death by preventing R-loop accumulation in cancer cells.
Collapse
Affiliation(s)
- Hyun Je Kang
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Hye-jin Eom
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Hongtae Kim
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Kyungjae Myung
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea ,grid.42687.3f0000 0004 0381 814XCenter for Genomic Integrity (CGI), Institute for Basic Science (IBS), Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Hyug Moo Kwon
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Jang Hyun Choi
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| |
Collapse
|
17
|
Sharma AB, Erasimus H, Pinto L, Caron MC, Gopaul D, Peterlini T, Neumann K, Nazarov PV, Fritah S, Klink B, Herold-Mende CC, Niclou SP, Pasero P, Calsou P, Masson JY, Britton S, Van Dyck E. XAB2 promotes Ku eviction from single-ended DNA double-strand breaks independently of the ATM kinase. Nucleic Acids Res 2021; 49:9906-9925. [PMID: 34500463 PMCID: PMC8464071 DOI: 10.1093/nar/gkab785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
Replication-associated single-ended DNA double-strand breaks (seDSBs) are repaired predominantly through RAD51-mediated homologous recombination (HR). Removal of the non-homologous end-joining (NHEJ) factor Ku from resected seDSB ends is crucial for HR. The coordinated actions of MRE11-CtIP nuclease activities orchestrated by ATM define one pathway for Ku eviction. Here, we identify the pre-mRNA splicing protein XAB2 as a factor required for resistance to seDSBs induced by the chemotherapeutic alkylator temozolomide. Moreover, we show that XAB2 prevents Ku retention and abortive HR at seDSBs induced by temozolomide and camptothecin, via a pathway that operates in parallel to the ATM-CtIP-MRE11 axis. Although XAB2 depletion preserved RAD51 focus formation, the resulting RAD51-ssDNA associations were unproductive, leading to increased NHEJ engagement in S/G2 and genetic instability. Overexpression of RAD51 or RAD52 rescued the XAB2 defects and XAB2 loss was synthetically lethal with RAD52 inhibition, providing potential perspectives in cancer therapy.
Collapse
Affiliation(s)
- Abhishek Bharadwaj Sharma
- DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Hélène Erasimus
- DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.,Faculty of Science, Technology and Communication, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Lia Pinto
- DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.,Faculty of Science, Technology and Communication, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marie-Christine Caron
- CHU de Québec Research Center, Oncology Division, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Diyavarshini Gopaul
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Thibaut Peterlini
- CHU de Québec Research Center, Oncology Division, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Katrin Neumann
- DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Petr V Nazarov
- Quantitative Biology Unit, Multiomics Data Science Group, LIH, Luxembourg
| | - Sabrina Fritah
- NorLux Neuro-Oncology Laboratory, Department of Oncology, LIH, Luxembourg
| | - Barbara Klink
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg.,Functional Tumour Genetics Group, Department of Oncology, LIH, Luxembourg
| | | | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, LIH, Luxembourg.,Department of Biomedicine, University of Bergen, Norway
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France, Equipe Labellisée Ligue Nationale Contre le Cancer 2018
| | - Jean-Yves Masson
- CHU de Québec Research Center, Oncology Division, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France, Equipe Labellisée Ligue Nationale Contre le Cancer 2018
| | - Eric Van Dyck
- DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| |
Collapse
|
18
|
Chanarat S. UBL5/Hub1: An Atypical Ubiquitin-Like Protein with a Typical Role as a Stress-Responsive Regulator. Int J Mol Sci 2021; 22:ijms22179384. [PMID: 34502293 PMCID: PMC8431670 DOI: 10.3390/ijms22179384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 11/23/2022] Open
Abstract
Members of the ubiquitin-like protein family are known for their ability to modify substrates by covalent conjugation. The highly conserved ubiquitin relative UBL5/Hub1, however, is atypical because it lacks a carboxy-terminal di-glycine motif required for conjugation, and the whole E1-E2-E3 enzyme cascade is likely absent. Though the conjugation-mediated role of UBL5/Hub1 is controversial, it undoubtedly functions by interacting non-covalently with its partners. Several interactors of UBL5/Hub1 identified to date have suggested broad stress-responsive functions of the protein, for example, stress-induced control of pre-mRNA splicing, Fanconi anemia pathway of DNA damage repair, and mitochondrial unfolded protein response. While having an atypical mode of function, UBL5/Hub1 is still a stress protein that regulates feedback to various stimuli in a similar manner to other ubiquitin-like proteins. In this review, I discuss recent progress in understanding the functions of UBL5/Hub1 and the fundamental questions which remain to be answered.
Collapse
Affiliation(s)
- Sittinan Chanarat
- Laboratory of Molecular Cell Biology, Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
19
|
The Function and Prognostic Value of RNA-Binding Proteins in Colorectal Adenocarcinoma Were Analyzed Based on Bioinformatics of Smart Medical Big Data. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5536330. [PMID: 34188789 PMCID: PMC8192207 DOI: 10.1155/2021/5536330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022]
Abstract
Colon cancer is the third most frequent cancer in the world and is mainly adenocarcinoma in terms of pathological type. It has been confirmed that the dysregulation of RNA-binding proteins (RBPs) significantly participates in the occurrence and development of numerous malignant tumors. Therefore, we analyzed the RBPs associated with colon adenocarcinoma (COAD) to assess their possible biological effects and prognostic value. A total of 398 COAD tissue datasets and 39 normal tissue datasets were retrieved from the TCGA data resource and screened out the RBPs, which are differentially expressed between tumor tissues and nontumor tissues. Then, bioinformatics analyses based on smart medical big data were conducted on these RBPs. Overall, 181 differentially expressed RBPs were uncovered, consisting of 121 upregulated RBPs and 60 downregulated RBPs. Finally, we selected 7 prognostic-related RBPs with research prospects and constructed a prognostic model according to the median risk score. There were remarkable differences in OS between the high-risk and low-risk groups. In addition, the performance of the prognostic model was evaluated and verified with other COAD patient data in the TCGA database. The results showed that the area under the ROC curve (AUC) for the train group was 0.744 and the one for the test group was 0.661, confirming that the model assesses patients' prognosis to some extent. And based on 7 hub RBPs, we constructed a nomogram as a reference for evaluating the survival rate of COAD patients.
Collapse
|
20
|
Fishbein A, Hammock BD, Serhan CN, Panigrahy D. Carcinogenesis: Failure of resolution of inflammation? Pharmacol Ther 2021; 218:107670. [PMID: 32891711 PMCID: PMC7470770 DOI: 10.1016/j.pharmthera.2020.107670] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Inflammation in the tumor microenvironment is a hallmark of cancer and is recognized as a key characteristic of carcinogens. However, the failure of resolution of inflammation in cancer is only recently being understood. Products of arachidonic acid and related fatty acid metabolism called eicosanoids, including prostaglandins, leukotrienes, lipoxins, and epoxyeicosanoids, critically regulate inflammation, as well as its resolution. The resolution of inflammation is now appreciated to be an active biochemical process regulated by endogenous specialized pro-resolving lipid autacoid mediators which combat infections and stimulate tissue repair/regeneration. Environmental and chemical human carcinogens, including aflatoxins, asbestos, nitrosamines, alcohol, and tobacco, induce tumor-promoting inflammation and can disrupt the resolution of inflammation contributing to a devastating global cancer burden. While mechanisms of carcinogenesis have focused on genotoxic activity to induce mutations, nongenotoxic mechanisms such as inflammation and oxidative stress promote genotoxicity, proliferation, and mutations. Moreover, carcinogens initiate oxidative stress to synergize with inflammation and DNA damage to fuel a vicious feedback loop of cell death, tissue damage, and carcinogenesis. In contrast, stimulation of resolution of inflammation may prevent carcinogenesis by clearance of cellular debris via macrophage phagocytosis and inhibition of an eicosanoid/cytokine storm of pro-inflammatory mediators. Controlling the host inflammatory response and its resolution in carcinogen-induced cancers will be critical to reducing carcinogen-induced morbidity and mortality. Here we review the recent evidence that stimulation of resolution of inflammation, including pro-resolution lipid mediators and soluble epoxide hydrolase inhibitors, may be a new chemopreventive approach to prevent carcinogen-induced cancer that should be evaluated in humans.
Collapse
Affiliation(s)
- Anna Fishbein
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
21
|
Jiang T, Liu B, Wu D, Zhang F. BCLAF1 induces cisplatin resistance in lung cancer cells. Oncol Lett 2020; 20:227. [PMID: 32968449 PMCID: PMC7500056 DOI: 10.3892/ol.2020.12090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Treatment for non-small cell lung cancer (NSCLC) remains challenging due to frequent recurrence and the development of resistance to platinum-based chemotherapy. The mechanism underlying NSCLC chemoresistance remains unclear. The present study aimed to investigate the mechanism of cisplatin resistance in NSCLC cells and it found that the expression of Bcl-2-associated transcription factor 1 (BCLAF1) was higher in the A549 cell line with cisplatin resistance (A549/DDP) by western blotting and reverse-transcription quantitative PCR, suggesting that elevated BCLAF1 expression is associated with acquired cisplatin resistance in A549 cells. BCLAF1 was found to promote DNA damage repair in A549/DDP cells by regulating γH2A histone family member X foci formation by immunofluorescence and western blotting. BCLAF1 was also demonstrated to regulate ubiquitin-specific peptidase 22 mRNA expression in A549/DDP cells, in addition to regulating G1 phase arrest by targeting p21 expression. Taken together, these findings suggest that BCLAF1 mediates cisplatin resistance by regulating the repair of DNA damage and p21-mediated G1 phase arrest.
Collapse
Affiliation(s)
- Tao Jiang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Bingjie Liu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Dongping Wu
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Feng Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| |
Collapse
|
22
|
Sciarrillo R, Wojtuszkiewicz A, Assaraf YG, Jansen G, Kaspers GJL, Giovannetti E, Cloos J. The role of alternative splicing in cancer: From oncogenesis to drug resistance. Drug Resist Updat 2020; 53:100728. [PMID: 33070093 DOI: 10.1016/j.drup.2020.100728] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Alternative splicing is a tightly regulated process whereby non-coding sequences of pre-mRNA are removed and protein-coding segments are assembled in diverse combinations, ultimately giving rise to proteins with distinct or even opposing functions. In the past decade, whole genome/transcriptome sequencing studies revealed the high complexity of splicing regulation, which occurs co-transcriptionally and is influenced by chromatin status and mRNA modifications. Consequently, splicing profiles of both healthy and malignant cells display high diversity and alternative splicing was shown to be widely deregulated in multiple cancer types. In particular, mutations in pre-mRNA regulatory sequences, splicing regulators and chromatin modifiers, as well as differential expression of splicing factors are important contributors to cancer pathogenesis. It has become clear that these aberrations contribute to many facets of cancer, including oncogenic transformation, cancer progression, response to anticancer drug treatment as well as resistance to therapy. In this respect, alternative splicing was shown to perturb the expression a broad spectrum of relevant genes involved in drug uptake/metabolism (i.e. SLC29A1, dCK, FPGS, and TP), activation of nuclear receptor pathways (i.e. GR, AR), regulation of apoptosis (i.e. MCL1, BCL-X, and FAS) and modulation of response to immunotherapy (CD19). Furthermore, aberrant splicing constitutes an important source of novel cancer biomarkers and the spliceosome machinery represents an attractive target for a novel and rapidly expanding class of therapeutic agents. Small molecule inhibitors targeting SF3B1 or splice factor kinases were highly cytotoxic against a wide range of cancer models, including drug-resistant cells. Importantly, these effects are enhanced in specific cancer subsets, such as splicing factor-mutated and c-MYC-driven tumors. Furthermore, pre-clinical studies report synergistic effects of spliceosome modulators in combination with conventional antitumor agents. These strategies based on the use of low dose splicing modulators could shift the therapeutic window towards decreased toxicity in healthy tissues. Here we provide an extensive overview of the latest findings in the field of regulation of splicing in cancer, including molecular mechanisms by which cancer cells harness alternative splicing to drive oncogenesis and evade anticancer drug treatment as well as splicing-based vulnerabilities that can provide novel treatment opportunities. Furthermore, we discuss current challenges arising from genome-wide detection and prediction methods of aberrant splicing, as well as unravelling functional relevance of the plethora of cancer-related splicing alterations.
Collapse
Affiliation(s)
- Rocco Sciarrillo
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Pediatric Oncology, Emma's Children's Hospital, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Anna Wojtuszkiewicz
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gerrit Jansen
- Amsterdam Immunology and Rheumatology Center, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology, Emma's Children's Hospital, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Fondazione Pisana per la Scienza, Pisa, Italy
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|