1
|
Khaleghi MM, Rouhi F, Eslami K, Shafiee F. Apoptosis-inducing proteins with reduced expression in breast cancer: A review article. Biochem Biophys Rep 2025; 41:101931. [PMID: 39995631 PMCID: PMC11848494 DOI: 10.1016/j.bbrep.2025.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Breast cancer is considered one of the most abundant malignancies with high morbidity and mortality. Traditional cancer treatments possess various weaknesses, including a lack of specificity and numerous side effects. Novel cancer therapies aim to overcome the shortcomings of traditional therapies and offer more efficient and safe treatments. Designing and identifying novel proteins that can practically and specifically inhibit tumors by inducing apoptosis can interest researchers in this field. This review discusses recent studies on the use of four promising proteins, KAI1, Apoptin, BIF-1, and DFF-40, for breast cancer treatment. This study also focuses on alterations in the expression of the androgenic proteins and novel strategies for better penetration and delivery of these proteins. Lastly, prospects for protein-based targeted cancer therapy and future studies in this field are highlighted.
Collapse
Affiliation(s)
- Mohammad Mehdi Khaleghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faezeh Rouhi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kourosh Eslami
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Fu J, Yu L, Wang Z, Chen H, Zhang S, Zhou H. Advances in controlled release drug delivery systems based on nanomaterials in lung cancer therapy: A review. Medicine (Baltimore) 2025; 104:e41415. [PMID: 39928802 PMCID: PMC11813027 DOI: 10.1097/md.0000000000041415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/12/2025] Open
Abstract
Lung cancer is one of the most common malignant tumors, with the highest morbidity and mortality rates. Currently, significant progress has been made in the treatment of lung cancer, which has effectively improved the overall prognosis of patients, but there are still many problems, such as tumor recurrence, drug resistance, and serious complications. With the rapid development of nanotechnology in the field of medicine, it breaks through the inherent limitations of traditional cancer treatments and shows great potential in tumor treatment. To address the drawbacks of traditional therapeutic means, nanodrug delivery systems can release drugs under specific conditions, thus realizing tumor-targeted drug delivery, which improves the antitumor effect of drugs. In this paper, we review the current treatments for lung cancer and further discuss the advantages and common carriers of nanodrug delivery systems. We also summarize the latest research progress of nanotargeted drug delivery systems in the field of lung cancer therapy, discuss the problems faced in their clinical translation, and look forward to future development opportunities and directions.
Collapse
Affiliation(s)
- Jiang Fu
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
- School of Medical and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Yu
- Department of Physical Examination, Suining Central Hospital, Suining, China
| | - Zixu Wang
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
- School of Medical and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoyu Chen
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
| | - Song Zhang
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
- School of Medical and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
3
|
De S, Ehrlich M. Arrest and Attack: Microtubule-Targeting Agents and Oncolytic Viruses Employ Complementary Mechanisms to Enhance Anti-Tumor Therapy Efficacy. Genes (Basel) 2024; 15:1193. [PMID: 39336785 PMCID: PMC11431212 DOI: 10.3390/genes15091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Oncolytic viruses (OVs) are promising cancer immunotherapy agents that stimulate anti-tumor immunity through the preferential infection and killing of tumor cells. OVs are currently under limited clinical usage, due in part to their restricted efficacy as monotherapies. Current efforts for enhancement of the therapeutic potency of OVs involve their combination with other therapy modalities, aiming at the concomitant exploitation of complementary tumor weaknesses. In this context, microtubule-targeting agents (MTAs) pose as an enticing option, as they perturb microtubule dynamics and function, induce cell-cycle arrest, and cause mitotic cell death. MTAs induce therapeutic benefit through cancer-cell-autonomous and non-cell-autonomous mechanisms and are a main component of the standard of care for different malignancies. However, off-target effects and acquired resistance involving distinct cellular and molecular mechanisms may limit the overall efficacy of MTA-based therapy. When combined, OVs and MTAs may enhance therapeutic efficacy through increases in OV infection and immunogenic cell death and a decreased probability of acquired resistance. In this review, we introduce OVs and MTAs, describe molecular features of their activity in cancer cells, and discuss studies and clinical trials in which the combination has been tested.
Collapse
Affiliation(s)
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
4
|
Li N, Zheng X, Chen M, Huang L, Chen L, Huo R, Li X, Huang Y, Sun M, Mai S, Wu Z, Zhang H, Liu J, Yang CT. Deficient DNASE1L3 facilitates neutrophil extracellular traps-induced invasion via cyclic GMP-AMP synthase and the non-canonical NF-κB pathway in diabetic hepatocellular carcinoma. Clin Transl Immunology 2022; 11:e1386. [PMID: 35474906 PMCID: PMC9021716 DOI: 10.1002/cti2.1386] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 02/28/2022] [Accepted: 03/26/2022] [Indexed: 11/11/2022] Open
Abstract
Objective Diabetic hepatocellular carcinoma (HCC) patients have high mortality and metastasis rates. Diabetic conditions promote neutrophil extracellular traps (NETs) generation, which mediates HCC metastasis and invasion. However, whether and how diabetes-induced NETs trigger HCC invasion is largely unknown. Here, we aimed to observe the effects of diabetes-induced NETs on HCC invasion and investigate mechanisms relevant to a DNA sensor cyclic GMP-AMP synthase (cGAS). Methods Serum from diabetic patients and healthy individuals was collected. Human neutrophil-derived NETs were isolated for stimulating HCC cell invasion. Data from the SEER and TCGA databases were used for bioinformatics analysis. In HCC cells and allograft models, NETs-triggered invasion was observed. Results Diabetic HCC patients had poorer survival than non-diabetic ones. Either diabetic serum or extracted NETs caused HCC invasion. Induction of diabetes or NETosis elicited HCC allograft invasion in nude mice. HCC cell invasion was attenuated by the treatment with DNase1. In TCGA_LIHC, an extracellular DNase DNASE1L3 was downregulated in tumor tissues, while function terms (the endocytic vesicle membrane, the NF-κB pathway and extracellular matrix disassembly) were enriched. DNASE1L3 knockdown in LO2 hepatocytes or H22 cell-derived allografts facilitated HCC invasion in NETotic or diabetic nude mice. Moreover, exposure of HCC cells to NETs upregulated cGAS and the non-canonical NF-κB pathway and induced expression of metastasis genes (MMP9 and SPP1). Both cGAS inhibitor and NF-κB RELB knockdown diminished HCC invasion caused by NETs DNA. Also, cGAS inhibitor was able to retard translocation of NF-κB RELB. Conclusion Defective DNASE1L3 aggravates NETs DNA-triggered HCC invasion on diabetic conditions via cGAS and the non-canonical NF-κB pathway.
Collapse
Affiliation(s)
- Na Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China.,Department of Pathology Yue Bei People's Hospital Shaoguan China
| | - Xue Zheng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Mianrong Chen
- Department of Radiology The Second Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Li Huang
- Department of Pancreatobiliary Surgery The First Affiliated Hospital of Sun Yat-sen University Guangzhou China
| | - Li Chen
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Rui Huo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Xiaotong Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Yucan Huang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Mingwen Sun
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Suiqing Mai
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Zhuoyi Wu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Hui Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Chun-Tao Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| |
Collapse
|
5
|
Song G, Shang C, Sun L, Li Y, Zhu Y, Xiu Z, Liu Z, Li Y, Yang X, Ge C, Fang J, Jin N, Li X. Ad-VT enhances the sensitivity of chemotherapy-resistant lung adenocarcinoma cells to gemcitabine and paclitaxel in vitro and in vivo. Invest New Drugs 2022; 40:274-289. [PMID: 34981275 PMCID: PMC8993744 DOI: 10.1007/s10637-021-01204-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/30/2021] [Indexed: 10/31/2022]
Abstract
Background One of the main challenges in the clinical treatment of lung cancer is resistance to chemotherapeutic drugs. P-glycoprotein (P-gp)-mediated drug resistance is the main obstacle to successfully implementing microtubule-targeted tumor chemotherapy. Purpose In this study, we explored the effect of Ad-hTERTp-E1a-Apoptin (Ad-VT) on drug-resistant cell lines and the molecular mechanism by which Ad-VT combined with chemotherapy affects drug-resistant cells and parental cells. Methods In vitro, cell proliferation, colony formation, resistance index (RI), apoptosis and autophagy assays were performed. Protein expression was analyzed by Western blotting. Finally, a xenograft tumor model in nude mice was used to detect tumor growth and evaluate histological characteristics. Results Our results showed that Ad-VT had an obvious killing effect on A549, A549/GEM and A549/Paclitaxel cancer cells, and the sensitivity of drug-resistant cell lines to Ad-VT was significantly higher than that of parental A549 cells. Compared with A549 cells, A549/GEM and A549/Paclitaxel cells had higher autophagy levels and higher viral replication ability. Ad-VT decreased the levels of p-PI3k, p-Akt and p-mTOR and the expression of P-gp. In vivo, Ad-VT combined with chemotherapy can effectively inhibit the growth of chemotherapy-resistant tumors and prolong the survival of mice. Conclusions Thus, the combination of Ad-VT and chemotherapeutic drugs will be a promising strategy to overcome chemoresistance.
Collapse
Affiliation(s)
- Gaojie Song
- Medical College, Yanbian University, Yanji, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lili Sun
- Department of Head and Neck Surgery, Tumor Hospital of Jilin Province, Changchun, China
| | - Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Yilong Zhu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Zhiru Xiu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Zirui Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yaru Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Xia Yang
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Chenchen Ge
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Jinbo Fang
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.
| | - Ningyi Jin
- Medical College, Yanbian University, Yanji, China.
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
6
|
Li Y, Zhu Y, Han J, Fang J, Xiu Z, Li S, Li W, Yang X, Jin N, Sun L, Li X, Li Y. Ad-Apoptin-hTERTp-E1a Regulates Autophagy Through the AMPK-mTOR-eIF4F Signaling Axis to Reduce Drug Resistance of MCF-7/ADR Cells. Front Mol Biosci 2021; 8:763500. [PMID: 34869595 PMCID: PMC8640141 DOI: 10.3389/fmolb.2021.763500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Ad-VT (Ad-Apoptin-hTERTp-E1a) is a type of oncolytic adenovirus with dual specific tumor cell death ability. It can effectively induce cell death of breast cancer cells and has better effect when used in combination with chemotherapy drugs. However, it has not been reported whether Ad-VT reduces the resistance of breast cancer cells to chemotherapy drugs. The purpose of this study is to investigate the effect of Ad-VT on drug resistance of Adriamycin-resistant breast cancer cells. For this, the effects of different doses of Ad-VT on the resistance of breast cancer cells to Adriamycin were analyzed using qualitative and quantitative experiments in vitro and in vivo. The Ad-VT can reduce the resistance of MCF-7/ADR to adriamycin, which is caused by the reduction of MRP1 protein level in MCF-7/ADR cells after treatment with Ad-VT, and MRP1 can be interfered with by autophagy inhibitors. Subsequently, the upstream signal of autophagy was analyzed and it was found that Ad-VT reduced the resistance of cells to doxorubicin by reducing the level of mTOR, and then the analysis of the upstream and downstream proteins of mTOR found that Ad-VT increased the sensitivity of MCF-7/ADR cells to adriamycin by activating AMPK-mTOR-eIF4F signaling axis. Ad-VT can not only significantly induce cell death in MCF-7/ADR cells, but also improved their sensitivity to Adriamycin. Therefore, the combination of Ad-VT and chemotherapy drugs may become a new strategy for the treatment of breast cancer in overcoming Adriamycin resistance.
Collapse
Affiliation(s)
- Yaru Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Medical College, Yanbian University, Yanji, China
| | - Yilong Zhu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Jicheng Han
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Jinbo Fang
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Zhiru Xiu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Shanzhi Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Wenjie Li
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Xia Yang
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Medical College, Yanbian University, Yanji, China
| | - Ningyi Jin
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Lili Sun
- Medical College, Yanbian University, Yanji, China.,Department of Head and Neck Surgery, Tumor Hospital of Jilin Province, Changchun, China
| | - Xiao Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Medical College, Yanbian University, Yanji, China
| |
Collapse
|
7
|
Xu J, Zhang S, Wu T, Fang X, Zhao L. Discovery of TGFBR1 (ALK5) as a potential drug target of quercetin glycoside derivatives (QGDs) by reverse molecular docking and molecular dynamics simulation. Biophys Chem 2021; 281:106731. [PMID: 34864228 DOI: 10.1016/j.bpc.2021.106731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/25/2022]
Abstract
Quercetin glycoside derivatives (QGDs) are a class of common compounds with a wide range of biological activities, such as antitumor activities. However, their molecular targets associated with biological activities have not been investigated. In this study, four common QGDs with mutual bioconversion were selected, and studied in the large-scale reverse docking experiments. Network pharmacology analysis showed that most of the four QGDs can bind several potential protein targets that were closely related to breast cancer disease. Among them, a druggable protein, transforming growth factor beta receptor I (TGFBR1/ALK5) was screened via high docking scores for the four QGDs. This protein has been proven to be an important target for the treatment of breast cancer by regulating the proliferation and migration of cancer cells in the past. Subsequently, the molecular dynamics (MD) simulation and MM/GBSA calculation demonstrated that all QGDs could thermodynamically bind with TGFBR1, indicating that TGFBR1 might be one of the potential protein targets of QGDs. Finally, the cytotoxicity test and wound-healing migration assay displayed that isoquercetin, which can perform best in MD experiment, might be a promising agent in the treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Jiahui Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Shanshan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Tao Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Xianying Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Linguo Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China.
| |
Collapse
|
8
|
Jin S, Wang Q, Wu H, Pang D, Xu S. Oncolytic viruses for triple negative breast cancer and beyond. Biomark Res 2021; 9:71. [PMID: 34563270 PMCID: PMC8466906 DOI: 10.1186/s40364-021-00318-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
Biological therapy is considered an alternative treatment capable of eliciting the same effects on tumors as surgery, radiotherapy, and chemotherapy. As a major player in biological therapy, oncolytic viruses (OVs) have attracted great attention and achieved good results. Specifically, the successful application of OVs in head and neck cancer, as well as melanoma, promoted its research in triple negative breast cancer (TNBC). TNBC is a high-risk molecular type of breast cancer, characterized by strong invasion, easy recurrence, and metastasis. Due to the absence of estrogen and progesterone receptors, as well as the absence of overexpression or gene amplification of human epidermal growth factor receptor 2 (HER2), endocrine therapy and anti HER-2 targeted therapy have proven ineffective. Although chemotherapy has shown substantial efficacy in some TNBC patients, the occurrence of drug resistance and poor prognosis have prompted the exploration of new and effective treatment methods. The emerging concept of OVs provides a new platform to treat TNBC. Indeed, several studies have confirmed the therapeutic effects of OVs in TNBC. Numerous studies have also investigated the efficacy of OVs in other malignances, including solid tumor clinical trials, thus further demonstrating the promising application of oncolytic virotherapy for TNBC. The primary focus of the current review is the examination of OV mechanisms underlying their antitumor properties, while also summarizing the ongoing progress in OV research regarding TNBC treatment, as well as the various combinatorial strategies comprising OVs and other therapies. We also briefly introduce specific relevant clinical trials and discuss some of the progress in the research of novel OVs for the treatment of other malignancies, thereby affirming the significant therapeutic potential of OVs for the treatment of TNBC, as well as other cancers.
Collapse
Affiliation(s)
- Shengye Jin
- Harbin Medical University, 157 Baojian Road, Harbin, 150086, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Qin Wang
- Sino-Russian Medical Research Cen8ter, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, 150 Haping Road, Harbin, 1550081, China
| | - Hao Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.,Sino-Russian Medical Research Cen8ter, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, 150 Haping Road, Harbin, 1550081, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China. .,Sino-Russian Medical Research Cen8ter, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, China. .,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, 150 Haping Road, Harbin, 1550081, China.
| |
Collapse
|
9
|
Abedin MR, Powers K, Aiardo R, Barua D, Barua S. Antibody-drug nanoparticle induces synergistic treatment efficacies in HER2 positive breast cancer cells. Sci Rep 2021; 11:7347. [PMID: 33795712 PMCID: PMC8016985 DOI: 10.1038/s41598-021-86762-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
Chemotherapeutic drugs suffer from non-specific binding, undesired toxicity, and poor blood circulation which contribute to poor therapeutic efficacy. In this study, antibody–drug nanoparticles (ADNs) are engineered by synthesizing pure anti-cancer drug nanorods (NRs) in the core of nanoparticles with a therapeutic monoclonal antibody, Trastuzumab on the surface of NRs for specific targeting and synergistic treatments of human epidermal growth factor receptor 2 (HER2) positive breast cancer cells. ADNs were designed by first synthesizing ~ 95 nm diameter × ~ 500 nm long paclitaxel (PTX) NRs using the nanoprecipitation method. The surface of PTXNRs was functionalized at 2′ OH nucleophilic site using carbonyldiimidazole and conjugated to TTZ through the lysine residue interaction forming PTXNR-TTZ conjugates (ADNs). The size, shape, and surface charge of ADNs were characterized using scanning electron microscopy (SEM), SEM, and zeta potential, respectively. Using fluorophore labeling and response surface analysis, the percentage conjugation efficiency was found > 95% with a PTX to TTZ mass ratio of 4 (molar ratio ≈ 682). In vitro therapeutic efficiency of PTXNR-TTZ was evaluated in two HER2 positive breast cancer cell lines: BT-474 and SK-BR-3, and a HER2 negative MDA-MB-231 breast cancer cell using MTT assay. PTXNR-TTZ inhibited > 80% of BT-474 and SK-BR-3 cells at a higher efficiency than individual PTX and TTZ treatments alone after 72 h. A combination index analysis indicated a synergistic combination of PTXNR-TTZ compared with the doses of single-drug treatment. Relatively lower cytotoxicity was observed in MCF-10A human breast epithelial cell control. The molecular mechanisms of PTXNR-TTZ were investigated using cell cycle and Western blot analyses. The cell cycle analysis showed PTXNR-TTZ arrested > 80% of BT-474 breast cancer cells in the G2/M phase, while > 70% of untreated cells were found in the G0/G1 phase indicating that G2/M arrest induced apoptosis. A similar percentage of G2/M arrested cells was found to induce caspase-dependent apoptosis in PTXNR-TTZ treated BT-474 cells as revealed using Western blot analysis. PTXNR-TTZ treated BT-474 cells showed ~ 1.3, 1.4, and 1.6-fold higher expressions of cleaved caspase-9, cytochrome C, and cleaved caspase-3, respectively than untreated cells, indicating up-regulation of caspase-dependent activation of apoptotic pathways. The PTXNR-TTZ ADN represents a novel nanoparticle design that holds promise for targeted and efficient anti-cancer therapy by selective targeting and cancer cell death via apoptosis and mitotic cell cycle arrest.
Collapse
Affiliation(s)
- Muhammad Raisul Abedin
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO, 65409-1230, USA
| | - Kaitlyne Powers
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO, 65409-1230, USA
| | - Rachel Aiardo
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO, 65409-1230, USA
| | - Dibbya Barua
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Sutapa Barua
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO, 65409-1230, USA.
| |
Collapse
|