1
|
Vakili S, Behrooz AB, Whichelo R, Fernandes A, Emwas AH, Jaremko M, Markowski J, Los MJ, Ghavami S, Vitorino R. Progress in Precision Medicine for Head and Neck Cancer. Cancers (Basel) 2024; 16:3716. [PMID: 39518152 PMCID: PMC11544984 DOI: 10.3390/cancers16213716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
This paper presents a comprehensive comparative analysis of biomarkers for head and neck cancer (HNC), a prevalent but molecularly diverse malignancy. We detail the roles of key proteins and genes in tumourigenesis and progression, emphasizing their diagnostic, prognostic, and therapeutic relevance. Our bioinformatic validation reveals crucial genes such as AURKA, HMGA2, MMP1, PLAU, and SERPINE1, along with microRNAs (miRNA), linked to HNC progression. OncomiRs, including hsa-miR-21-5p, hsa-miR-31-5p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-196a-5p, and hsa-miR-200c-3p, drive tumourigenesis, while tumour-suppressive miRNAs like hsa-miR-375 and hsa-miR-145-5p inhibit it. Notably, hsa-miR-155-3p correlates with survival outcomes in addition to the genes RAI14, S1PR5, OSBPL10, and METTL6, highlighting its prognostic potential. Future directions should focus on leveraging precision medicine, novel therapeutics, and AI integration to advance personalized treatment strategies to optimize patient outcomes in HNC care.
Collapse
Affiliation(s)
- Sanaz Vakili
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
| | - Rachel Whichelo
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexandra Fernandes
- Guelph College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Abdul-Hamid Emwas
- Core Lab of NMR, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi Arabia;
| | - Jarosław Markowski
- Department of Laryngology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland;
| | - Marek J. Los
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Paul Albrechtsen Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Rui Vitorino
- Guelph College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
2
|
Hagiwara S, Shiohama T, Takahashi S, Ishikawa M, Kawashima Y, Sato H, Sawada D, Uchida T, Uchikawa H, Kobayashi H, Shiota M, Nabatame S, Tsujimura K, Hamada H, Suzuki K. Comprehensive High-Depth Proteomic Analysis of Plasma Extracellular Vesicles Containing Preparations in Rett Syndrome. Biomedicines 2024; 12:2172. [PMID: 39457485 PMCID: PMC11504846 DOI: 10.3390/biomedicines12102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Backgroud: Rett syndrome is a neurodevelopmental disorder that affects 1 in 10,000 females. Various treatments have been explored; however, no effective treatments have been reported to date, except for trofinetide, a synthetic analog of glycine-proline-glutamic acid, which was approved by the FDA in 2023. Serological biomarkers that correlate with the disease status of RTT are needed to promote early diagnosis and to develop novel agents. Methods: In this study, we performed a high-depth proteomic analysis of extracellular vesicles containing preparations extracted from patient plasma samples to identify novel biomarkers. Results: We identified 33 upregulated and 17 downregulated candidate proteins among a total of 4273 proteins in RTT compared to the healthy controls. Among these, UBE3B was predominantly increased in patients with Rett syndrome and exhibited a strong correlation with the clinical severity score, indicating the severity of the disease. Conclusions: We demonstrated that the proteomics of high-depth extracellular vesicles containing preparations in rare diseases could be valuable in identifying new disease biomarkers and understanding their pathophysiology.
Collapse
Affiliation(s)
- Sho Hagiwara
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi 260-0856, Chiba, Japan; (S.H.); (H.U.)
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi 260-0856, Chiba, Japan; (S.H.); (H.U.)
| | - Satoru Takahashi
- Department of Pediatrics, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa City 078-8510, Hokkaido, Japan;
| | - Masaki Ishikawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu 292-0818, Chiba, Japan; (M.I.)
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu 292-0818, Chiba, Japan; (M.I.)
| | - Hironori Sato
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi 260-0856, Chiba, Japan; (S.H.); (H.U.)
| | - Daisuke Sawada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi 260-0856, Chiba, Japan; (S.H.); (H.U.)
| | - Tomoko Uchida
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi 260-0856, Chiba, Japan; (S.H.); (H.U.)
| | - Hideki Uchikawa
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi 260-0856, Chiba, Japan; (S.H.); (H.U.)
- Department of Pediatrics, Eastern Chiba Medical Center, Togane 283-8686, Chiba, Japan
| | - Hironobu Kobayashi
- Department of Pediatrics, Asahi General Hospital, 1326, I, Asahi 289-2511, Chiba, Japan
| | - Megumi Shiota
- Department of Pediatrics, Tokyo Women’s Medical University Yachiyo Medical Center, 477-96, Oowadashinden, Yachiyo City 276-8524, Chiba, Japan
| | - Shin Nabatame
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Keita Tsujimura
- Group of Brain Function and Development, Nagoya University Neuroscience Institute of the Graduate School of Science, Nagoya 464-8602, Aichi, Japan
- Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya 464-0804, Aichi, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi 260-0856, Chiba, Japan; (S.H.); (H.U.)
| | - Keiichiro Suzuki
- Institute for Advanced Co-Creation Studies, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531, Osaka, Japan
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531, Osaka, Japan
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
3
|
Chen J, Tang S, Zheng Q, Li J, Jiang H, Lu H, Liao G, Li K, Liang Y. The competitive mechanism of EZH1 and EZH2 in promoting oral squamous cell carcinoma. Exp Cell Res 2024; 436:113957. [PMID: 38309675 DOI: 10.1016/j.yexcr.2024.113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Enhancer of Zeste Homolog 1 (EZH1) and Enhancer of Zeste Homolog 2 (EZH2) are the key components of polycomb repressive complex 2 (PRC2); however, the roles of these proteins in oral squamous cell carcinoma (OSCC) have yet to be elucidated. In this study, we aimed to determine the respective roles of these proteins in OSCC by investigating the expression levels of EZH1 and EZH2 in OSCC tissues (N = 63) by immunohistochemistry. In addition, we used lentiviruses to construct stable OSCC cell lines that overexpressed EZH1 and EZH2. Then, we investigated these cell lines for cell viability, colony formation capacity, stemness, and epithelial-mesenchymal transition (EMT). Binding competition between EZH1 and EZH2 with PRC2 was further evaluated using Co-immunoprecipitation (Co-IP). Compared with normal tissues, the expression levels of EZH2 in OSCC tissues was up-regulated, while the expression of EZH1 was down-regulated. EZH2 enhanced cell viability, colony formation capacity, stemness, and EMT, while EZH1 did not. Furthermore, analysis indicated that EZH1 and EZH2 bound competitively to PRC2 and influenced the methylation status of H3K27. In conclusion, our findings verified that EZH1 and EZH2 play opposing roles in OSCC and that EZH1 and EZH2 compete as the key component of PRC2, thus affecting the characteristics of OSCC via the methylation of H3K27.
Collapse
Affiliation(s)
- Jianghai Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Shanshan Tang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Qiuhan Zheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Jingyuan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Hong Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Huanzi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Guiqing Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China.
| | - Kan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China.
| | - Yujie Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Fornieles G, Núñez MI, Expósito J. Matrix Metalloproteinases and Their Inhibitors as Potential Prognostic Biomarkers in Head and Neck Cancer after Radiotherapy. Int J Mol Sci 2023; 25:527. [PMID: 38203696 PMCID: PMC10778974 DOI: 10.3390/ijms25010527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Head and neck cancer (HNC) is among the ten most frequent tumours, with 5-year survival rates varying from 30% to 70% depending on the stage and location of the tumour. HNC is traditionally known as head and neck squamous cell carcinoma (HNSCC), since 90% arises from epithelial cells. Metastasis remains a major cause of mortality in patients with HNSCC. HNSCC patients with metastatic disease have an extremely poor prognosis with a survival rate of less than a year. Matrix metalloproteinases (MMPs) have been described as biomarkers that promote cell migration and invasion. Radiotherapy is widely used to treat HNSCC, being a determining factor in the alteration of the tumour's biology and microenvironment. This review focuses on analysing the current state of the scientific literature on this topic. Although few studies have focused on the role of these proteinases in HNC, some authors have concluded that radiotherapy alters the behaviour of MMPs and tissue inhibitors of metalloproteinases (TIMPs). Therefore, more research is needed to understand the roles played by MMPs and their inhibitors (TIMPs) as prognostic biomarkers in patients with HNC and their involvement in the response to radiotherapy.
Collapse
Affiliation(s)
- Gabriel Fornieles
- Doctoral Programme in Clinical Medicine and Public Health, University of Granada, 18012 Granada, Spain;
| | - María Isabel Núñez
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain;
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| | - José Expósito
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain;
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- Radiation Oncology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| |
Collapse
|
5
|
Jiang Q, Chen Z, Meng F, Zhang H, Chen H, Xue J, Shen X, Liu T, Dong L, Zhang S, Xue R. CD36-BATF2\MYB Axis Predicts Anti-PD-1 Immunotherapy Response in Gastric Cancer. Int J Biol Sci 2023; 19:4476-4492. [PMID: 37781029 PMCID: PMC10535701 DOI: 10.7150/ijbs.87635] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/11/2023] [Indexed: 10/03/2023] Open
Abstract
Despite the utilization of anti-PD-1 therapy in gastric cancer (GC), the absence of a reliable predictive biomarker continues to pose a challenge. In this study, we utilized bioinformatic analysis and immunohistochemistry to develop a prediction model for activated CD4+ memory T cells, considering both mRNA and protein levels. An elevation of activated CD4+ memory T cells in GC was noted, which exhibited a strong association with the patients' overall survival. By utilizing WGCNA and DEG analysis, we discovered that BATF2, MYB, and CD36 are genes that exhibit differential expression and are linked to activated CD4+ memory T cells. Afterwards, a forecast model was built utilizing Stepwise regression and immunohistochemistry relying on the three genes. The model's high-risk score showed significant associations with a suppressive immune microenvironment. Moreover, our model exhibited encouraging prognostic value and superior performance in predicting response to immune checkpoint blockade therapy compared with the conventional CD8+PD-L1 model. In terms of mechanism, CD36 could function as a receptor upstream that identifies Helicobacter pylori and fatty acids. This recognition then results in the reduction of the BATF2-MYB protein complex and subsequent alterations in the transcription of genes associated with classical T cell activation. As a result, the activation state of CD4+ memory T cells is ultimately suppressed. The CD36-BATF2/MYB signature serves as a robust predictor of anti-PD-1 immunotherapy response in GC.
Collapse
Affiliation(s)
- Qiuyu Jiang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhixue Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fansheng Meng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hao Zhang
- Department of Oncology, Minhang Hospital, Fudan University, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, China
| | - He Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jindan Xue
- School of Medicine, Anhui University of Science and Technology, Anhui, 232000, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Baoshan District Wusong Central Hospital (Zhongshan Hospital Wusong Branch, Fudan University), Shanghai 200940, China
| |
Collapse
|
6
|
Xu Y, Xu J, Qiao R, Zhong H, Xia J, Zhong R. Loss of BLK expression as a potential predictor of poor prognosis and immune checkpoint blockade response in NSCLC and contribute to tumor progression. Transl Oncol 2023; 33:101671. [PMID: 37068401 PMCID: PMC10127141 DOI: 10.1016/j.tranon.2023.101671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) has been proved to have significant anti-tumor effect in the clinical treatment of non-small cell lung cancer (NSCLC). Therefore, biomarkers predicting ICB response can provide better treatment for patients with NSCLC. METHODS Differential expression genes (DEGs) were identified by ImmuCellAI database. Copy number alteration (CNA) was analyzed by cBioPortal. The predicted efficiency of 4 genes on cancer immunotherapy was assessed by ROC analysis. The survival value of BLK was analyzed by Kaplan-Meier plotter and Prognoscan analysis. Clinical significance of BLK IHC-TMA score in NSCLC was also explored. The CCK-8 assay, wound healing assay, western blot assay in vitro and subcutaneous xenograft experiments in vivo were used for investigating the functions of BLK. The RNA-sequencing were performed to screen BLK regulated genes and conducted for GO/KEGG enrichment analysis. The transcriptional regulatory factor of BLK promoter region was predicted by ChIP-seq analysis. RESULTS 39 common DEGs between ICB Response (R) group and No Response (NR) group with NSCLC were identified, in which the CNA frequency of BLK deletion (> 6%) was found. The predicted efficiency of BLK on immunotherapy was performed best in NSCLC (AUC>0.7). Low expression of BLK was related to NSCLC with significantly poor prognosis. BLK overexpression can inhibit growth of NSCLC via activating apoptosis pathway, inhibiting the G2M checkpoint and Glycolysis pathway. The enrichment analysis indicated that BLK regulated genes related to oncogenic potential in NSCLC. Besides, BLK expression was inhibited via H3K27me3 modification in A549 and H1299 cells. BLK mRNA level was negatively correlated with methylation and positively correlated with the tumor purity in NSCLC. CONCLUSION Our study provides strong evidence that low expression of BLK may serve as a biomarker for poor prognosis in NSCLC, while response to ICB therapy and contributes to NSCLC tumor progression.
Collapse
Affiliation(s)
- Yingqi Xu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 Huaihai West Road, Shanghai 200030, China.
| | - Jianlin Xu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 Huaihai West Road, Shanghai 200030, China.
| | - Rong Qiao
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 Huaihai West Road, Shanghai 200030, China.
| | - Hua Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 Huaihai West Road, Shanghai 200030, China.
| | - Jinjing Xia
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 Huaihai West Road, Shanghai 200030, China.
| | - Runbo Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 Huaihai West Road, Shanghai 200030, China.
| |
Collapse
|
7
|
Sun J, Wang X, Ding Y, Xiao B, Wang X, Ali MM, Ma L, Xie Z, Gu Z, Chen G, Tao WA. Proteomic and phosphoproteomic landscape of salivary extracellular vesicles to assess OSCC therapeutical outcomes. Proteomics 2023; 23:e2200319. [PMID: 36573687 DOI: 10.1002/pmic.202200319] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
Circulating extracellular vesicles (EVs) have emerged as an appealing source for surrogates to evaluate the disease status. Herein, we present a novel proteomic strategy to identify proteins and phosphoproteins from salivary EVs to distinguish oral squamous cell carcinoma (OSCC) patients from healthy individuals and explore the feasibility to evaluate therapeutical outcomes. Bi-functionalized magnetic beads (BiMBs) with Ti (IV) ions and a lipid analog, 1,2-Distearoyl-3-sn-glycerophosphoethanolamine (DSPE) are developed to efficiently isolate EVs from small volume of saliva. In the discovery stage, label-free proteomics and phosphoproteomics quantification showed 315 upregulated proteins and 132 upregulated phosphoproteins in OSCC patients among more than 2500 EV proteins and 1000 EV phosphoproteins, respectively. We further applied targeted proteomics by coupling parallel reaction monitoring with parallel accumulation-serial fragmentation (prm-PASEF) to measure panels of proteins and phosphoproteins from salivary EVs collected before and after surgical resection. A panel of three total proteins and three phosphoproteins, most of which have previously been associated with OSCC and other cancer types, show sensitive response to the therapy in individual patients. Our study presents a novel strategy to the discovery of effective biomarkers for non-invasive assessment of OSCC surgical outcomes with small amount of saliva.
Collapse
Affiliation(s)
- Jie Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Xiaole Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yajie Ding
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Bolin Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinxin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Muhammad Mujahid Ali
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Leyao Ma
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - W Andy Tao
- Department of Chemistry and Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA.,Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
8
|
Aleman J, Young CD, Karam SD, Wang XJ. Revisiting laminin and extracellular matrix remodeling in metastatic squamous cell carcinoma: What have we learned after more than four decades of research? Mol Carcinog 2023; 62:5-23. [PMID: 35596706 PMCID: PMC9676410 DOI: 10.1002/mc.23417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023]
Abstract
Patients with squamous cell carcinoma (SCC) have significantly lower survival upon the development of distant metastases. The extracellular matrix (ECM) is a consistent yet dynamic influence on the metastatic capacity of SCCs. The ECM encompasses a milieu of structural proteins, signaling molecules, and enzymes. Just over 40 years ago, the fibrous ECM glycoprotein laminin was identified. Roughly four decades of research have revealed a pivotal role of laminins in metastasis. However, trends in ECM alterations in some cancers have been applied broadly to all metastatic diseases, despite evidence that these characteristics vary by tumor type. We will summarize how laminins influence the SCC metastatic process exclusively. Enhanced laminin protein deposition occurs at the invasive edge of SCC tumors, which correlates with elevated levels of laminin-binding β1 integrins on SCC cells, increased MMP-3 presence, worse prognosis, and lymphatic dissemination. Although these findings are significant, gaps in knowledge of the formation of a premetastatic niche, the processes of intra- and extravasation, and the contributions of the ECM to SCC metastatic cell dormancy persist. Bridging these gaps requires novel in vitro systems and animal models that reproduce tumor-stromal interactions and spontaneous metastasis seen in the clinic. These advances will allow accurate assessment of laminins to predict responders to transforming growth factor-β inhibitors and immunotherapy, as well as potential combinatorial therapies with the standard of care. Such clinical interventions may drastically improve quality of life and patient survival by explicitly targeting SCC metastasis.
Collapse
Affiliation(s)
- John Aleman
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christian D. Young
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado, USA
| |
Collapse
|
9
|
Chen SY, Zhan XL, Jiang R, Dai YW, Lu JF, Yang GJ, Chen J, Lu XJ. Matrix metalloproteinase-25 from Japanese sea bass (Lateolabrax japonicus) is involved in pro-inflammatory responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104348. [PMID: 35026231 DOI: 10.1016/j.dci.2022.104348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Matrix metalloproteinases (MMPs) are highly expressed in leukocytes and macrophages, which play a role in the innate immune response. Here, the cDNA sequence of MMP25 from Japanese sea bass (Lateolabrax japonicus) (LjMMP25) was identified. Phylogenetic analysis revealed that LjMMP25 was most closely related to large yellow croaker MMP25. Multiple sequence alignment of LjMMP25 with MMP25 sequences from other teleosts revealed that regions of known functional importance were highly conserved. Expression analysis revealed that LjMMP25 was highly expressed in the head kidney and widely expressed in other tissues including gill, spleen, and liver. LjMMP25 was found to regulate inflammatory cytokine production and promote phagocytosis and bacterial killing in monocytes/macrophages (MO/MФ). Furthermore, LjMMP25 regulated the inflammatory response by modulating NF-κB signaling. These findings reveal new information about the role of LjMMP25 in regulating pro-inflammatory responses in this species.
Collapse
Affiliation(s)
- Si-Ying Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Lin Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Jiang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - You-Wu Dai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Fei Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Guan-Jun Yang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| |
Collapse
|
10
|
Chen S, Li D, Yu D, Li M, Ye L, Jiang Y, Tang S, Zhang R, Xu C, Jiang S, Wang Z, Aschner M, Zheng Y, Chen L, Chen W. Determination of tipping point in course of PM 2.5 organic extracts-induced malignant transformation by dynamic network biomarkers. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128089. [PMID: 34933256 DOI: 10.1016/j.jhazmat.2021.128089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The dynamic network biomarkers (DNBs) are designed to identify the tipping point and specific molecules in initiation of PM2.5-induced lung cancers. To discover early-warning signals, we analyzed time-series gene expression datasets over a course of PM2.5 organic extraction-induced human bronchial epithelial (HBE) cell transformation (0th~16th week). A composition index of DNB (CIDNB) was calculated to determine correlations and fluctuations in molecule clusters at each timepoint. We identified a group of genes with the highest CIDNB at the 10th week, implicating a tipping point and corresponding DNBs. Functional experiments revealed that manipulating respective DNB genes at the tipping point led to remarkable changes in malignant phenotypes, including four promoters (GAB2, NCF1, MMP25, LAPTM5) and three suppressors (BATF2, DOK3, DAP3). Notably, co-altered expression of seven core DNB genes resulted in an enhanced activity of malignant transformation compared to effects of single-gene manipulation. Perturbation of pathways (EMT, HMGB1, STAT3, NF-κB, PTEN) appeared in HBE cells at the tipping point. The core DNB genes were involved in regulating lung cancer cell growth and associated with poor survival, indicating their synergistic effects in initiation and development of lung cancers. These findings provided novel insights into the mechanism of dynamic networks attributable to PM2.5-induced cell transformation.
Collapse
Affiliation(s)
- Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Miao Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Lizhu Ye
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Yue Jiang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Shijie Tang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rui Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Chi Xu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Shuyun Jiang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Ziwei Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China.
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China.
| |
Collapse
|
11
|
Habib I, Anjum F, Mohammad T, Sulaimani MN, Shafie A, Almehmadi M, Yadav DK, Sohal SS, Hassan MI. Differential gene expression and network analysis in head and neck squamous cell carcinoma. Mol Cell Biochem 2022; 477:1361-1370. [PMID: 35142951 DOI: 10.1007/s11010-022-04379-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignancy with a poor prognosis, whose biomarkers have not been studied in great detail. We have collected genomic data of HNSCC patients from The Cancer Genome Atlas (TCGA) and analyzed them to get deeper insights into the gene expression pattern. Initially, 793 differentially expressed genes (DEGs) were categorized, and their enrichment analysis was performed. Later, a protein-protein interaction network for the DEGs was constructed using the STRING plugin in Cytoscape to study their interactions. A set of 10 hub genes was selected based on Maximal Clique Centrality score, and later their survival analysis was studied. The elucidated set of 10 genes, i.e., PRAME, MAGEC2, MAGEA12, LHX1, MAGEA3, CSAG1, MAGEA6, LCE6A, LCE2D, LCE2C, referred to as potential candidates to be explored as HNSCC biomarkers. The Kaplan-Meier overall survival of the selected genes suggested that the alterations in the candidate genes were linked to the decreased survival of the HNSCC patients. Altogether, the results of this study signify that the genomic alterations and differential expression of the selected genes can be explored in therapeutic interpolations of HNSCC, exploiting early diagnosis and target-propelled therapy.
Collapse
Affiliation(s)
- Insan Habib
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City, 21924, South Korea.
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
12
|
Hong K, Zhang Y, Yao L, Zhang J, Sheng X, Guo Y. Tumor microenvironment-related multigene prognostic prediction model for breast cancer. Aging (Albany NY) 2022; 14:845-868. [PMID: 35060926 PMCID: PMC8833129 DOI: 10.18632/aging.203845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Breast cancer is an invasive disease with complex molecular mechanisms. Prognosis-related biomarkers are still urgently needed to predict outcomes of breast cancer patients. METHODS Original data were download from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). The analyses were performed using perl-5.32 and R-x64-4.1.1. RESULTS In this study, 1086 differentially expressed genes (DEGs) were identified in the TCGA cohort; 523 shared DEGs were identified in the TCGA and GSE10886 cohorts. Eight subtypes were estimated using non-negative matrix factorization clustering with significant differences seen in overall survival (OS) and progression-free survival (PFS) (P < 0.01). Univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) regression analysis were performed to develop a related risk score related to the 17 DEGs; this score separated breast cancer into low- and high-risk groups with significant differences in survival (P < 0.01) and showed powerful effectiveness (TCGA all group: 1-year area under the curve [AUC] = 0.729, 3-year AUC = 0.778, 5-year AUC = 0.781). A nomogram prediction model was constructed using non-negative matrix factorization clustering, the risk score, and clinical characteristics. Our model was confirmed to be related with tumor microenvironment. Furthermore, DEGs in high-risk breast cancer were enriched in histidine metabolism (normalized enrichment score [NES] = 1.49, P < 0.05), protein export (NES = 1.58, P < 0.05), and steroid hormone biosynthesis signaling pathways (NES = 1.56, P < 0.05). CONCLUSIONS We established a comprehensive model that can predict prognosis and guide treatment.
Collapse
Affiliation(s)
- Kai Hong
- Medicine School, Ningbo University, Jiangbei, Ningbo 315211, Zhejiang, China
| | - Yingjue Zhang
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565–0871, Japan
| | - Lingli Yao
- Medicine School, Ningbo University, Jiangbei, Ningbo 315211, Zhejiang, China
| | - Jiabo Zhang
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Haishu, Ningbo 315010, Zhejiang, China
| | - Xianneng Sheng
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Haishu, Ningbo 315010, Zhejiang, China
| | - Yu Guo
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Haishu, Ningbo 315010, Zhejiang, China
| |
Collapse
|