1
|
Li X. The Predictive Value of BUB1 in the Prognosis of Oral Squamous Cell Carcinoma. Int Dent J 2025; 75:1165-1175. [PMID: 39147662 PMCID: PMC11976542 DOI: 10.1016/j.identj.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most common type of malignant tumour in the oral cavity, and it is known for its poor prognosis. Budding uninhibited by benzimidazoles 1 (BUB1) may be related to cancer prognosis; however, the specific relationship between BUB1 and OSCC prognosis remains largely unexplored. METHODS The mRNA levels of BUB1 were analysed using data from the TCGA_OSCC and GSE23558 cohorts. OSCC samples from the TCGA_OSCC dataset were divided into low- and high-BUB1 expression groups based on the median BUB1 level. Furthermore, results of survival analysis, tumour mutation burden (TMB), gene set enrichment analysis (GSEA) pathways, and drug-sensitivity analysis were compared between the 2 groups. RESULTS Based on the data from the TCGA_OSCC and GSE23558 cohorts, BUB1 mRNA levels were significantly upregulated in OSCC tissues compared to healthy controls. Moreover, high expression of BUB1 may serve as an independent indicator of poor prognosis in OSCC. Additionally, patients with high BUB1 expression also exhibited increased levels of immune checkpoints and TMB, suggesting that patients with high BUB1 expression may benefit from immunotherapy. Mechanistically, transcription factors ZFP64, TCF3, and ZNF281 were found to potentially bind to the promoter region of BUB1, thereby regulating its gene expression. Furthermore, GSEA results showed that BUB1 expression was closely related to cell cycle and tumour-related pathways in OSCC. Drug-sensitivity analysis showed that patients with high BUB1 expression may be more sensitive to gemcitabine, paclitaxel, or imatinib. CONCLUSIONS Collectively, results demonstrated that high BUB1 levels may be related to a poor prognosis of OSCC, highlighting its potential as a novel prognostic biomarker for OSCC.
Collapse
Affiliation(s)
- Xiaoqian Li
- Department of Stomatology, Tianjin First Central Hospital, Nankai District, Tianjin, P.R. China.
| |
Collapse
|
2
|
Luo L, Ji J, Dong J, He M, Jiang W, Liu Y, Wang W. Infiltration and subtype analysis of CD3 + CD20 + T cells in lung cancer. BMC Cancer 2025; 25:179. [PMID: 39885465 PMCID: PMC11783900 DOI: 10.1186/s12885-025-13581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND CD3 + CD20 + T cells (TB cells) are a subset of lymphocytes in the human body that are associated with inflammation. They originate from T cells interacting with B cells, and their levels are abnormally elevated in individuals with immune disorders, as well as in some cancer patients. The interplay between tumor immunity and inflammation is intricate, yet the specific involvement of TB cells in local tumor immunity remains uncertain, with limited research on their subtypes. METHODS Lung cancer surgical samples were stained using multi-color immunofluorescence to study the subtypes and distribution patterns of TB cells. RESULTS TB cells were confirmed to exist in a scattered pattern within tertiary lymphoid structures (TLS) in lung cancer tissues, with higher abundance in mature TLS. In subtype analysis, the CD4-CD8- double-negative TB cell subtype was predominant, comprising over 90% in samples with abundant TLS infiltration and over 60% in samples with poor infiltration. This was followed by the CD4 + CD8- and CD4-CD8 + single-positive TB cell subtypes, while the CD4 + CD8 + double-positive TB cell subtype was nearly absent. During the maturation of TLS, the proportion of B cells gradually increased, while the proportion of CD4-CD8- T cell subtype decreased. CONCLUSIONS TB cells extensively infiltrate the TLS regions in tumor tissues, with the double-negative subtype being predominant, potentially playing a crucial regulatory role in the local tumor immune microenvironment. This finding could facilitate the advancement of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Liping Luo
- Basic Research Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Ji
- Pathology Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Dong
- Department of Pulmonology, Meishan Cancer Hospital, Meishan, China
| | - Maotao He
- Pathology Department, Meishan Cancer Hospital, Meishan, China
| | - Wenjun Jiang
- Basic Research Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China
- Radiotherapy Center, Radiation Oncology Key Laboratory of Sichuan Province, Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, Sichuan, China
| | - Yang Liu
- Pathology Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Weidong Wang
- Basic Research Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China.
- Radiotherapy Center, Radiation Oncology Key Laboratory of Sichuan Province, Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Hajipirloo LK, Nabigol M, Khayami R, Karami N, Farsani MA, Navidinia AA. Construction of a stromal-related prognostic model in acute myeloid leukemia by comprehensive bioinformatics analysis. Curr Res Transl Med 2025; 73:103492. [PMID: 39818173 DOI: 10.1016/j.retram.2025.103492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 12/10/2024] [Accepted: 01/04/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Stromal cells play a pivotal role in the tumor microenvironment (TME), significantly impacting the progression of acute myeloid leukemia (AML). This study sought to develop a stromal-related prognostic model for AML, aiming to uncover novel prognostic markers and therapeutic targets. METHODS RNA expression data and clinical profiles of AML patients were retrieved from the Cancer Genome Atlas (TCGA). The extent of stromal cell infiltration within the TME was quantified using the ESTIMATE algorithm. Associations between stromal scores and the French-American-British (FAB) classification, overall survival (OS), and the Cancer and Leukemia Group B (CALGB) cytogenetic risk categories were analyzed. Differentially expressed genes (DEGs) were identified, and gene ontology (GO) and protein-protein interaction (PPI) networks were constructed. Prognostic DEGs were selected through LASSO-cox regression analysis. A risk score model was then developed based on these DEGs. A stromal-related prognostic model (SPM) was constructed from the patients' risk scores (RS), and its efficacy was evaluated using Receiver Operating Characteristic (ROC) curves and a nomogram. The association between FAB, CALGB, age, and common mutations and SPM was also assessed. Ultimately, the SPM was validated using an external dataset from 246 patients in the TARGET-AML study. RESULTS Kaplan-Meier analysis revealed a significant association between stromal scores and patient survival (p = 0.04). LASSOCox regression identified four genes (MAP7D2, CDRT1, HOXB9, and IRX5) as highly predictive of survival. The prognostic model showed a strong correlation with overall survival, with higher scores indicating poorer outcomes (p = 1.48e-07). Older patients (over 60 years) faced significantly worse prognoses (p = 0.0055). Although no significant association was found between the SPM and the FAB classification (p = 0.063), both poor and intermediate/normal cytogenetic groups had significantly higher SPM risk scores than the favorable group (p = 0.0057 and 0.0026). External validation of the SPM in the TARGET-AML dataset confirmed a significant association with survival (p = 0.00035), with the area under the curve (AUC) for 10-year survival at 75.81 %. CONCLUSION Our research successfully established a stromal-related prognostic model in AML, offering new perspectives for prognostic evaluation and identifying potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Laya Khodayi Hajipirloo
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nabigol
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Khayami
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najibe Karami
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Allahbakhshian Farsani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Navidinia
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Yao Y, Liu Y, Lu B, Ji G, Wang L, Dong K, Zhao Z, Lyu D, Wei M, Tu S, Lyu X, Li Y, Huang R, Zhou W, Xu G, Pan X, Cui X. Construction and validation of a regulatory T cells-based classification of renal cell carcinoma: an integrated bioinformatic analysis and clinical cohort study. Cell Oncol (Dordr) 2024:10.1007/s13402-024-01030-9. [PMID: 39714755 DOI: 10.1007/s13402-024-01030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 12/24/2024] Open
Abstract
PURPOSE Renal cell carcinoma (RCC), exhibiting remarkable heterogeneity, can be highly infiltrated by regulatory T cells (Tregs). However, the relationship between Treg and the heterogeneity of RCC remains to be explored. METHODS We acquired single-cell RNA-seq profiles and 537 bulk RNA-seq profiles of TCGA-KIRC cohort. Through clustering, monocle2 pseudotime and prognostic analyses, we identified Treg states-related prognostic genes (TSRPGs), then constructing the RCC Treg states-related prognostic classification (RCC-TSC). We also explored its prognostic significance and multi-omics landmarks. Additionally, we utilized correlation analysis to establish regulatory networks, and predicted candidate inhibitors. More importantly, in Xinhua cohort of 370 patients with kidney neoplasm, we used immunohistochemical (IHC) staining for classification, then employing statistical analyses including Chi-square tests and multivariate Cox proportional hazards regression analysis to explore its clinical relevance. RESULTS We defined 44 TSRPGs in four different monocle states, and identified high immune infiltration RCC (HIRC, LAG3+, Mki67+) as the highly exhausted subtype with the worst prognosis in RCC-TSC (p < 0.001). BATF-LAG3-immune cells axis might be its underlying metastasis-related mechanism. Immunotherapy and inhibitors including sunitinib potentially conferred best therapeutic effects for HIRC. Furthermore, we successfully validated HIRC subtype as an independent prognostic factor within the Xinhua cohort (OS, HR = 16.68, 95% CI = 1.88-148.1, p = 0.011; PFS, HR = 4.43, 95% CI = 1.55-12.6, p = 0.005). CONCLUSION Through integrated bioinformatics analysis and a large-sample retrospective clinical study, we successfully established RCC-TSC and a diagnostic kit, which could stratify RCC patients with different prognosis and to guide personalized treatment.
Collapse
Affiliation(s)
- Yuntao Yao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guo Ji
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Keqin Dong
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zihui Zhao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Donghao Lyu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Maodong Wei
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Siqi Tu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xukun Lyu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuanan Li
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Wang Zhou
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Guofeng Xu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Xingang Cui
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
5
|
Liu Y, Yao Y, Yang X, Wei M, Lu B, Dong K, Lyu D, Li Y, Guan W, Huang R, Xu G, Pan X. Lymphocyte activation gene 3 served as a potential prognostic and immunological biomarker across various cancer types: a clinical and pan-cancer analysis. Clin Transl Immunology 2024; 13:e70009. [PMID: 39372371 PMCID: PMC11450455 DOI: 10.1002/cti2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
Objectives Lymphocyte activation gene 3 (LAG3), an inhibitory receptor in T-cell activation, is a negative prognostic factor. However, its impact on tumours has yet to be comprehensively elucidated on a pan-cancer scale. Thus, we aim to reveal its role at the pan-cancer level. Methods We performed IHC staining on a retrospective cohort of 370 patients. Then we assessed the prognostic effect of LAG3 using Kaplan-Meier survival analysis and multivariate Cox regression analysis. In pan-cancer analysis, we constructed competing endogenous RNA and protein-protein interaction networks, conducted gene set enrichment analysis and identified correlations between LAG3 gene expression and various factors, including clinical characteristics, tumour purity, mutations, tumour immunity and drug sensitivity across 33 cancer types. Results LAG3 was expressed higher in normal kidney tissues than in tumours. A high level of LAG3 gene expression was an independent prognostic factor for OS (HR = 6.60, 95% CI = 2.43-17.90, P < 0.001) and PFS (HR = 3.44, 95% CI = 1.68-7.10, P < 0.001). In pan-cancer analysis, LAG3 exhibited robust correlations with survival and tumour stages in various cancers. Moreover, LAG3 was strongly associated with immune-related genes, proteins and signalling pathways. LAG3 gene expression was positively associated with increased infiltration of activated immune cells and decreased infiltration of several resting cells. LAG3 gene expression was associated with tumour mutation burden and microsatellite instability in multiple cancers. Conclusion High LAG3 gene expression was an independent risk factor in kidney neoplasms. It also functioned as a biomarker for prognosis, TIME and immunotherapy efficacy in the pan-cancer dimension.
Collapse
Affiliation(s)
- Yifan Liu
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuntao Yao
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xinyue Yang
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Maodong Wei
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bingnan Lu
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Keqing Dong
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Donghao Lyu
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuanan Li
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenbin Guan
- Department of PathologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Runzhi Huang
- Department of Burn SurgeryThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Guofeng Xu
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiuwu Pan
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
6
|
Lei J, Fu J, Wang T, Guo Y, Gong M, Xia T, Shang S, Xu Y, Cheng L, Lin B. Molecular subtype identification and prognosis stratification by a immunogenic cell death-related gene expression signature in colorectal cancer. Expert Rev Anticancer Ther 2024; 24:635-647. [PMID: 38407877 DOI: 10.1080/14737140.2024.2320187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
OBJECTIVES This study intended to develop a new immunogenic cell death (ICD)-related prognostic signature for colorectal cancer (CRC) patients. RESEARCH DESIGN AND METHODS The Non-Negative Matrix Factorization (NMF) algorithm was adopted to cluster tumor samples based on ICD gene expression to obtain ICD-related subtypes. Survival analysis and immune microenvironment analysis were conducted among different subtypes. Regression analysis was used to construct the model. Based on riskscore median, cancer patients were classified into high and low risk groups, and independent prognostic ability of the model was analyzed. The CIBERSORT algorithm was adopted to determine the immune infiltration level of both groups. RESULTS We analyzed the differential genes between cluster 4 and cluster 1-3 and obtained 12 genes with the best prognostic features finally (NLGN1, SLC30A3, C3orf20, ADAD2, ATOH1, ATP6V1B1, KCNQ2, MUCL3, RGCC, CLEC17A, COL6A5, and INSL4). In addition, patients with lower risk had higher levels of infiltration of most immune cells, lower Tumor Immune Dysfunction and Exclusion (TIDE) level and higher immunophenscore (IPS) level than those with higher risk. CONCLUSIONS This study constructed and validated the ICD feature signature predicting CRC prognosis and provide a reference criteria for guiding the prognosis and immunotherapy of CRC cancer patients.
Collapse
Affiliation(s)
- Junping Lei
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Jia Fu
- Department of Pulmonary and Critical Care Medicine, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Tianyang Wang
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Yu Guo
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Mingmin Gong
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Tian Xia
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Song Shang
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Yan Xu
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| | - Ling Cheng
- Zhejiang Luoxi Medical Technology Co. Ltd, Hangzhou, P.R, China
| | - Binghu Lin
- Department of Colorectal and Anal Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, P.R, China
| |
Collapse
|
7
|
Tang Q, Yuan Y, Li L, Xu Y, Ji W, Xiao S, Han Y, Miao W, Cai J, You P, Chen M, Ding S, Li Z, Qi Z, Hou W, Luo H. Comprehensive analysis reveals that LTBR is a immune-related biomarker for glioma. Comput Biol Med 2024; 174:108457. [PMID: 38599071 DOI: 10.1016/j.compbiomed.2024.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Glioma is a common malignant brain tumor with great heterogeneity and huge difference in clinical outcomes. Although lymphotoxin (LT) beta receptor (LTBR) has been linked to immune system and response development for decades, the expression and function in glioma have not been investigated. To confirm the expression profile of LTBR, integrated RNA-seq data from glioma and normal brain tissues were analyzed. Functional enrichment analysis, TMEscore analysis, immune infiltration, the correlation of LTBR with immune checkpoints and ferroptosis, and scRNAseq data analysis in gliomas were in turn performed, which pointed out that LTBR was pertinent to immune functions of macrophages in gliomas. In addition, after being trained and validated in the tissue samples of the integrated dataset, an LTBR DNA methylation-based prediction model succeeded to distinguish gliomas from non-gliomas, as well as the grades of glioma. Moreover, by virtue of the candidate LTBR CpG sites, a prognostic risk-score model was finally constructed to guide the chemotherapy, radiotherapy, and immunotherapy for glioma patients. Taken together, LTBR is closely correlated with immune functions in gliomas, and LTBR DNA methylation could serve as a biomarker for diagnosis and prognosis of gliomas.
Collapse
Affiliation(s)
- Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Yifan Yuan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Lingjuan Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Yue Xu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of General Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Wei Ji
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, Shandong Province, China
| | - Siyu Xiao
- Department of Rehabilitation, Gongan Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Chinese Medicine, Jingzhou, 434300, Hubei Province, China
| | - Yi Han
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200052, China
| | - Wenrong Miao
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200052, China
| | - Jing Cai
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Pu You
- Shanghai QuietD Biotechnology Co., Ltd., Shanghai, 201210, China
| | - Ming Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Saineng Ding
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Zhen Li
- Shanghai QuietD Biotechnology Co., Ltd., Shanghai, 201210, China.
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China.
| | - Weiliang Hou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China.
| | - Hao Luo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
8
|
Wu L, Chen X, Zeng Q, Lai Z, Fan Z, Ruan X, Li X, Yan J. NR5A2 gene affects the overall survival of LUAD patients by regulating the activity of CSCs through SNP pathway by OCLR algorithm and immune score. Heliyon 2024; 10:e28282. [PMID: 38601554 PMCID: PMC11004709 DOI: 10.1016/j.heliyon.2024.e28282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024] Open
Abstract
Objective Differentially expressed genes (DEGs) in lung adenocarcinoma (LUAD) tumor stem cells were screened, and the biological characteristics of NR5A2 gene were investigated. Methods The expression and prognosis of NR5A2 in human LUAD were predicted and analyzed through bioinformatics analysis from a human cancer database. Gene expression and clinical data of LUAD tumor and normal lung tissues were obtained from The Cancer Genome Atlas (TCGA) database, and DEGs associated with lung cancer tumor stem cells (CSCs) were screened. Univariate and multivariate Cox regression models were used to screen and establish prognostic risk prediction models. The immune function of the patients was scored according to the model, and the relative immune functions of the high- and low-risk groups were compared to determine the difference in survival prognosis between the two groups. In addition, we calculated the index of stemness based on the transcriptome of the samples using one-class linear regression (OCLR). Results Bioinformatics analysis of a clinical cancer database showed that NR5A2 was significantly decreased in human LUAD tissues than in normal lung tissues, and the decrease in NR5A2 gene expression shortened the overall survival and progression-free survival of patients with LUAD. Conclusion The NR5A2 gene may regulate LUAD tumor stem cells through selective splicing mutations, thereby affecting the survival and prognosis of patients with lung cancer, and the NR5A2 gene may regulate CSCs through single nucleotide polymorphism.
Collapse
Affiliation(s)
- Liusheng Wu
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Xiaofan Chen
- Department of Traditional Chinese Medicine, Affiliated Sanming First Hospital of Fujian Medical University, Sanming, 365000, China
| | - Qi Zeng
- Department of Information Technology, Union College of Fujian Normal University, Fuzhou, 350116, China
| | - Zelin Lai
- Department of Information and Computational Sciences, School of Mathematics, Liaoning Normal University, Liaoning, 116029, China
| | - Zhengyang Fan
- Department of Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Xin Ruan
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Xiaoqiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Jun Yan
- School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Liu L, Li J, Fan C, Wen M, Li C, Sun W, Wang W. Construction of a New Immune-Related Competing Endogenous RNA Network with Prognostic Value in Lung Adenocarcinoma. Mol Biotechnol 2024; 66:300-310. [PMID: 37118319 DOI: 10.1007/s12033-023-00754-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/15/2023] [Indexed: 04/30/2023]
Abstract
Tumor microenvironment has significant influence on the gene expression of tumor tissues and on the clinical outcomes in lung adenocarcinoma. Infiltrating immune and stromal cells not only perturb the tumor signal in molecular studies, but also play crucial roles in cancer biology. The competing endogenous RNAs (ceRNAs) are useful to explain the post-transcriptional layer regulated by gene translation and play an important role in the occurrence and progression of lung adenocarcinoma. Therefore, identifying novel molecular markers by constructing ceRNA associated with immune infiltration is of great significance to guide the treatment of lung adenocarcinoma in the future. According to the immune and stromal scores of lung adenocarcinoma samples in The Cancer Genome Atlas (TCGA) database calculated by the ESTIMATE algorithm, we identified differentially expressed lncRNAs, miRNAs and mRNAs associated with immune infiltration, including 60 dysregulated lncRNAs, 38 dysregulated mRNAs, and 29 dysregulated miRNAs. Based on the PPI network and Cox regression analysis, 5 mRNAs including CNR2, P2RY12, ZNF831, RSPO1, and F2 were identified to be related to immune infiltration and prognosis in lung adenocarcinoma, and their differential expression, prognosis and correlation with immune cells were verified. Next, through target binding prediction, pearson correlation analysis and expression analysis, a novel immune-related ceRNA network containing 6 lncRNAs, 4 miRNAs, and 3 mRNAs was finally constructed. The present study constructed a novel immune-associated lncRNA-miRNA-mRNA ceRNA network, which deepens our understanding on the molecular network mechanism of lung adenocarcinoma and provides potential prognostic markers and novel therapeutic targets for the patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Li Liu
- Respiratory and Critical Care Medicine Section 5, Shandong Public Health Clinical Center, No. 46 of Lishan Road, Lixia District, Jinan, Shandong, 250013, People's Republic of China
| | - Jing Li
- Respiratory and Critical Care Medicine Section 5, Shandong Public Health Clinical Center, No. 46 of Lishan Road, Lixia District, Jinan, Shandong, 250013, People's Republic of China
| | - Chunhui Fan
- Respiratory and Critical Care Medicine Section 5, Shandong Public Health Clinical Center, No. 46 of Lishan Road, Lixia District, Jinan, Shandong, 250013, People's Republic of China
| | - Mingyi Wen
- Respiratory and Critical Care Medicine Section 5, Shandong Public Health Clinical Center, No. 46 of Lishan Road, Lixia District, Jinan, Shandong, 250013, People's Republic of China
| | - Cunqi Li
- Respiratory and Critical Care Medicine Section 5, Shandong Public Health Clinical Center, No. 46 of Lishan Road, Lixia District, Jinan, Shandong, 250013, People's Republic of China
| | - Wen Sun
- Shandong Academy of Evidence-Based Medicine Co., Ltd, Jinan, Shandong, 250022, People's Republic of China
| | - Wuzhang Wang
- Respiratory and Critical Care Medicine Section 5, Shandong Public Health Clinical Center, No. 46 of Lishan Road, Lixia District, Jinan, Shandong, 250013, People's Republic of China.
| |
Collapse
|
10
|
Feng DC, Zhu WZ, Shi X, Xiong Q, You J, Wei Q, Yang L. Identification of senescence-related molecular subtypes and key genes for prostate cancer. Asian J Androl 2023; 25:223-229. [PMID: 36124532 PMCID: PMC10069687 DOI: 10.4103/aja202258] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We identified distinct senescence-related molecular subtypes and critical genes among prostate cancer (PCa) patients undergoing radical prostatectomy (RP) or radical radiotherapy (RT). We conducted all analyses using R software and its suitable packages. Twelve genes, namely, secreted frizzled-related protein 4 (SFRP4), DNA topoisomerase II alpha (TOP2A), pleiotrophin (PTN), family with sequence similarity 107 member A (FAM107A), C-X-C motif chemokine ligand 14 (CXCL14), prostate androgen-regulated mucin-like protein 1 (PARM1), leucine zipper protein 2 (LUZP2), cluster of differentiation 38 (CD38), cartilage oligomeric matrix protein (COMP), vestigial-like family member 3 (VGLL3), apolipoprotein E (APOE), and aldehyde dehydrogenase 2 family member (ALDH2), were eventually used to subtype PCa patients from The Cancer Genome Atlas (TCGA) database and GSE116918, and the molecular subtypes showed good correlations with clinical features. In terms of the tumor immune environment (TME) analysis, compared with cluster 1, cancer-associated fibroblasts (CAFs) scored significantly higher, while endothelial cells scored lower in cluster 2 in TCGA database. There was a statistically significant correlation between both CAFs and endothelial cells with biochemical recurrence (BCR)-free survival for PCa patients undergoing RP. For the GSE116918 database, cluster 2 had significantly lower levels of CAFs and tumor purity and higher levels of stromal, immune, and Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) scores than cluster 1; in addition, patients with high levels of CAFs, stromal scores, immune scores, and ESTIMATE scores and low levels of tumor purity tended to suffer from BCR. Based on the median of differentially expressed checkpoints, high expression of CD96, hepatitis A virus cellular receptor 2 (HAVCR2), and neuropilin 1 (NRP1) in GSE116918 and high expression of CD160 and tumor necrosis factor (ligand) superfamily member 18 (TNFSF18) in TCGA database were associated with a significantly higher risk of BCR than their counterparts. In conclusion, we first constructed distinct molecular subtypes and critical genes for PCa patients undergoing RP or RT from the fresh perspective of senescence.
Collapse
Affiliation(s)
- De-Chao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei-Zhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jia You
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Han Y, Shi Y, Chen B, Wang J, Liu Y, Sheng S, Fu Z, Shen C, Wang X, Yin S, Li H. An ion-channel-gene-based prediction model for head and neck squamous cell carcinoma: Prognostic assessment and treatment guidance. Front Immunol 2022; 13:961695. [PMID: 36389709 PMCID: PMC9650652 DOI: 10.3389/fimmu.2022.961695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/12/2022] [Indexed: 09/18/2023] Open
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) is a very diverse malignancy with a poor prognosis. The purpose of this study was to develop a new signature based on 12 ion channel genes to predict the outcome and immune status of HNSCC patients. METHODS Clinicopathological information and gene sequencing data of HNSCC patients were generated from the Cancer Genome Atlas and Gene Expression Omnibus databases. A set of 323 ion channel genes was obtained from the HUGO Gene Nomenclature Committee database and literature review. Using univariate Cox regression analysis, the ion channel genes related to HNSCC prognosis were identified. A prognostic signature and nomogram were then created using machine learning methods. Kaplan-Meier analysis was used to explore the relevance of the risk scores and overall survival (OS). We also investigated the association between risk scores, tumor immune infiltration, and gene mutational status. Finally, we detected the expression levels of the signature genes by quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry. RESULTS We separated the patients into high- and low-risk groups according to the risk scores computed based on these 12 ion channel genes, and the OS of the low-risk group was significantly longer (p<0.001). The area under the curve for predicting 3-year survival was 0.729. Univariate and multivariate analyses showed that the 12-ion-channel-gene risk model was an independent prognostic factor. We also developed a nomogram model based on risk scores and clinicopathological variables to forecast outcomes. Furthermore, immune cell infiltration, gene mutation status, immunotherapy response, and chemotherapeutic treatment sensitivity were all linked to risk scores. Moreover, high expression levels of ANO1, AQP9, and BEST2 were detected in HNSCC tissues, whereas AQP5, SCNN1G, and SCN4A expression was low in HNSCC tissues, as determined by experiments. CONCLUSION The 12-ion-channel-gene prognostic signatures have been demonstrated to be highly efficient in predicting the prognosis, immune microenvironment, gene mutation status, immunotherapy response, and chemotherapeutic sensitivity of HNSCC patients.
Collapse
Affiliation(s)
- Yanxun Han
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Yangyang Shi
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bangjie Chen
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | | | - Yuchen Liu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | | | - Ziyue Fu
- Anhui Medical University, Hefei, Anhui, China
| | | | - Xinyi Wang
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Siyue Yin
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Haiwen Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Subtype Classification, Immune Infiltration, and Prognosis Analysis of Lung Adenocarcinoma Based on Pyroptosis-Related Genes. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1371315. [PMID: 36277882 PMCID: PMC9581708 DOI: 10.1155/2022/1371315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022]
Abstract
The effect of pyroptosis-related genes (PRGs) on the tumor microenvironment (TME) in lung adenocarcinoma (LUAD) remains unclear. Thus, this study is aimed at evaluating the prognostic value of PRGs in patients with LUAD and to elucidate their role in the TME and their effect on immunotherapy. Transcriptomic and clinical data were obtained from the Cancer Genome Atlas and the Gene Expression Omnibus databases (GSE3141, GSE31210). Patients with LUAD were classified using consistent clustering, and the differences in the TME for each type were determined using the ESTIMATE and CIBERSORT algorithms. PRGs were screened using univariate regression analysis, and a prognostic risk model was constructed using LASSO regression analysis. The tumor mutational burden and the tumor immune dysfunction and exclusion algorithms were used to predict therapeutic sensitivity in LUAD patients. Then, we evaluated the potential therapeutic interventions using the GDSC database. LUAD patients in cluster 2 had significantly shorter overall survival and progression-free survival rates, lower immune scores, and higher infiltration of T follicular helper cells than those in cluster 1. We used five PRGs to classify patients with LUAD into different risks groups and found that the high-risk group is sensitive to immunotherapy; however, its immune-related pathways were inhibited, which may be related to tumor metabolic reprogramming. Lastly, we identified several potential therapeutic drugs for application in low-risk patients who were less sensitive to immunotherapy. Overall, our findings showed that PRGs can be used to predict prognosis and may aid in the development of personalized therapeutic strategies in LUAD patients.
Collapse
|
13
|
Combination of Tumor Mutational Burden and DNA Damage Repair Gene Mutations with Stromal/Immune Scores Improved Prognosis Stratification in Patients with Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:6407344. [PMID: 36262349 PMCID: PMC9576425 DOI: 10.1155/2022/6407344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/24/2022] [Indexed: 12/24/2022]
Abstract
Background Both the tumor environment and the genomic landscape of lung cancer may shape patient responses to treatments, including immunotherapy, but their joint impacts on lung adenocarcinoma (LUAD) prognosis are underexplored. Methods RNA sequencing data and whole-exome sequencing results were downloaded from the TCGA database, and only LUAD-related data were included in this study. Based on gene expression data, the ESTIMATE algorithm was used to estimate stromal and immune scores, and CIBERSORT analysis was used for quantification of the relative abundances of immune cells. Somatic mutations were used for calculating tumor mutation burden (TMB). Specific mutations in genes involved in DNA damage repair (DDR) pathways were identified. The individual and joint associations of stromal and immune score, TMB, and DDR gene mutations with 5-year survival were analyzed by the Kaplan–Meier method and multivariate Cox model. Results LUAD patients with a high (>highest 25%) stromal or immune score had prolonged survival as compared to those with a low (<lowest 25%) score (log-rank P=0.05 and 0.035, respectively). Patients with both high stromal and immune scores had the most favorable survival. Although the survival differences between patients with high (>highest 25%) and low (<lowest 25%) TMB, or between patients with mutant- and wild-type DDR genes were not statistically significant, a survival benefit from high TMB or DDR gene mutations was observed in patients with high stromal or immune scores. Conclusion A comprehensive evaluation of transcriptomic signatures and genomic biomarkers may provide a novel avenue for improving prognosis stratification in LUAD.
Collapse
|
14
|
Feng D, Zhu W, You J, Shi X, Han P, Wei W, Wei Q, Yang L. Mitochondrial Aldehyde Dehydrogenase 2 Represents a Potential Biomarker of Biochemical Recurrence in Prostate Cancer Patients. Molecules 2022; 27:6000. [PMID: 36144737 PMCID: PMC9500792 DOI: 10.3390/molecules27186000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We aimed to explore the role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in prostate cancer (PCa) patients and provide insights into the tumor immune microenvironment (TME) for those patients undergoing radical radiotherapy. METHODS We performed all analyses using R version 3.6.3 and its suitable packages. Cytoscape 3.8.2 was used to establish network of competing endogenous RNAs (ceRNAs). RESULTS Downregulation of ADLH2 was significantly associated with higher risk of BCR-free survival (HR: 0.40, 95%CI: 0.24-0.68, p = 0.001) and metastasis-free survival (HR: 0.21, 95%CI: 0.09-0.49, p = 0.002). Additionally, ALDH2 repression contributed to significantly shorter BCR-free survival in the TCGA database (HR: 0.55, 95%CI: 0.33-0.93, p = 0.027). For immune checkpoints, patients that expressed a higher level of CD96 had a higher risk of BCR than their counterparts (HR: 1.79, 95%CI: 1.06-3.03, p = 0.032), as well as NRP1 (HR: 2.18, 95%CI: 1.29-3.69, p = 0.005). In terms of the TME parameters, the spearman analysis showed that ALDH was positively associated with B cells (r: 0.13), CD8+ T cells (r: 0.19), neutrophils (r: 0.13), and macrophages (r: 0.17). Patients with higher score of neutrophils (HR: 1.75, 95%CI: 1.03-2.95, p = 0.038), immune score (HR: 1.92, 95%CI: 1.14-3.25, p = 0.017), stromal score (HR: 2.52, 95%CI: 1.49-4.26, p = 0.001), and estimate score (HR: 1.81, 95%CI: 1.07-3.06, p = 0.028) had higher risk of BCR than their counterparts. Our ceRNA network found that PART1 might regulate the expression of ALDH via has-miR-578 and has-miR-6833-3p. Besides, PHA-793887, PI-103, and piperlongumine had better correlations with ALDH2. CONCLUSIONS We found that ALDH2 might serve as a potential biomarker predicting biochemical recurrence for PCa patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Wei Q, Miao T, Zhang P, Jiang B, Yan H. Comprehensive analysis to identify GNG7 as a prognostic biomarker in lung adenocarcinoma correlating with immune infiltrates. Front Genet 2022; 13:984575. [PMID: 36159963 PMCID: PMC9500342 DOI: 10.3389/fgene.2022.984575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: G Protein Subunit Gamma 7 (GNG7), an important regulator of cell proliferation and cell apoptosis, has been reported to be downregulated in a variety of tumors including lung adenocarcinoma (LUAD). However, the correlation between low expression of GNG7 and prognosis of LUAD as well as the immune infiltrates of LUAD remains unclear. Methods: The samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). R software was performed for statistical analysis. GNG7 expression and its prognostic value in LUAD were assessed through statistically analyzing the data from different databases. A nomogram was constructed to predict the impact of GNG7 on prognosis. Gene set enrichment analysis (GSEA) and single-sample gene set enrichment analyses GSEA (ssGSEA) were employed to determine the potential signal pathways and evaluated the immune cell infiltration regulated by GNG7. The prognostic significance of GNG7 expression associated with immune cell infiltration was investigated using the Tumor Immune Estimation Resource 2.0 (TIMER2.0) and the Kaplan-Meier plotter database. The UALCAN, cBio Cancer Genomics Portal (cBioPortal) and MethSurv database were used to analyze the correlation between the methylation of GNG7 and its mRNA expression as well as prognostic significance. Results: GNG7 was demonstrated to be down-regulated in LUAD and its low expression was associated with poor prognosis. A clinical reliable prognostic-predictive model was constructed. Pathway enrichment showed that GNG7 was highly related to the B cell receptor signaling pathway. Further analysis showed that GNG7 was positively associated with B cell infiltration and low levels of B cell infiltration tended to associate with worse prognosis in patients with low GNG7 expression. Moreover, methylation analysis suggested hypermethylation may contribute to the low expression of GNG7 in LUAD. Conclusion: Decreased expression of GNG7 at least partly caused by hypermethylation of the GNG7 promoter is closely associated with poor prognosis and tumor immune cell infiltration (especially B cells) in LUAD. These results suggest that GNG7 may be a promising prognostic biomarker and a potential immunotherapeutic target for LUAD, which provides new insights into immunotherapy for LUAD.
Collapse
Affiliation(s)
- Qin Wei
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Tianshu Miao
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Pengju Zhang
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Baodong Jiang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Hua Yan
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Hua Yan,
| |
Collapse
|
16
|
Deng Z, Zhan P, Yang K, Liu L, Liu J, Gao W. Identification of personalized neoantigen-based vaccines and immune subtype characteristic analysis of glioblastoma based on abnormal alternative splicing. Am J Cancer Res 2022; 12:3581-3600. [PMID: 36119813 PMCID: PMC9442016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023] Open
Abstract
The development of personalized neoantigen-based vaccines in cancer immunotherapy has shown promise. In this study, a large-scale bioinformatics analysis was performed to identify potential GBM-associated neoantigens based on abnormal alternative splicing, and then screen suitable patients for vaccination. Gene expression profiles and clinical information were collected from TCGA. We filtered the percent-spliced-in (PSI) spectrum of alternative splicing events in the dataset to identify abnormal alternative splicing events. MAF package was used to identify and analyse tumour mutation burden (TMB) in cancer samples. Tumour Immune Estimation Resource (TIMER) was used to calculate and visualize the infiltration of antigen presenting cells (APCs). In addition, consistent clustering algorithm utilized to identify immune subtypes of GBM. Five potential tumour neoantigens (LRP1, TCF12, DERL3, WIPI2, and TSHZ3) were identified in GBM by selecting genes both with abnormal alternative splicing (upregulated) and gene frameshift mutations, in which LRP1 was significantly associated with APCs. According to the expressions of five potential tumour neoantigens, 160 patients with GBM were divided into three immune subtypes. Patients in cluster3 exhibited good prognoses. Furthermore, the characteristics, including TMB, abnormal alternative splicing events, immune activity, immune cells proportion, and association with tumour biomarkers, were unique in each immune subtypes. The characteristics of cluster3 illustrated that cluster3 participants were more suitable candidates for vaccination. LRP1 was identified as a potential neoantigen for immunotherapy against GBM, and patients in cluster3 were more suitable for vaccination. Our findings provide important guidance for the development of novel neoantigens and therapeutic targets in patients with GBM.
Collapse
Affiliation(s)
- Zhifang Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Peiyan Zhan
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Ke Yang
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Li Liu
- Office of Academic Research, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Wenqi Gao
- Institute of Maternal and Child Health, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University and TechnologyWuhan 430015, Hubei, China
| |
Collapse
|
17
|
Prognostic and Immunological Value of GNB4 in Gastric Cancer by Analyzing TCGA Database. DISEASE MARKERS 2022; 2022:7803642. [PMID: 35756485 PMCID: PMC9225895 DOI: 10.1155/2022/7803642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/03/2022]
Abstract
Background Gastric cancer (GC) represents a universal malignant tumor of the digestive system. Stromal and immune cells belong to two main nontumor components exerting a vital function in the tumor microenvironment. Methods Based on TCGA database, this study downloaded clinical information and gene profiles of GC. The ESTIMATE algorithm was adopted for evaluating the score of immune-infiltrating cells. This work employed Sangerbox to explore the differentially denoted genes (DEGs) related to stromal, immunity, and prognosis. Besides, the STRING database was involved in order to detect the association among the proteins. The MCODE module of Cytoscape software was used to screen key genes. Oncomine and GEPIA databases were used, aiming to study the differences in key genes in healthy gastric mucosa and GC. At last, we adopted TISDIB and TIMER databases for analyzing the association of guanine nucleotide binding protein subunit-4 (GNB4) between gastric cancer and tumor immune cells. qRT-PCR was applied for exploring differential GNB4 expression between GC and normal gastric mucosa and investigating the relation of GNB4 with tumor-infiltrating lymphocytes (TILs). Results Patients undergoing a great stromal score exhibited worse prognostic outcome, and cases having a low immune score had better prognosis. Overall, altogether 656 genes were upregulated with 5 genes being downregulated, which were matrix immune-related differential genes. Furthermore, 18 genes were screened as hub genes on the basis of the univariate Cox risk model of TCGA database (82 differential genes predicted poor GC survival). Oncomine and GEPIA databases revealed that GNB4 expression in gastric cancer was obviously higher in comparison with that in normal gastric mucosa. The GSEA, TISDIB, and TIMER databases revealed that GNB4 is involved in various tumor signal pathways and immune and metabolic processes. qRT-PCR demonstrated that GNB4 expression in gastric cancer was notably higher in comparison with that in normal gastric mucosa, showing significant association with matrix TILs. Conclusion The selected key gene GNB4 is a potential biomarker to guide the immunotherapy of gastric cancer.
Collapse
|
18
|
Huang P, Xu L, Jin M, Li L, Ke Y, Zhang M, Zhang K, Lu K, Huang G. Construction and Validation of a Tumor Microenvironment-Based Scoring System to Evaluate Prognosis and Response to Immune Checkpoint Inhibitor Therapy in Lung Adenocarcinoma Patients. Genes (Basel) 2022; 13:genes13060951. [PMID: 35741714 PMCID: PMC9222903 DOI: 10.3390/genes13060951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Lung cancer is among the most dangerous malignant tumors to human health. Lung adenocarcinoma (LUAD) accounts for about 40% of all lung cancers. Accumulating evidence suggests that the tumor microenvironment (TME) is a crucial regulator of carcinogenesis and therapeutic efficacy in LUAD. However, the impact of tumor microenvironment-related signatures (TMERSs) representing the TME characteristics on the prognosis and therapeutic outcome of LUAD patients remains to be further explored. Materials and methods: Gene expression files and clinical information of 1630 LUAD samples and 275 samples with immunotherapy information from different databases such as The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Cancer Research Institute (CRI) iAtlas were downloaded and analyzed. Three hundred tumor microenvironment-related signatures (TMERS) based on a comprehensive collection of marker genes were quantified by single sample gene set enrichment analysis (ssGSEA), and then eight significant signatures were selected to construct the tumor microenvironment-related signature score (TMERSscore) by performing Least Absolute Shrinkage and Selection Operator (LASSO)-Cox analysis. Results: In this study, we constructed a TME-based prognostic stratification model for patients with LUAD and validated it in several external datasets. Furthermore, the TMERSscore was found to be positively correlated with tumor malignancy and a high TMERSscore predicted a poor prognosis. Moreover, the TMERSscore of responders treated with Immune Checkpoint Inhibitor (ICI) therapies was significantly lower than that of non-responders, and the TMERSscore was positively correlated with the tumor immune dysfunction and exclusion (TIDE) score, implying that a low TMERSscore predicts a better response to ICI treatment and may provide independent and incremental predictive value over current biomarkers. Conclusions: Overall, we constructed a TMERSscore that can be used for LUAD patient prognosis stratification as well as ICI therapeutic efficacy evaluation, supportive results from independent external validation sets showed its robustness and effectiveness.
Collapse
Affiliation(s)
- Pinzheng Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (P.H.); (L.X.); (L.L.); (Y.K.); (M.Z.); (K.Z.); (K.L.)
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Linfeng Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (P.H.); (L.X.); (L.L.); (Y.K.); (M.Z.); (K.Z.); (K.L.)
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200030, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Lixi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (P.H.); (L.X.); (L.L.); (Y.K.); (M.Z.); (K.Z.); (K.L.)
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Yizhong Ke
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (P.H.); (L.X.); (L.L.); (Y.K.); (M.Z.); (K.Z.); (K.L.)
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Min Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (P.H.); (L.X.); (L.L.); (Y.K.); (M.Z.); (K.Z.); (K.L.)
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Kairui Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (P.H.); (L.X.); (L.L.); (Y.K.); (M.Z.); (K.Z.); (K.L.)
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Kongyao Lu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (P.H.); (L.X.); (L.L.); (Y.K.); (M.Z.); (K.Z.); (K.L.)
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Gang Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (P.H.); (L.X.); (L.L.); (Y.K.); (M.Z.); (K.Z.); (K.L.)
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
- Correspondence:
| |
Collapse
|
19
|
Zhu N, Yang Y, Wang H, Tang P, Zhang H, Sun H, Gong L, Yu Z. CSF2RB Is a Unique Biomarker and Correlated With Immune Infiltrates in Lung Adenocarcinoma. Front Oncol 2022; 12:822849. [PMID: 35574409 PMCID: PMC9096117 DOI: 10.3389/fonc.2022.822849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background The tumor microenvironment plays an important role in the occurrence and development of tumors. However, there are gaps in understanding the molecular and cellular interactions between tumor cells and the immune tumor microenvironment (TME). The aim of this study was to identify a novel gene that played an important role in the tumor microenvironment of lung adenocarcinoma (LUAD). Methods The gene expression profile and clinical data for LUAD were downloaded from TCGA database. First, we used the ESTIMATE algorithm to evaluate the immune and stromal scores accordingly. Also, we analyzed differentially expressed immune-related genes (IRGs) in the high and low immune/stromal score groups. Then, we used the protein–protein interaction network (PPI network) and a univariate Cox regression analysis to identify the hub gene. After that, we analyzed the relationship between CSF2RB expression and TNM stage/prognosis. Furthermore, gene set enrichment analysis (GSEA) was used to analyze the pathway regulated by CSF2RB and the Pearson correlation analysis method was used to analyze the correlation between the CSF2RB and immune cells. Finally, we used Western blot, real-time quantitative PCR (RT-qPCR), and immunohistochemistry (IHC) to validate CSF2RB expression in cancer and para-cancerous tissues. Results We identified that CSF2RB played an important role in the tumor microenvironment of LUAD. The expression of CSF2RB in tumor tissues was lower than that in normal tissues. Furthermore, the Kaplan–Meier plotter showed that a low CSF2RB expression was associated with poor survival and multivariate COX regression analysis revealed that the CSF2RB gene was an independent risk factor for prognosis, independent of whether patients received chemotherapy or radiotherapy. More importantly, a high expression of CSF2RB was related to early T, N, and clinical stages. GSEA analysis revealed that CSF2RB associated with diverse immune-related pathways, including T-cell receptor signaling pathway, Toll-like receptor signaling pathway, and B-cell receptor signaling pathway. CSF2RB expression levels were also positively related with the levels of infiltrating CD4+ T cells, macrophages, NK cells, and monocytes in LUAD. Finally, tumor tissues from LUAD patients were used for the assessment of CSF2RB expression. It was significantly lower in tumor sites than in adjacent normal tissues, which was consistent with data analysis. Conclusion CSF2RB effectively predicted the prognosis of patients with lung adenocarcinoma which could also be a potential target for cancer treatment and prevention. However, further studies are required to elucidate the function and regulatory mechanisms of CSF2RB and to develop some novel treatment strategies.
Collapse
Affiliation(s)
- Ningning Zhu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital; National, Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yueyang Yang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital; National, Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Haitong Wang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital; National, Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Peng Tang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital; National, Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hongdian Zhang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital; National, Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Haiyan Sun
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital; National, Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Gong
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital; National, Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhentao Yu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital; National, Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and PeKing Union Medical College, Shenzhen, China
| |
Collapse
|
20
|
Pirlog R, Chiroi P, Rusu I, Jurj AM, Budisan L, Pop-Bica C, Braicu C, Crisan D, Sabourin JC, Berindan-Neagoe I. Cellular and Molecular Profiling of Tumor Microenvironment and Early-Stage Lung Cancer. Int J Mol Sci 2022; 23:5346. [PMID: 35628157 PMCID: PMC9140615 DOI: 10.3390/ijms23105346] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancers are broadly divided into two categories: non-small-cell lung carcinoma (NSCLC), which accounts for 80-85% of all cancer cases, and small-cell lung carcinoma (SCLC), which covers the remaining 10-15%. Recent advances in cancer biology and genomics research have allowed an in-depth characterization of lung cancers that have revealed new therapy targets (EGFR, ALK, ROS, and KRAS mutations) and have the potential of revealing even more biomarkers for diagnostic, prognostic, and targeted therapies. A new source of biomarkers is represented by non-coding RNAs, especially microRNAs (miRNAs). MiRNAs are short non-coding RNA sequences that have essential regulatory roles in multiple cancers. Therefore, we aim to investigate the tumor microenvironment (TME) and miRNA tumor profile in a subset of 51 early-stage lung cancer samples (T1 and T2) to better understand early tumor and TME organization and molecular dysregulation. We analyzed the immunohistochemistry expression of CD4 and CD8 as markers of the main TME immune populations, E-cadherin to evaluate early-stage epithelial-to-mesenchymal transition (EMT), and p53, the main altered tumor suppressor gene in lung cancer. Starting from these 4 markers, we identified and validated 4 miRNAs that target TP53 and regulate EMT that can be further investigated as potential early-stage lung cancer biomarkers.
Collapse
Affiliation(s)
- Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| | - Ioana Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania;
| | - Ancuta Maria Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| | - Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| | - Cecilia Pop-Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| | - Doinita Crisan
- Department of Morphological Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Jean-Christophe Sabourin
- Pathology Department and INSERM U1245, Rouen University Hospital, Normandy University, 76000 Rouen, France;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| |
Collapse
|
21
|
Guo Y, Yang J, Ren K, Tian X, Gao H, Tian X, Zhang X, Kan Q. The Heterogeneity of Immune Cell Infiltration Landscape and Its Immunotherapeutic Implications in Hepatocellular Carcinoma. Front Immunol 2022; 13:861525. [PMID: 35355983 PMCID: PMC8959995 DOI: 10.3389/fimmu.2022.861525] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy, closely associated with immune infiltration and tumor mutation burden (TMB), is emerging as a promising strategy for treating tumors, but its low response rate in hepatocellular carcinoma (HCC) remains a major challenge. Herein, we applied two algorithms to uncover the immune infiltration landscape of the immune microenvironment in 491 HCC patients. Three immune infiltration patterns were defined using the CIBERSORT method, and the immune cell infiltration (ICI) scores were established using principal component analysis. In the high ICI score group, the activation of the Wnt/β-catenin pathway was significantly enriched and expressions of immune checkpoint genes increased, which showed a pessimistic outcome. The low ICI score group was characterized by increased TMB and enrichment of metabolism-related pathways. Further analysis found that the ICI score exhibited a significant difference in age ≥65/age <65, grade I/grade II–IV, and response to immunotherapy. Moreover, the CTNNB1 mutation status was found to be closely associated with prognosis and immunotherapeutic efficiency, significantly affecting the ICI score and TMB, which might be regarded as a potential marker for the treatment of HCC. The evaluation of immune infiltration patterns can improve the understanding of the tumor immune microenvironment and provide new directions for the study of individualized immunotherapy strategies for HCC.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Kaidi Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xueke Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Hua Gao
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Mai S, Liang L, Mai G, Liu X, Diao D, Cai R, Liu L. Development and Validation of Lactate Metabolism-Related lncRNA Signature as a Prognostic Model for Lung Adenocarcinoma. Front Endocrinol (Lausanne) 2022; 13:829175. [PMID: 35422758 PMCID: PMC9004472 DOI: 10.3389/fendo.2022.829175] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lung cancer has been a prominent research focus in recent years due to its role in cancer-related fatalities globally, with lung adenocarcinoma (LUAD) being the most prevalent histological form. Nonetheless, no signature of lactate metabolism-related long non-coding RNAs (LMR-lncRNAs) has been developed for patients with LUAD. Accordingly, we aimed to develop a unique LMR-lncRNA signature to determine the prognosis of patients with LUAD. METHOD The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to derive the lncRNA expression patterns. Identification of LMR-lncRNAs was accomplished by analyzing the co-expression patterns between lncRNAs and LMR genes. Subsequently, the association between lncRNA levels and survival outcomes was determined to develop an effective signature. In the TCGA cohort, Cox regression was enlisted to build an innovative signature consisting of three LMR-lncRNAs, which was validated in the GEO validation cohort. GSEA and immune infiltration analysis were conducted to investigate the functional annotation of the signature and the function of each type of immune cell. RESULTS Fourteen differentially expressed LMR-lncRNAs were strongly correlated with the prognosis of patients with LUAD and collectively formed a new LMR-lncRNA signature. The patients could be categorized into two cohorts based on their LMR-lncRNA signatures: a low-risk and high-risk group. The overall survival of patients with LUAD in the high-risk group was considerably lower than those in the low-risk group. Using Cox regression, this signature was shown to have substantial potential as an independent prognostic factor, which was further confirmed in the GEO cohort. Moreover, the signature could anticipate survival across different groups based on stage, age, and gender, among other variables. This signature also correlated with immune cell infiltration (including B cells, neutrophils, CD4+ T cells, CD8+ T cells, etc.) as well as the immune checkpoint blockade target CTLA-4. CONCLUSION We developed and verified a new LMR-lncRNA signature useful for anticipating the survival of patients with LUAD. This signature could give potentially critical insight for immunotherapy interventions in patients with LUAD.
Collapse
Affiliation(s)
- Shijie Mai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liping Liang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Genghui Mai
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiguang Liu
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dingwei Diao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruijun Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Le Liu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
23
|
Wang C, Feng G, Zhu J, Wei K, Huang C, Wu Z, Yu Y, Qin G. Developing an immune signature for triple-negative breast cancer to predict prognosis and immune checkpoint inhibitor response. Future Oncol 2022; 18:1055-1066. [PMID: 35105171 DOI: 10.2217/fon-2021-0600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: We aimed to develop a new signature based on immune-related genes to predict prognosis and response to immune checkpoint inhibitors in patients with triple-negative breast cancer (TNBC). Materials & methods: Single-sample gene set enrichment was used to develop an immune-based prognostic signature (IPRS) for TNBC patients. We conducted multivariate Cox analysis to evaluate the prognosis value of the IPRS. Result: An IPRS based on 66 prognostic genes was developed. Multivariate Cox analysis indicated that the IPRS was an independent factor for prognosis. PD-1, PD-L1, PD-L2 and CTLA4 gene expression was higher in the low-risk group, suggesting IPRS could predict the response to immune checkpoint inhibitors. Conclusion: The IPRS might be a reliable signature to predict TNBC patients' prognosis and response to immune checkpoint inhibitors, but needs prospective validation.
Collapse
Affiliation(s)
- Ce Wang
- Department of Biostatistics, School of Public Health, & The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing 100083, China
| | - Guoshuang Feng
- Big Data & Engineering Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing 100083, China
| | - Jingjing Zhu
- Department of Biostatistics, School of Public Health, & The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Kecheng Wei
- Department of Biostatistics, School of Public Health, & The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Chen Huang
- Department of Biostatistics, School of Public Health, & The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Zhenyu Wu
- Department of Biostatistics, School of Public Health, & The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yongfu Yu
- Department of Biostatistics, School of Public Health, & The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Guoyou Qin
- Department of Biostatistics, School of Public Health, & The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing 100083, China
| |
Collapse
|
24
|
Deng Y, Song Z, Huang L, Guo Z, Tong B, Sun M, Zhao J, Zhang H, Zhang Z, Li G. Tumor purity as a prognosis and immunotherapy relevant feature in cervical cancer. Aging (Albany NY) 2021; 13:24768-24785. [PMID: 34844217 PMCID: PMC8660621 DOI: 10.18632/aging.203714] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/23/2021] [Indexed: 01/05/2023]
Abstract
Background: Tumor purity plays a vital role in the biological process of solid tumors, but its function in gynecologic cancers remains unclear. This study explored the correlation between tumor purity and immune function of gynecological cancers and its reliability as a prognostic indicator of immunotherapy. Methods: Gynecological cancer-related datasets were downloaded from The Cancer Genome Atlas (TCGA). Tumor purity was calculated by the ESTIMATE algorithm. A LASSO Cox regression analysis was performed to construct the risk score model. A Kaplan–Meier Plotter was used to explore the relationships between tumor purity and cancer prognosis. We performed the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) to explore the pathways in the subgroups. A nomogram was used to quantitatively assess the cancer prognosis. Results: Tumor purity was negatively correlated with B cell infiltration in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). Approximately 420 genes were positively associated with B cell infiltration and CESC prognosis and were enriched in immune-related signaling pathways. There were 11 key genes used to construct a risk score model. The low-risk group had a higher immune score and better prognosis than the high-risk group. A nomogram based on risk score, T stage, and clinical-stage had good predictive value in quantitatively evaluating CESC prognosis. Conclusions: This study is the first to reveal the correlation between tumor purity and immunity in CESC and suggests that low-risk patients may be more sensitive to immunotherapy. This provides a theoretical basis for the clinical treatment of CESC.
Collapse
Affiliation(s)
- Yali Deng
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Huang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Zhenni Guo
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Binghua Tong
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Meiqing Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jin Zhao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Huina Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Zhen Zhang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
25
|
Zheng D, Yang K, Chen X, Li Y, Chen Y. Analysis of Immune-Stromal Score-Based Gene Signature and Molecular Subtypes in Osteosarcoma: Implications for Prognosis and Tumor Immune Microenvironment. Front Genet 2021; 12:699385. [PMID: 34630511 PMCID: PMC8495166 DOI: 10.3389/fgene.2021.699385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022] Open
Abstract
Objective: Infiltrating immune and stromal cells are essential for osteosarcoma progression. This study set out to analyze immune–stromal score-based gene signature and molecular subtypes in osteosarcoma. Methods: The immune and stromal scores of osteosarcoma specimens from the TARGET cohort were determined by the ESTIMATE algorithm. Then, immune-stromal score-based differentially expressed genes (DEGs) were screened, followed by univariate Cox regression analysis. A LASSO regression analysis was applied for establishing a prognostic model. The predictive efficacy was verified in the GSE21257 dataset. Associations between the risk scores and chemotherapy drug sensitivity, immune/stromal scores, PD-1/PD-L1 expression, immune cell infiltrations were assessed in the TARGET cohort. NMF clustering analysis was employed for characterizing distinct molecular subtypes based on immune-stromal score-based DEGs. Results: High immune/stromal scores exhibited the prolonged survival duration of osteosarcoma patients. Based on 85 prognosis-related stromal–immune score-based DEGs, a nine-gene signature was established. High-risk scores indicated undesirable prognosis of osteosarcoma patients. The AUCs of overall survival were 0.881 and 0.849 in the TARGET cohort and GSE21257 dataset, confirming the well predictive performance of this signature. High-risk patients were more sensitive to doxorubicin and low-risk patients exhibited higher immune/stromal scores, PD-L1 expression, and immune cell infiltrations. Three molecular subtypes were characterized, with distinct clinical outcomes and tumor immune microenvironment. Conclusion: This study developed a robust prognostic gene signature as a risk stratification tool and characterized three distinct molecular subtypes for osteosarcoma patients based on immune–stromal score-based DEGs, which may assist decision-making concerning individualized therapy and follow-up project.
Collapse
Affiliation(s)
- Dingzhao Zheng
- Department of Rehabilitation Medicine, The Fifth Hospital of Xiamen, Xiamen, China
| | - Kaichun Yang
- Emergency Department, The Fifth Hospital of Xiamen, Xiamen, China
| | - Xinjiang Chen
- Department of Orthopaedics, The Fifth Hospital of Xiamen, Xiamen, China
| | - Yongwu Li
- Emergency Department, The Fifth Hospital of Xiamen, Xiamen, China
| | - Yongchun Chen
- Department of Orthopaedics, The Fifth Hospital of Xiamen, Xiamen, China
| |
Collapse
|
26
|
Disparity of Hepatocellular Carcinoma in Tumor Microenvironment-Related Genes and Infiltrating Immune Cells between Asian and Non-Asian Populations. Genes (Basel) 2021; 12:genes12081274. [PMID: 34440448 PMCID: PMC8392256 DOI: 10.3390/genes12081274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common cause of primary liver cancer deaths worldwide. The major risk factors for liver cancer development are cirrhosis, hepatitis B virus (HBV), hepatitis C virus (HCV) infection, and chronic alcohol abuse. HCC displays heterogeneity in terms of biology, etiology, and epidemiology. In Southeast Asia and Africa, chronic HBV infection is a major risk factor for HCC, whereas chronic HCV infection is a risk factor for HCC in western countries and Japan. Environmental and genetic conditions also play a role in the regional and temporal variations in the incidence of HCC. In this study, we used the ESTIMATE (ESTIMATE, Estimation of stromal and immune cells in malignant tumor tissues using expression data) algorithm and the CIBERSOFT tool to analyze gene expression profiles and infiltrating immune cells in HCC between Asian and non-Asian patients. The results showed that stromal and immune scores were dependent on overall survival (OS) in non-Asian patients but not in Asian patients. Kaplan-Meier survival analysis revealed four differentially expressed genes (DEGs) that were significantly associated with OS in non-Asian patients only. CIBERSORT (CIBERSORT, Cell type identification by estimating relative subsets of known RNA transcripts) analysis indicated that the composition of infiltrating immune cells was significantly different between Asian and non-Asian patients. By parsing the subclasses of HCC, the ability to predict prognosis and guide therapeutic targets for potentially actionable HCC may be improved.
Collapse
|
27
|
Jia R, Sui Z, Zhang H, Yu Z. Identification and Validation of Immune-Related Gene Signature for Predicting Lymph Node Metastasis and Prognosis in Lung Adenocarcinoma. Front Mol Biosci 2021; 8:679031. [PMID: 34109216 PMCID: PMC8182055 DOI: 10.3389/fmolb.2021.679031] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is a serious malignancy, and lung adenocarcinoma (LUAD) is the most common pathological subtype. Immune-related factors play an important role in lymph node metastasis. In this study, we obtained gene expression profile data for LUAD and normal tissues from the TCGA database and analyzed their immune-related genes (IRGs), and observed that 459 IRGs were differentially expressed. Further analysis of the correlation between differentially expressed IRGs and lymph node metastasis revealed 18 lymph node metastasis-associated IRGs. In addition, we analyzed the mutations status, function and pathway enrichment of these IRGs, and regulatory networks established through TF genes. We then identified eight IRGs (IKBKB, LTBR, MIF, PPARD, PPIA, PSME3, S100A6, SEMA4B) as the best predictors by LASSO Logistic analysis and used these IRGs to construct a model to predict lymph node metastasis in patients with LUAD (AUC 0.75; 95% CI: 0.7064-0.7978), and survival analysis showed that the risk score independently affected patient survival. We validated the predictive effect of risk scores on lymph node metastasis and survival using the GEO database as a validation cohort and the results showed good agreement. In addition, the risk score was highly correlated with infiltration of immune cells (mast cells activated, macrophages M2, macrophages M0 and B cells naïve), immune and stromal scores, and immune checkpoint genes (LTBR, CD40LG, EDA2R, and TNFRSF19). We identified key IRGs associated with lymph node metastasis in LUAD and constructed a reliable risk score model, which may provide valuable biomarkers for LUAD patients and further reveal the mechanism of its occurrence.
Collapse
Affiliation(s)
- Ran Jia
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China.,Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and PeKing Union Medical College, Shenzhen, China
| | - Zhilin Sui
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| | - Hongdian Zhang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| | - Zhentao Yu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China.,Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and PeKing Union Medical College, Shenzhen, China
| |
Collapse
|
28
|
Zhai Y, Zhao B, Wang Y, Li L, Li J, Li X, Chang L, Chen Q, Liao Z. Construction of the optimization prognostic model based on differentially expressed immune genes of lung adenocarcinoma. BMC Cancer 2021; 21:213. [PMID: 33648465 PMCID: PMC7923649 DOI: 10.1186/s12885-021-07911-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common pathology subtype of lung cancer. In recent years, immunotherapy, targeted therapy and chemotherapeutics conferred a certain curative effects. However, the effect and prognosis of LUAD patients are different, and the efficacy of existing LUAD risk prediction models is unsatisfactory. Methods The Cancer Genome Atlas (TCGA) LUAD dataset was downloaded. The differentially expressed immune genes (DEIGs) were analyzed with edgeR and DESeq2. The prognostic DEIGs were identified by COX regression. Protein-protein interaction (PPI) network was inferred by STRING using prognostic DEIGs with p value< 0.05. The prognostic model based on DEIGs was established using Lasso regression. Immunohistochemistry was used to assess the expression of FERMT2, FKBP3, SMAD9, GATA2, and ITIH4 in 30 cases of LUAD tissues. Results In total,1654 DEIGs were identified, of which 436 genes were prognostic. Gene functional enrichment analysis indicated that the DEIGs were involved in inflammatory pathways. We constructed 4 models using DEIGs. Finally, model 4, which was constructed using the 436 DEIGs performed the best in prognostic predictions, the receiver operating characteristic curve (ROC) was 0.824 for 3 years, 0.838 for 5 years, 0.834 for 10 years. High levels of FERMT2, FKBP3 and low levels of SMAD9, GATA2, ITIH4 expression are related to the poor overall survival in LUAD (p < 0.05). The prognostic model based on DEIGs reflected infiltration by immune cells. Conclusions In our study, we built an optimal prognostic signature for LUAD using DEIGs and verified the expression of selected genes in LUAD. Our result suggests immune signature can be harnessed to obtain prognostic insights. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07911-8.
Collapse
Affiliation(s)
- Yang Zhai
- Department of Oncology, Tumor Hospital of Shaanxi Province, Xi'an, 710061, People's Republic of China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Bin Zhao
- Department of Epidemiology, Shaanxi Provincial Tumor Hospital, Xi'an, 710061, China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuzhen Wang
- Department of Oncology, Tumor Hospital of Shaanxi Province, Xi'an, 710061, People's Republic of China
| | - Lina Li
- Department of Oncology, Tumor Hospital of Shaanxi Province, Xi'an, 710061, People's Republic of China
| | - Jingjin Li
- Department of Vasculocardiology, First Affiliated Hospital, Xi'an Jiaotong University Medical College, Xi'an, 710061, PR China
| | - Xu Li
- Department of Oncology, Tumor Hospital of Shaanxi Province, Xi'an, 710061, People's Republic of China
| | - Linhan Chang
- Xi'an Medical University, Xi'an, 710061, PR China
| | - Qian Chen
- Department of Reproduction, First Affiliated Hospital, Xi'an Jiaotong University Medical College, Xi'an, Shaanxi, 710061, PR China.
| | - Zijun Liao
- Department of Oncology, Tumor Hospital of Shaanxi Province, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
29
|
Jia R, Sui Z, Zhang H, Yu Z. Identification and Validation of Immune-Related Gene Signature for Predicting Lymph Node Metastasis and Prognosis in Lung Adenocarcinoma. Front Mol Biosci 2021. [PMID: 34109216 DOI: 10.3389/fmolb.2020.585245/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Lung cancer is a serious malignancy, and lung adenocarcinoma (LUAD) is the most common pathological subtype. Immune-related factors play an important role in lymph node metastasis. In this study, we obtained gene expression profile data for LUAD and normal tissues from the TCGA database and analyzed their immune-related genes (IRGs), and observed that 459 IRGs were differentially expressed. Further analysis of the correlation between differentially expressed IRGs and lymph node metastasis revealed 18 lymph node metastasis-associated IRGs. In addition, we analyzed the mutations status, function and pathway enrichment of these IRGs, and regulatory networks established through TF genes. We then identified eight IRGs (IKBKB, LTBR, MIF, PPARD, PPIA, PSME3, S100A6, SEMA4B) as the best predictors by LASSO Logistic analysis and used these IRGs to construct a model to predict lymph node metastasis in patients with LUAD (AUC 0.75; 95% CI: 0.7064-0.7978), and survival analysis showed that the risk score independently affected patient survival. We validated the predictive effect of risk scores on lymph node metastasis and survival using the GEO database as a validation cohort and the results showed good agreement. In addition, the risk score was highly correlated with infiltration of immune cells (mast cells activated, macrophages M2, macrophages M0 and B cells naïve), immune and stromal scores, and immune checkpoint genes (LTBR, CD40LG, EDA2R, and TNFRSF19). We identified key IRGs associated with lymph node metastasis in LUAD and constructed a reliable risk score model, which may provide valuable biomarkers for LUAD patients and further reveal the mechanism of its occurrence.
Collapse
Affiliation(s)
- Ran Jia
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and PeKing Union Medical College, Shenzhen, China
| | - Zhilin Sui
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| | - Hongdian Zhang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| | - Zhentao Yu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and PeKing Union Medical College, Shenzhen, China
| |
Collapse
|