1
|
Rabaan AA, Bello KE, Irekeola AA, Kaabi NAA, Halwani MA, Yousuf AA, Alshengeti A, Alfaraj AH, Khamis F, Al-Subaie MF, AlShehail BM, Almuthree SA, Ibraheem NY, Khalifa MH, Alfaresi M, Fares MAA, Garout M, Alsayyah A, Alshehri AA, Alqahtani AS, Alissa M. Prevalence of Hepatocellular Carcinoma in Hepatitis B Population within Southeast Asia: A Systematic Review and Meta-Analysis of 39,050 Participants. Pathogens 2023; 12:1220. [PMID: 37887736 PMCID: PMC10609743 DOI: 10.3390/pathogens12101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/09/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND AND AIM Hepatocellular carcinoma (HCC) is a significant complication of hepatitis B and still poses a global public health concern. This systematic review and meta-analysis provide adequate details on the prevalence of HCC in the HBV population within Southeast Asian countries. METHOD Following the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) criteria, a thorough search for literature discussing the prevalence of HCC in the HBV population within southeast Asia was performed. Eligible studies were subjected to a meta-analysis utilising a DerSimonian and Laird approach and a random effect model. A protocol was registered with PROSPERO (CRD42023423953). RESULT Our study meticulously recovered 41 articles from seven countries in Southeast Asia, namely Cambodia, Indonesia, Malaysia, the Philippines, Singapore, Thailand, and Vietnam. A total of 39,050 HBV patients and 7479 HCC cases in southeast Asia were analysed. The pooled prevalence of HCC in HBV cases within southeast Asia was 45.8% (95% CI, 34.3-57.8%, I2 = 99.51%, p < 0.001). Singapore (62.5%, CI: 42.4-79.1) had the highest pooled prevalence of HCC in the HBV population compared to Vietnam, with the lowest estimate (22.4%, CI: 9.9-44.9). There was a drop in the pooled prevalence of HCC in HBV from 2016 until now (37.6%, CI: 19.2-60.5). CONCLUSION The findings of this review reveal a high pooled prevalence of HCC in the HBV population and therefore stir the need for routine screening, management, and surveillance.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Kizito Eneye Bello
- Department of Microbiology, Faculty of Natural Science, Kogi State University (Prince Abubakar Audu University) Anyigba, Anyigba PMB 1008, Nigeria
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Nigeria
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Muhammad A. Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Al Baha 4781, Saudi Arabia
| | - Amjad A. Yousuf
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Maha F. Al-Subaie
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia
- Department of Infectious Diseases, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia
| | - Bashayer M. AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Noha Y. Ibraheem
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Mahassen H. Khalifa
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Zayed Military Hospital, Abu Dhabi 3740, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
2
|
Głowska-Ciemny J, Szymanski M, Kuszerska A, Rzepka R, von Kaisenberg CS, Kocyłowski R. Role of Alpha-Fetoprotein (AFP) in Diagnosing Childhood Cancers and Genetic-Related Chronic Diseases. Cancers (Basel) 2023; 15:4302. [PMID: 37686577 PMCID: PMC10486785 DOI: 10.3390/cancers15174302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/25/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Alpha-fetoprotein (AFP) is a protein commonly found during fetal development, but its role extends beyond birth. Throughout the first year of life, AFP levels can remain high, which can potentially mask various conditions from the neurological, metabolic, hematological, endocrine, and early childhood cancer groups. Although AFP reference values and clinical utility have been established in adults, evaluating AFP levels in children during the diagnostic process, treatment, and post-treatment surveillance is still associated with numerous diagnostic pitfalls. These challenges arise from the presence of physiologically elevated AFP levels, inconsistent data obtained from different laboratory tests, and the limited population of children with oncologic diseases that have been studied. To address these issues, it is essential to establish updated reference ranges for AFP in this specific age group. A population-based study involving a statistically representative group of patients could serve as a valuable solution for this purpose.
Collapse
Affiliation(s)
- Joanna Głowska-Ciemny
- PreMediCare Prenatal Research Center, ul. Czarna Rola 21, 61-625 Poznań, Poland; (M.S.); (A.K.); (R.K.)
- New Med Medical Center, ul. Szamotulska 100, 60-566 Poznań, Poland
| | - Marcin Szymanski
- PreMediCare Prenatal Research Center, ul. Czarna Rola 21, 61-625 Poznań, Poland; (M.S.); (A.K.); (R.K.)
| | - Agata Kuszerska
- PreMediCare Prenatal Research Center, ul. Czarna Rola 21, 61-625 Poznań, Poland; (M.S.); (A.K.); (R.K.)
- Department of Gynecology and Obstetrics, Institute of Medical Sciences, University of Zielona Gora, ul. Zyty 28, 65-046 Zielona Góra, Poland;
| | - Rafał Rzepka
- Department of Gynecology and Obstetrics, Institute of Medical Sciences, University of Zielona Gora, ul. Zyty 28, 65-046 Zielona Góra, Poland;
| | - Constantin S. von Kaisenberg
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany;
| | - Rafał Kocyłowski
- PreMediCare Prenatal Research Center, ul. Czarna Rola 21, 61-625 Poznań, Poland; (M.S.); (A.K.); (R.K.)
- New Med Medical Center, ul. Szamotulska 100, 60-566 Poznań, Poland
| |
Collapse
|
3
|
Wu D, Nam R, Leung KSK, Waraich H, Purnomo A, Chou OHI, Perone F, Pawar S, Faraz F, Liu H, Zhou J, Liu T, Chan JSK, Tse G. Population-Based Clinical Studies Using Routinely Collected Data in Hong Kong, China: A Systematic Review of Trends and Established Local Practices. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2023; 8. [DOI: 10.15212/cvia.2023.0073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Background: Routinely collected health data are increasingly used in clinical research. No study has systematically reviewed the temporal trends in the number of publications and analyzed different aspects of local research practices and their variations in Hong Kong, China, with a specific focus on research ethics governance and approval.
Methods: PubMed was systematically searched from its inception to March 28, 2023, for studies using routinely collected healthcare data from Hong Kong.
Results: A total of 454 studies were included. Between 2000 and 2009, 32 studies were identified. The number of publications increased from 5 to 120 between 2010 and 2022. Of the investigator-led studies using the Hospital Authority (HA)’s cross-cluster data (n = 393), 327 (83.2%) reported receiving ethics approval from a single cluster/university-based REC, whereas 50 studies (12.7%) did not report approval from a REC. For use of the HA Data Collaboration Lab, approval by a single hospital-based or University-based REC is accepted. Repeated submission of identical ethics applications to different RECs is estimated to cost HK$4.2 million yearly.
Conclusions: Most studies reported gaining approval from a single cluster REC before retrieval of cross-cluster HA data. Substantial cost savings would result if repeated review of identical ethics applications were not required.
Collapse
|
4
|
Deng W, Chen F, Zhou Z, Huang Y, Lin J, Zhang F, Xiao G, Liu C, Liu C, Xu L. Hepatitis B Virus Promotes Hepatocellular Carcinoma Progression Synergistically With Hepatic Stellate Cells via Facilitating the Expression and Secretion of ENPP2. Front Mol Biosci 2021; 8:745990. [PMID: 34805271 PMCID: PMC8602366 DOI: 10.3389/fmolb.2021.745990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Hepatitis B virus (HBV) infection is a major risk factor causing hepatocellular carcinoma (HCC) development, but the molecular mechanisms are not fully elucidated. It has been reported that virus infection induces ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2) expression, the latter participates in tumor progression. Therefore, the aim of the present study was to investigate whether HBV induced HCC malignancy via ENPP2. Methods: HCC patient clinical data were collected and prognosis was analyzed. Transient transfection and stable ectopic expression of the HBV genome were established in hepatoma cell lines. Immunohistochemical staining, RT-qPCR, western blot, and ELISA assays were used to detect the expression and secretion of ENPP2. Finally, CCK-8, colony formation, and migration assays as well as a subcutaneous xenograft mouse model were used to investigate the influence of HBV infection, ENPP2 expression, and activated hepatic stellate cells (aHSCs) on HCC progression in vitro and in vivo. Results: The data from cancer databases indicated that the level of ENPP2 was significant higher in HCC compared within normal liver tissues. Clinical relevance analysis using 158 HCC patients displayed that ENPP2 expression was positively correlated with poor overall survival and disease-free survival. Statistical analysis revealed that compared to HBV-negative HCC tissues, HBV-positive tissues expressed a higher level of ENPP2. In vitro, HBV upregulated ENPP2 expression and secretion in hepatoma cells and promoted hepatoma cell proliferation, colony formation, and migration via enhancement of ENPP2; downregulation of ENPP2 expression or inhibition of its function suppressed HCC progression. In addition, aHSCs strengthened hepatoma cell proliferation, migration in vitro, and promoted tumorigenesis synergistically with HBV in vivo; a loss-function assay further verified that ENPP2 is essential for HBV/aHSC-induced HCC progression. Conclusion: HBV enhanced the expression and secretion of ENPP2 in hepatoma cells, combined with aHSCs to promote HCC progression via ENPP2.
Collapse
Affiliation(s)
- Wanyu Deng
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,College of Life Science, Shangrao Normal University, Shangrao, China
| | - Fu Chen
- College of Life Science, Shangrao Normal University, Shangrao, China
| | - Ziyu Zhou
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yipei Huang
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junlong Lin
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fapeng Zhang
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gang Xiao
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chaoqun Liu
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chao Liu
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Leibo Xu
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|