1
|
Fourkioti O, De Vries M, Naidoo R, Bakal C. Not seeing the trees for the forest. The impact of neighbours on graph-based configurations in histopathology. BMC Bioinformatics 2025; 26:9. [PMID: 39794715 PMCID: PMC11724494 DOI: 10.1186/s12859-024-06007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Deep learning (DL) has set new standards in cancer diagnosis, significantly enhancing the accuracy of automated classification of whole slide images (WSIs) derived from biopsied tissue samples. To enable DL models to process these large images, WSIs are typically divided into thousands of smaller tiles, each containing 10-50 cells. Multiple Instance Learning (MIL) is a commonly used approach, where WSIs are treated as bags comprising numerous tiles (instances) and only bag-level labels are provided during training. The model learns from these broad labels to extract more detailed, instance-level insights. However, biopsied sections often exhibit high intra- and inter-phenotypic heterogeneity, presenting a significant challenge for classification. To address this, many graph-based methods have been proposed, where each WSI is represented as a graph with tiles as nodes and edges defined by specific spatial relationships. RESULTS In this study, we investigate how different graph configurations, varying in connectivity and neighborhood structure, affect the performance of MIL models. We developed a novel pipeline, K-MIL, to evaluate the impact of contextual information on cell classification performance. By incorporating neighboring tiles into the analysis, we examined whether contextual information improves or impairs the network's ability to identify patterns and features critical for accurate classification. Our experiments were conducted on two datasets: COLON cancer and UCSB datasets. CONCLUSIONS Our results indicate that while incorporating more spatial context information generally improves model accuracy at both the bag and tile levels, the improvement at the tile level is not linear. In some instances, increasing spatial context leads to misclassification, suggesting that more context is not always beneficial. This finding highlights the need for careful consideration when incorporating spatial context information in digital pathology classification tasks.
Collapse
Affiliation(s)
- Olga Fourkioti
- The Institute of Cancer Research, London, United Kingdom.
| | - Matt De Vries
- The Institute of Cancer Research, London, United Kingdom
- Imperial College, London, United Kingdom
| | - Reed Naidoo
- The Institute of Cancer Research, London, United Kingdom
| | - Chris Bakal
- The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
2
|
Baharun NB, Adam A, Zailani MAH, Rajpoot NM, Xu Q, Zin RRM. Automated scoring methods for quantitative interpretation of Tumour infiltrating lymphocytes (TILs) in breast cancer: a systematic review. BMC Cancer 2024; 24:1202. [PMID: 39350098 PMCID: PMC11440723 DOI: 10.1186/s12885-024-12962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Tumour microenvironment (TME) of breast cancer mainly comprises malignant, stromal, immune, and tumour infiltrating lymphocyte (TILs). Assessment of TILs is crucial for determining the disease's prognosis. Manual TIL assessments are hampered by multiple limitations, including low precision, poor inter-observer reproducibility, and time consumption. In response to these challenges, automated scoring emerges as a promising approach. The aim of this systematic review is to assess the evidence on the approaches and performance of automated scoring methods for TILs assessment in breast cancer. This review presents a comprehensive compilation of studies related to automated scoring of TILs, sourced from four databases (Web of Science, Scopus, Science Direct, and PubMed), employing three primary keywords (artificial intelligence, breast cancer, and tumor-infiltrating lymphocytes). The PICOS framework was employed for study eligibility, and reporting adhered to the PRISMA guidelines. The initial search yielded a total of 1910 articles. Following screening and examination, 27 studies met the inclusion criteria and data were extracted for the review. The findings indicate a concentration of studies on automated TILs assessment in developed countries, specifically the United States and the United Kingdom. From the analysis, a combination of sematic segmentation and object detection (n = 10, 37%) and convolutional neural network (CNN) (n = 11, 41%), become the most frequent automated task and ML approaches applied for model development respectively. All models developed their own ground truth datasets for training and validation, and 59% of the studies assessed the prognostic value of TILs. In conclusion, this analysis contends that automated scoring methods for TILs assessment of breast cancer show significant promise for commodification and application within clinical settings.
Collapse
Affiliation(s)
- Nurkhairul Bariyah Baharun
- Department of Pathology, Faculty of Medicine, The National University of Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Wilayah Persekutuan, 56000, Malaysia.
- Department of Medical Diagnostic, Faculty of Health Sciences, Universiti Selangor, Jalan Zirkon A7/7, Seksyen 7, Shah Alam, Selangor, 40000, Malaysia.
| | - Afzan Adam
- Centre for Artificial Intelligence Technology (CAIT), Faculty of Information Science & Technology, The National University of Malaysia, Bangi, Selangor, 43600, Malaysia
| | - Mohamed Afiq Hidayat Zailani
- Department of Pathology, Faculty of Medicine, The National University of Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Wilayah Persekutuan, 56000, Malaysia
- Department of Pathology and Forensic Pathology, Faculty of Medicine, MAHSA University, Bandar Saujana Putra, Malaysia
| | - Nasir M Rajpoot
- Department of Computer Science, University of Warwick, 6 Lord Bhattacharyya Way, Coventry, CV4 7EZ, UK
| | - Qiaoyi Xu
- Centre for Artificial Intelligence Technology (CAIT), Faculty of Information Science & Technology, The National University of Malaysia, Bangi, Selangor, 43600, Malaysia
| | - Reena Rahayu Md Zin
- Department of Pathology, Faculty of Medicine, The National University of Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Wilayah Persekutuan, 56000, Malaysia
| |
Collapse
|
3
|
Kapse S, Das S, Zhang J, Gupta RR, Saltz J, Samaras D, Prasanna P. Attention De-sparsification Matters: Inducing diversity in digital pathology representation learning. Med Image Anal 2024; 93:103070. [PMID: 38176354 PMCID: PMC11150864 DOI: 10.1016/j.media.2023.103070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/08/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
We propose DiRL, a Diversity-inducing Representation Learning technique for histopathology imaging. Self-supervised learning (SSL) techniques, such as contrastive and non-contrastive approaches, have been shown to learn rich and effective representations of digitized tissue samples with limited pathologist supervision. Our analysis of vanilla SSL-pretrained models' attention distribution reveals an insightful observation: sparsity in attention, i.e, models tends to localize most of their attention to some prominent patterns in the image. Although attention sparsity can be beneficial in natural images due to these prominent patterns being the object of interest itself, this can be sub-optimal in digital pathology; this is because, unlike natural images, digital pathology scans are not object-centric, but rather a complex phenotype of various spatially intermixed biological components. Inadequate diversification of attention in these complex images could result in crucial information loss. To address this, we leverage cell segmentation to densely extract multiple histopathology-specific representations, and then propose a prior-guided dense pretext task, designed to match the multiple corresponding representations between the views. Through this, the model learns to attend to various components more closely and evenly, thus inducing adequate diversification in attention for capturing context-rich representations. Through quantitative and qualitative analysis on multiple tasks across cancer types, we demonstrate the efficacy of our method and observe that the attention is more globally distributed.
Collapse
Affiliation(s)
- Saarthak Kapse
- Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, 11794, USA.
| | - Srijan Das
- UNC Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Jingwei Zhang
- Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Rajarsi R Gupta
- Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Joel Saltz
- Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Dimitris Samaras
- Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Prateek Prasanna
- Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, 11794, USA.
| |
Collapse
|
4
|
Yee J, Rosendahl C, Aoude LG. The role of artificial intelligence and convolutional neural networks in the management of melanoma: a clinical, pathological, and radiological perspective. Melanoma Res 2024; 34:96-104. [PMID: 38141179 PMCID: PMC10906187 DOI: 10.1097/cmr.0000000000000951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023]
Abstract
Clinical dermatoscopy and pathological slide assessment are essential in the diagnosis and management of patients with cutaneous melanoma. For those presenting with stage IIC disease and beyond, radiological investigations are often considered. The dermatoscopic, whole slide and radiological images used during clinical care are often stored digitally, enabling artificial intelligence (AI) and convolutional neural networks (CNN) to learn, analyse and contribute to the clinical decision-making. A keyword search of the Medline database was performed to assess the progression, capabilities and limitations of AI and CNN and its use in diagnosis and management of cutaneous melanoma. Full-text articles were reviewed if they related to dermatoscopy, pathological slide assessment or radiology. Through analysis of 95 studies, we demonstrate that diagnostic accuracy of AI/CNN can be superior (or at least equal) to clinicians. However, variability in image acquisition, pre-processing, segmentation, and feature extraction remains challenging. With current technological abilities, AI/CNN and clinicians synergistically working together are better than one another in all subspecialty domains relating to cutaneous melanoma. AI has the potential to enhance the diagnostic capabilities of junior dermatology trainees, primary care skin cancer clinicians and general practitioners. For experienced clinicians, AI provides a cost-efficient second opinion. From a pathological and radiological perspective, CNN has the potential to improve workflow efficiency, allowing clinicians to achieve more in a finite amount of time. Until the challenges of AI/CNN are reliably met, however, they can only remain an adjunct to clinical decision-making.
Collapse
Affiliation(s)
- Joshua Yee
- Faculty of Medicine, University of Queensland, St Lucia
| | - Cliff Rosendahl
- Primary Care Clinical Unit, Medical School, The University of Queensland, Herston
| | - Lauren G. Aoude
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
5
|
Hagos YB, Lecat CS, Patel D, Mikolajczak A, Castillo SP, Lyon EJ, Foster K, Tran TA, Lee LS, Rodriguez-Justo M, Yong KL, Yuan Y. Deep Learning Enables Spatial Mapping of the Mosaic Microenvironment of Myeloma Bone Marrow Trephine Biopsies. Cancer Res 2024; 84:493-508. [PMID: 37963212 PMCID: PMC10831337 DOI: 10.1158/0008-5472.can-22-2654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/18/2022] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Bone marrow trephine biopsy is crucial for the diagnosis of multiple myeloma. However, the complexity of bone marrow cellular, morphologic, and spatial architecture preserved in trephine samples hinders comprehensive evaluation. To dissect the diverse cellular communities and mosaic tissue habitats, we developed a superpixel-inspired deep learning method (MoSaicNet) that adapts to complex tissue architectures and a cell imbalance aware deep learning pipeline (AwareNet) to enable accurate detection and classification of rare cell types in multiplex immunohistochemistry images. MoSaicNet and AwareNet achieved an AUC of >0.98 for tissue and cellular classification on separate test datasets. Application of MoSaicNet and AwareNet enabled investigation of bone heterogeneity and thickness as well as spatial histology analysis of bone marrow trephine samples from monoclonal gammopathies of undetermined significance (MGUS) and from paired newly diagnosed and posttreatment multiple myeloma. The most significant difference between MGUS and newly diagnosed multiple myeloma (NDMM) samples was not related to cell density but to spatial heterogeneity, with reduced spatial proximity of BLIMP1+ tumor cells to CD8+ cells in MGUS compared with NDMM samples. Following treatment of patients with multiple myeloma, there was a reduction in the density of BLIMP1+ tumor cells, effector CD8+ T cells, and regulatory T cells, indicative of an altered immune microenvironment. Finally, bone heterogeneity decreased following treatment of patients with multiple myeloma. In summary, deep learning-based spatial mapping of bone marrow trephine biopsies can provide insights into the cellular topography of the myeloma marrow microenvironment and complement aspirate-based techniques. SIGNIFICANCE Spatial analysis of bone marrow trephine biopsies using histology, deep learning, and tailored algorithms reveals the bone marrow architectural heterogeneity and evolution during myeloma progression and treatment.
Collapse
Affiliation(s)
- Yeman Brhane Hagos
- Centre for Evolution and Cancer and Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Catherine S.Y. Lecat
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Dominic Patel
- Research Department of Pathology, University College London Cancer Institute, London, United Kingdom
| | - Anna Mikolajczak
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Simon P. Castillo
- Centre for Evolution and Cancer and Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Emma J. Lyon
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Kane Foster
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Thien-An Tran
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Lydia S.H. Lee
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Manuel Rodriguez-Justo
- Research Department of Pathology, University College London Cancer Institute, London, United Kingdom
| | - Kwee L. Yong
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Yinyin Yuan
- Centre for Evolution and Cancer and Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Centre for Molecular Pathology, Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
6
|
Fernandez G, Zeineh J, Prastawa M, Scott R, Madduri AS, Shtabsky A, Jaffer S, Feliz A, Veremis B, Mejias JC, Charytonowicz E, Gladoun N, Koll G, Cruz K, Malinowski D, Donovan MJ. Analytical Validation of the PreciseDx Digital Prognostic Breast Cancer Test in Early-Stage Breast Cancer. Clin Breast Cancer 2024; 24:93-102.e6. [PMID: 38114366 DOI: 10.1016/j.clbc.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND PreciseDx Breast (PDxBr) is a digital test that predicts early-stage breast cancer recurrence within 6-years of diagnosis. MATERIALS AND METHODS Using hematoxylin and eosin-stained whole slide images of invasive breast cancer (IBC) and artificial intelligence-enabled morphology feature array, microanatomic features are generated. Morphometric attributes in combination with patient's age, tumor size, stage, and lymph node status predict disease free survival using a proprietary algorithm. Here, analytical validation of the automated annotation process and extracted histologic digital features of the PDxBr test, including impact of methodologic variability on the composite risk score is presented. Studies of precision, repeatability, reproducibility and interference were performed on morphology feature array-derived features. The final risk score was assessed over 20-days with 2-operators, 2-runs/day, and 2-replicates across 8-patients, allowing for calculation of within-run repeatability, between-run and within-laboratory reproducibility. RESULTS Analytical validation of features derived from whole slide images demonstrated a high degree of precision for tumor segmentation (0.98, 0.98), lymphocyte detection (0.91, 0.93), and mitotic figures (0.85, 0.84). Correlation of variation of the assay risk score for both reproducibility and repeatability were less than 2%, and interference from variation in hematoxylin and eosin staining or tumor thickness was not observed demonstrating assay robustness across standard histopathology preparations. CONCLUSION In summary, the analytical validation of the digital IBC risk assessment test demonstrated a strong performance across all features in the model and complimented the clinical validation of the assay previously shown to accurately predict recurrence within 6-years in early-stage invasive breast cancer patients.
Collapse
Affiliation(s)
- Gerardo Fernandez
- PreciseDx, New York, NY; Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | | | | | | | | | - Brandon Veremis
- PreciseDx, New York, NY; Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | - Nataliya Gladoun
- PreciseDx, New York, NY; Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | - Michael J Donovan
- PreciseDx, New York, NY; Icahn School of Medicine at Mount Sinai, New York, NY; University of Miami, Pathology, Miami, FL.
| |
Collapse
|
7
|
Zaki M, Elallam O, Jami O, EL Ghoubali D, Jhilal F, Alidrissi N, Ghazal H, Habib N, Abbad F, Benmoussa A, Bakkali F. Advancing Tumor Cell Classification and Segmentation in Ki-67 Images: A Systematic Review of Deep Learning Approaches. LECTURE NOTES IN NETWORKS AND SYSTEMS 2024:94-112. [DOI: 10.1007/978-3-031-52385-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Page DB, Broeckx G, Jahangir CA, Verbandt S, Gupta RR, Thagaard J, Khiroya R, Kos Z, Abduljabbar K, Acosta Haab G, Acs B, Akturk G, Almeida JS, Alvarado-Cabrero I, Azmoudeh-Ardalan F, Badve S, Baharun NB, Bellolio ER, Bheemaraju V, Blenman KRM, Botinelly Mendonça Fujimoto L, Bouchmaa N, Burgues O, Cheang MCU, Ciompi F, Cooper LAD, Coosemans A, Corredor G, Dantas Portela FL, Deman F, Demaria S, Dudgeon SN, Elghazawy M, Ely S, Femandez-Martín C, Fineberg S, Fox SB, Gallagher WM, Giltnane JM, Gnjatic S, Gonzalez-Ericsson PI, Grigoriadis A, Halama N, Hanna MG, Harbhajanka A, Hardas A, Hart SN, Hartman J, Hewitt S, Hida AI, Horlings HM, Husain Z, Hytopoulos E, Irshad S, Janssen EAM, Kahila M, Kataoka TR, Kawaguchi K, Kharidehal D, Khramtsov AI, Kiraz U, Kirtani P, Kodach LL, Korski K, Kovács A, Laenkholm AV, Lang-Schwarz C, Larsirnont D, Lennerz JK, Lerousseau M, Li X, Ly A, Madabhushi A, Maley SK, Narasimhamurthy VM, Marks DK, McDonald ES, Mehrotra R, Michiels S, Minhas FUAA, Mittal S, Moore DA, Mushtaq S, Nighat H, Papathomas T, Penault-Llorca F, Perera RD, Pinard CJ, Pinto-Cardenas JC, Pruneri G, Pusztai L, Rahman A, Rajpoot NM, Rapoport BL, Rau TT, Reis-Filho JS, Ribeiro JM, Rimm D, Vincent-Salomon A, Salto-Tellez M, et alPage DB, Broeckx G, Jahangir CA, Verbandt S, Gupta RR, Thagaard J, Khiroya R, Kos Z, Abduljabbar K, Acosta Haab G, Acs B, Akturk G, Almeida JS, Alvarado-Cabrero I, Azmoudeh-Ardalan F, Badve S, Baharun NB, Bellolio ER, Bheemaraju V, Blenman KRM, Botinelly Mendonça Fujimoto L, Bouchmaa N, Burgues O, Cheang MCU, Ciompi F, Cooper LAD, Coosemans A, Corredor G, Dantas Portela FL, Deman F, Demaria S, Dudgeon SN, Elghazawy M, Ely S, Femandez-Martín C, Fineberg S, Fox SB, Gallagher WM, Giltnane JM, Gnjatic S, Gonzalez-Ericsson PI, Grigoriadis A, Halama N, Hanna MG, Harbhajanka A, Hardas A, Hart SN, Hartman J, Hewitt S, Hida AI, Horlings HM, Husain Z, Hytopoulos E, Irshad S, Janssen EAM, Kahila M, Kataoka TR, Kawaguchi K, Kharidehal D, Khramtsov AI, Kiraz U, Kirtani P, Kodach LL, Korski K, Kovács A, Laenkholm AV, Lang-Schwarz C, Larsirnont D, Lennerz JK, Lerousseau M, Li X, Ly A, Madabhushi A, Maley SK, Narasimhamurthy VM, Marks DK, McDonald ES, Mehrotra R, Michiels S, Minhas FUAA, Mittal S, Moore DA, Mushtaq S, Nighat H, Papathomas T, Penault-Llorca F, Perera RD, Pinard CJ, Pinto-Cardenas JC, Pruneri G, Pusztai L, Rahman A, Rajpoot NM, Rapoport BL, Rau TT, Reis-Filho JS, Ribeiro JM, Rimm D, Vincent-Salomon A, Salto-Tellez M, Saltz J, Sayed S, Siziopikou KP, Sotiriou C, Stenzinger A, Sughayer MA, Sur D, Symmans F, Tanaka S, Taxter T, Tejpar S, Teuwen J, Thompson EA, Tramm T, Tran WT, van der Laak J, van Diest PJ, Verghese GE, Viale G, Vieth M, Wahab N, Walter T, Waumans Y, Wen HY, Yang W, Yuan Y, Adams S, Bartlett JMS, Loibl S, Denkert C, Savas P, Loi S, Salgado R, Specht Stovgaard E. Spatial analyses of immune cell infiltration in cancer: current methods and future directions: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer. J Pathol 2023; 260:514-532. [PMID: 37608771 PMCID: PMC11288334 DOI: 10.1002/path.6165] [Show More Authors] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 08/24/2023]
Abstract
Modern histologic imaging platforms coupled with machine learning methods have provided new opportunities to map the spatial distribution of immune cells in the tumor microenvironment. However, there exists no standardized method for describing or analyzing spatial immune cell data, and most reported spatial analyses are rudimentary. In this review, we provide an overview of two approaches for reporting and analyzing spatial data (raster versus vector-based). We then provide a compendium of spatial immune cell metrics that have been reported in the literature, summarizing prognostic associations in the context of a variety of cancers. We conclude by discussing two well-described clinical biomarkers, the breast cancer stromal tumor infiltrating lymphocytes score and the colon cancer Immunoscore, and describe investigative opportunities to improve clinical utility of these spatial biomarkers. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- David B Page
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Glenn Broeckx
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
- Centre for Oncological Research (CORE), MIPPRO, Faculty of Medicine, Antwerp University, Antwerp, Belgium
| | - Chowdhury Arif Jahangir
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Sara Verbandt
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Rajarsi R Gupta
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
| | - Jeppe Thagaard
- Technical University of Denmark, Kongens Lyngby, Denmark
- Visiopharm A/S, Hørshoim, Denmark
| | - Reena Khiroya
- Department of Cellular Pathology, University College Hospital, London, UK
| | - Zuzana Kos
- Department of Pathology and Laboratory Medicine, BC Cancer Vancouver Centre, University of British Columbia, Vancouver, BC, Canada
| | - Khalid Abduljabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | | | - Balazs Acs
- Department of Oncology and Pathology, Karolinska Institutet Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Guray Akturk
- Translational Molecular Biomarkers, Merck & Co Inc, Kenilworth, NJ, USA
| | - Jonas S Almeida
- National Cancer Institute, Division of Cancer Epidemiology and Genetics (DCEG), Rockville, MD, USA
| | | | | | - Sunil Badve
- Pathology and Laboratory Medicine, Emory University School of Medicine, Emory University Winship Cancer Institute, Atlanta, GA, USA
| | | | - Enrique R Bellolio
- Departamento de Anatomia Patológica, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | | | - Kim RM Blenman
- Internal Medicine Section of Medical Oncology and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Computer Science, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | | | - Najat Bouchmaa
- Institute of Biological Sciences, Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
| | - Octavio Burgues
- Pathology Department Hospital Cliníco Universitario de Valencia/lncliva, Valencia, Spain
| | - Maggie Chon U Cheang
- Head of Integrative Genomics Analysis in Clinical Trials, ICR-CTSU, Division of Clinical Studies, Institute of Cancer Research, London, UK
| | - Francesco Ciompi
- Radboud University Medical Center, Department of Pathology, Nijmegen, The Netherlands
| | - Lee AD Cooper
- Department of Pathology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium
| | - Germán Corredor
- Biomedical Engineering Department Emory University, Atlanta, GA, USA
| | | | - Frederik Deman
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Department of Pathology, Weill Cornell Medicine, New York, NY, USA
| | - Sarah N Dudgeon
- Conputational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Mahmoud Elghazawy
- University of Surrey, Guildford, UK
- Ain Shams University, Cairo, Egypt
| | - Scott Ely
- Translational Pathology, Translational Sciences and Diagnostics/Translational Medicine/R&D, Bristol Myers Squibb, Princeton, NJ, USA
| | - Claudio Femandez-Martín
- Instituto Universitario de Investigación en Tecnología Centrada en el SerHumano, HUMAN-tech, Universitat Politècnica de València, Valencia, Spain
| | - Susan Fineberg
- Montefiore Medical Center and the Albert Einstein College of Medicine, New York, NY, USA
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | | | - Sacha Gnjatic
- Department of Oncological Sciences, Medicine Hem/One, and Pathology, Tisch Cancer Institute – Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Anita Grigoriadis
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
- Breast Cancer Now Research Unit School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Niels Halama
- Translational Immunotherapy, German Cancer Research Center, Heidelberg, Germany
| | | | | | - Alexandros Hardas
- Pathobiology & Population Sciences, The Royal Veterinary College, London, UK
| | - Steven N Hart
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Johan Hartman
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet Stockholm, Sweden
| | - Stephen Hewitt
- Department of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Akira I Hida
- Department of Pathology, Matsuyama Shimin Hospital, Matsuyama, Japan
| | - Hugo M Horlings
- Division of Pathology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | | | - Sheeba Irshad
- Kings College London & Guy’s & St Thomas’ NHS Trust, London, UK
| | - Emiel AM Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
| | - Mohamed Kahila
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Kosuke Kawaguchi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Durga Kharidehal
- Department of Pathology, Narayana Medical College, Nellore, India
| | - Andrey I Khramtsov
- Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Umay Kiraz
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
| | - Pawan Kirtani
- Department of Histopathology, Aakash Healthcare Super Speciality Hospital, New Delhi, India
| | - Liudmila L Kodach
- Department of Pathology, Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Konstanty Korski
- Data, Analytics and Imaging, Product Development, F.Hoffmann-La Roche AG, Basel, Switzerland
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg Sweden
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Anne-Vibeke Laenkholm
- Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
- Surgical Pathology, University of Copenhagen, Copenhagen, Denmark
| | - Corinna Lang-Schwarz
- Institute of Pathology, Klinikum Bayreuth GmbH, Friedrich-Alexander-University Erlangen-Nuremberg, Bayreuth, Germany
| | - Denis Larsirnont
- Institut Jules Bordet Université, Libre de Bruxelles, Brussels, Belgium
| | - Jochen K Lennerz
- Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Marvin Lerousseau
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, Paris, France
- Institut Curie, PSL University, Paris, France
- INSERM, U900, Paris, France
| | - Xiaoxian Li
- Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Amy Ly
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Anant Madabhushi
- Biomedical Engineering, Radiology and Imaging Sciences, Biomedical Informatics, Pathology, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sai K Maley
- NRG Oncology/NSABP Foundation, Pittsburgh, PA, USA
| | | | - Douglas K Marks
- Perlmutter Cancer Center, NYU Langone Health, New York NY, USA
| | - Elizabeth S McDonald
- Breast Cancer Translational Research Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi Mehrotra
- Indian Cancer Genome Atlas, Pune, India
- Centre for Health, Innovation and Policy Foundation, Noida, India
| | - Stefan Michiels
- Office of Biostatistics and Epidemiology, Gustave Roussy, Oncostat Ul 018, Inserm, University Paris-Saclay, Ligue Contre le Cancer labeled Team, Villejuif France
| | - Fayyaz ul Amir Afsar Minhas
- Tissue Image Analytics Centre, Warwick Cancer Research Centre, PathLAKE Consortium, Department of Computer Science, University of Warwick, Coventry, UK
| | - Shachi Mittal
- Department of Chemical Engineering, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - David A Moore
- CRUK Lung Cancer Centre of Excellence, UCLH, London, UK
| | - Shamim Mushtaq
- Department of Biochemistry, Ziauddin University, Karachi, Pakistan
| | - Hussain Nighat
- Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Raipur, India
| | - Thomas Papathomas
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Clinical Pathology, Drammen Sykehus, Vestre Viken HF, Drammen, Norway
| | - Frederique Penault-Llorca
- Centre Jean Perrin, INSERM U1240, Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Rashindrie D Perera
- School of Electrical, Mechanical and Infrastructure Engineering, University of Melbourne, Melbourne, VIC, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Christopher J Pinard
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Department of Oncology, Lakeshore Animal Health Partners, Mississauga, ON, Canada
- Centre for Advancing Responsible and Ethical Artificial Intelligence (CARE-AI), University of Guelph, Guelph, ON, Canada
| | | | - Giancarlo Pruneri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Laios Pusztai
- Yale Cancer Center, New Haven, CT, USA
- Department of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Arman Rahman
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | | | - Bernardo Leon Rapoport
- The Medical Oncology Centre ofRosebank Johannesburg, South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Tilman T Rau
- Institute of Pathology, University Hospital Düsseldorf and Heinrich-Heine-University Düsseldorf Düsseldorf Germany
| | - Jorge S Reis-Filho
- Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York NY, USA
| | - Joana M Ribeiro
- Département de Médecine Oncologique, Institute Gustave Roussy, Villejuif France
| | - David Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anne Vincent-Salomon
- Department of Diagnostic and Theranostic Medicine, Institut Curie, University Paris-Sciences et Lettres, Paris, France
| | - Manuel Salto-Tellez
- Integrated Pathology Unit Institute of Cancer Research, London, UK
- Precision Medicine Centre, Queen’s University Belfast Belfast UK
| | - Joel Saltz
- Department of Biomedical Informatics, Stony Brook Medicine, New York NY, USA
| | - Shahin Sayed
- Department of Pathology, Aga Khan University, Nairobi, Kenya
| | - Kalliopi P Siziopikou
- Department of Pathology, Section of Breast Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Medical Oncology Department Institut Jules Bordet Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, Brussels, Belgium
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg Centers for Personalized Medicine (ZPM), Heidelberg Germany
| | | | - Daniel Sur
- Department of Medical Oncology, University of Medicine and Pharmacy “luliu Hatieganu”, Cluj-Napoca, Romania
| | - Fraser Symmans
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sabine Tejpar
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jonas Teuwen
- Al for Oncology Lab, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Trine Tramm
- Pathology, and Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - William T Tran
- Department of Radiation Oncology, University of Toronto and Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Jeroen van der Laak
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht Utrecht The Netherlands
- Johns Hopkins Oncology Center, Baltimore, MD, USA
| | - Gregory E Verghese
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
- Breast Cancer Now Research Unit School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Giuseppe Viale
- Department of Pathology, European Institute of Oncology & University of Milan, Milan, Italy
| | - Michael Vieth
- Institute of Pathology, Kiinikum Bayreuth GmbH, Friedrich-Alexander-University Erlangen-Nuremberg, Bayreuth, Germany
| | - Noorul Wahab
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick Coventry, UK
| | - Thomas Walter
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, Paris, France
- Institut Curie, PSL University, Paris, France
- INSERM, U900, Paris, France
| | | | - Hannah Y Wen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wentao Yang
- Fudan Medical University Shanghai Cancer Center, Shanghai, PR China
| | - Yinyin Yuan
- Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sylvia Adams
- Perlmutter Cancer Center, NYU Langone Health, New York NY, USA
- Department of Medicine, NYU Grossman School of Medicine, Manhattan, NY, USA
| | | | - Sibylle Loibl
- Department of Medicine and Research, German Breast Group, Neu-lsenburg Germany
| | - Carsten Denkert
- Institut für Pathologie, Philipps-Universität Marburg und Universitätsklinikum Marburg, Marburg, Germany
| | - Peter Savas
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Elisabeth Specht Stovgaard
- Department of Pathology, Herlev and Gentofte Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
9
|
Clarke EL, Wade RG, Magee D, Newton-Bishop J, Treanor D. Image analysis of cutaneous melanoma histology: a systematic review and meta-analysis. Sci Rep 2023; 13:4774. [PMID: 36959221 PMCID: PMC10036523 DOI: 10.1038/s41598-023-31526-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
The current subjective histopathological assessment of cutaneous melanoma is challenging. The application of image analysis algorithms to histological images may facilitate improvements in workflow and prognostication. To date, several individual algorithms applied to melanoma histological images have been reported with variations in approach and reported accuracies. Histological digital images can be created using a camera mounted on a light microscope, or through whole slide image (WSI) generation using a whole slide scanner. Before any such tool could be integrated into clinical workflow, the accuracy of the technology should be carefully evaluated and summarised. Therefore, the objective of this review was to evaluate the accuracy of existing image analysis algorithms applied to digital histological images of cutaneous melanoma. Database searching of PubMed and Embase from inception to 11th March 2022 was conducted alongside citation checking and examining reports from organisations. All studies reporting accuracy of any image analysis applied to histological images of cutaneous melanoma, were included. The reference standard was any histological assessment of haematoxylin and eosin-stained slides and/or immunohistochemical staining. Citations were independently deduplicated and screened by two review authors and disagreements were resolved through discussion. The data was extracted concerning study demographics; type of image analysis; type of reference standard; conditions included and test statistics to construct 2 × 2 tables. Data was extracted in accordance with our protocol and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses-Diagnostic Test Accuracy (PRISMA-DTA) Statement. A bivariate random-effects meta-analysis was used to estimate summary sensitivities and specificities with 95% confidence intervals (CI). Assessment of methodological quality was conducted using a tailored version of the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. The primary outcome was the pooled sensitivity and specificity of image analysis applied to cutaneous melanoma histological images. Sixteen studies were included in the systematic review, representing 4,888 specimens. Six studies were included in the meta-analysis. The mean sensitivity and specificity of automated image analysis algorithms applied to melanoma histological images was 90% (CI 82%, 95%) and 92% (CI 79%, 97%), respectively. Based on limited and heterogeneous data, image analysis appears to offer high accuracy when applied to histological images of cutaneous melanoma. However, given the early exploratory nature of these studies, further development work is necessary to improve their performance.
Collapse
Affiliation(s)
- Emily L Clarke
- Department of Histopathology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
- Division of Pathology and Data Analytics, Leeds Institute of Cancer and Pathology, University of Leeds, Beckett Street, Leeds, LS9 7TF, UK.
| | - Ryckie G Wade
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
| | - Derek Magee
- School of Computing, University of Leeds, Leeds, UK
| | - Julia Newton-Bishop
- Division of Pathology and Data Analytics, Leeds Institute of Cancer and Pathology, University of Leeds, Beckett Street, Leeds, LS9 7TF, UK
| | - Darren Treanor
- Department of Histopathology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Division of Pathology and Data Analytics, Leeds Institute of Cancer and Pathology, University of Leeds, Beckett Street, Leeds, LS9 7TF, UK
- Department of Clinical Pathology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Zhao Y, Zhang J, Hu D, Qu H, Tian Y, Cui X. Application of Deep Learning in Histopathology Images of Breast Cancer: A Review. MICROMACHINES 2022; 13:2197. [PMID: 36557496 PMCID: PMC9781697 DOI: 10.3390/mi13122197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
With the development of artificial intelligence technology and computer hardware functions, deep learning algorithms have become a powerful auxiliary tool for medical image analysis. This study was an attempt to use statistical methods to analyze studies related to the detection, segmentation, and classification of breast cancer in pathological images. After an analysis of 107 articles on the application of deep learning to pathological images of breast cancer, this study is divided into three directions based on the types of results they report: detection, segmentation, and classification. We introduced and analyzed models that performed well in these three directions and summarized the related work from recent years. Based on the results obtained, the significant ability of deep learning in the application of breast cancer pathological images can be recognized. Furthermore, in the classification and detection of pathological images of breast cancer, the accuracy of deep learning algorithms has surpassed that of pathologists in certain circumstances. Our study provides a comprehensive review of the development of breast cancer pathological imaging-related research and provides reliable recommendations for the structure of deep learning network models in different application scenarios.
Collapse
Affiliation(s)
- Yue Zhao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang 110169, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Shenyang 110169, China
| | - Jie Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Dayu Hu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Hui Qu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Xiaoyu Cui
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang 110169, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Shenyang 110169, China
| |
Collapse
|
11
|
Gao Z, Jia C, Li Y, Zhang X, Hong B, Wu J, Gong T, Wang C, Meng D, Zheng Y, Li C. Unsupervised Representation Learning for Tissue Segmentation in Histopathological Images: From Global to Local Contrast. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3611-3623. [PMID: 35839184 DOI: 10.1109/tmi.2022.3191398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tissue segmentation is an essential task in computational pathology. However, relevant datasets for such a pixel-level classification task are hard to obtain due to the difficulty of annotation, bringing obstacles for training a deep learning-based segmentation model. Recently, contrastive learning has provided a feasible solution for mitigating the heavy reliance of deep learning models on annotation. Nevertheless, applying contrastive loss to the most abstract image representations, existing contrastive learning frameworks focus on global features, therefore, are less capable of encoding finer-grained features (e.g., pixel-level discrimination) for the tissue segmentation task. Enlightened by domain knowledge, we design three contrastive learning tasks with multi-granularity views (from global to local) for encoding necessary features into representations without accessing annotations. Specifically, we construct: (1) an image-level task to capture the difference between tissue components, i.e., encoding the component discrimination; (2) a superpixel-level task to learn discriminative representations of local regions with different tissue components, i.e., encoding the prototype discrimination; (3) a pixel-level task to encourage similar representations of different tissue components within a local region, i.e., encoding the spatial smoothness. Through our global-to-local pre-training strategy, the learned representations can reasonably capture the domain-specific and fine-grained patterns, making them easily transferable to various tissue segmentation tasks in histopathological images. We conduct extensive experiments on two tissue segmentation datasets, while considering two real-world scenarios with limited or sparse annotations. The experimental results demonstrate that our framework is superior to existing contrastive learning methods and can be easily combined with weakly supervised and semi-supervised segmentation methods.
Collapse
|
12
|
Requa J, Godard T, Mandal R, Balzer B, Whittemore D, George E, Barcelona F, Lambert C, Lee J, Lambert A, Larson A, Osmond G. High-fidelity detection, subtyping, and localization of five skin neoplasms using supervised and semi-supervised learning. J Pathol Inform 2022; 14:100159. [PMID: 36506813 PMCID: PMC9731861 DOI: 10.1016/j.jpi.2022.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Background Skin cancers are the most common malignancies diagnosed worldwide. While the early detection and treatment of pre-cancerous and cancerous skin lesions can dramatically improve outcomes, factors such as a global shortage of pathologists, increased workloads, and high rates of diagnostic discordance underscore the need for techniques that improve pathology workflows. Although AI models are now being used to classify lesions from whole slide images (WSIs), diagnostic performance rarely surpasses that of expert pathologists. Objectives The objective of the present study was to create an AI model to detect and classify skin lesions with a higher degree of sensitivity than previously demonstrated, with potential to match and eventually surpass expert pathologists to improve clinical workflows. Methods We combined supervised learning (SL) with semi-supervised learning (SSL) to produce an end-to-end multi-level skin detection system that not only detects 5 main types of skin lesions with high sensitivity and specificity, but also subtypes, localizes, and provides margin status to evaluate the proximity of the lesion to non-epidermal margins. The Supervised Training Subset consisted of 2188 random WSIs collected by the PathologyWatch (PW) laboratory between 2013 and 2018, while the Weakly Supervised Subset consisted of 5161 WSIs from daily case specimens. The Validation Set consisted of 250 curated daily case WSIs obtained from the PW tissue archives and included 50 "mimickers". The Testing Set (3821 WSIs) was composed of non-curated daily case specimens collected from July 20, 2021 to August 20, 2021 from PW laboratories. Results The performance characteristics of our AI model (i.e., Mihm) were assessed retrospectively by running the Testing Set through the Mihm Evaluation Pipeline. Our results show that the sensitivity of Mihm in classifying melanocytic lesions, basal cell carcinoma, and atypical squamous lesions, verruca vulgaris, and seborrheic keratosis was 98.91% (95% CI: 98.27%, 99.55%), 97.24% (95% CI: 96.15%, 98.33%), 95.26% (95% CI: 93.79%, 96.73%), 93.50% (95% CI: 89.14%, 97.86%), and 86.91% (95% CI: 82.13%, 91.69%), respectively. Additionally, our multi-level (i.e., patch-level, ROI-level, and WSI-level) detection algorithm includes a qualitative feature that subtypes lesions, an AI overlay in the front-end digital display that localizes diagnostic ROIs, and reports on margin status by detecting overlap between lesions and non-epidermal tissue margins. Conclusions Our AI model, developed in collaboration with dermatopathologists, detects 5 skin lesion types with higher sensitivity than previously published AI models, and provides end users with information such as subtyping, localization, and margin status in a front-end digital display. Our end-to-end system has the potential to improve pathology workflows by increasing diagnostic accuracy, expediting the course of patient care, and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- James Requa
- Pathology Watch, 497 West 4800 South, Suite 201, Murray, UT 84123, USA
| | - Tuatini Godard
- Pathology Watch, 497 West 4800 South, Suite 201, Murray, UT 84123, USA
| | - Rajni Mandal
- Pathology Watch, 497 West 4800 South, Suite 201, Murray, UT 84123, USA
| | - Bonnie Balzer
- Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Darren Whittemore
- Pathology Watch, 497 West 4800 South, Suite 201, Murray, UT 84123, USA
| | - Eva George
- Pathology Watch, 497 West 4800 South, Suite 201, Murray, UT 84123, USA
| | | | - Chalette Lambert
- Kirk Kerkorian School of Medicine at UNLV, University of Nevada, Las Vegas, Mail Stop: 3070, 2040 W Charleston Blvd., Las Vegas, NV 89102-2244, USA
| | - Jonathan Lee
- Bethesda Dermatopathology Laboratory, 1730 Elton Road, Silver Spring, MD 20903, USA
| | - Allison Lambert
- Pathology Watch, 497 West 4800 South, Suite 201, Murray, UT 84123, USA
| | - April Larson
- Pathology Watch, 497 West 4800 South, Suite 201, Murray, UT 84123, USA
| | - Gregory Osmond
- Intermountain Healthcare, Saint George Regional Hospital, Department of Pathology, 1380 East Medical Center Drive, Saint George, Utah 84790, USA,Corresponding author.
| |
Collapse
|
13
|
Zhang H, Chen H, Qin J, Wang B, Ma G, Wang P, Zhong D, Liu J. MC-ViT: Multi-path cross-scale vision transformer for thymoma histopathology whole slide image typing. Front Oncol 2022; 12:925903. [PMID: 36387248 PMCID: PMC9659861 DOI: 10.3389/fonc.2022.925903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/11/2022] [Indexed: 08/14/2023] Open
Abstract
OBJECTIVES Accurate histological typing plays an important role in diagnosing thymoma or thymic carcinoma (TC) and predicting the corresponding prognosis. In this paper, we develop and validate a deep learning-based thymoma typing method for hematoxylin & eosin (H&E)-stained whole slide images (WSIs), which provides useful histopathology information from patients to assist doctors for better diagnosing thymoma or TC. METHODS We propose a multi-path cross-scale vision transformer (MC-ViT), which first uses the cross attentive scale-aware transformer (CAST) to classify the pathological information related to thymoma, and then uses such pathological information priors to assist the WSIs transformer (WT) for thymoma typing. To make full use of the multi-scale (10×, 20×, and 40×) information inherent in a WSI, CAST not only employs parallel multi-path to capture different receptive field features from multi-scale WSI inputs, but also introduces the cross-correlation attention module (CAM) to aggregate multi-scale features to achieve cross-scale spatial information complementarity. After that, WT can effectively convert full-scale WSIs into 1D feature matrices with pathological information labels to improve the efficiency and accuracy of thymoma typing. RESULTS We construct a large-scale thymoma histopathology WSI (THW) dataset and annotate corresponding pathological information and thymoma typing labels. The proposed MC-ViT achieves the Top-1 accuracy of 0.939 and 0.951 in pathological information classification and thymoma typing, respectively. Moreover, the quantitative and statistical experiments on the THW dataset also demonstrate that our pipeline performs favorably against the existing classical convolutional neural networks, vision transformers, and deep learning-based medical image classification methods. CONCLUSION This paper demonstrates that comprehensively utilizing the pathological information contained in multi-scale WSIs is feasible for thymoma typing and achieves clinically acceptable performance. Specifically, the proposed MC-ViT can well predict pathological information classes as well as thymoma types, which show the application potential to the diagnosis of thymoma and TC and may assist doctors in improving diagnosis efficiency and accuracy.
Collapse
Affiliation(s)
- Huaqi Zhang
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Huang Chen
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Jin Qin
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Bei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Pengyu Wang
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Dingrong Zhong
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Jie Liu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
14
|
Qiao Y, Zhao L, Luo C, Luo Y, Wu Y, Li S, Bu D, Zhao Y. Multi-modality artificial intelligence in digital pathology. Brief Bioinform 2022; 23:6702380. [PMID: 36124675 PMCID: PMC9677480 DOI: 10.1093/bib/bbac367] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
In common medical procedures, the time-consuming and expensive nature of obtaining test results plagues doctors and patients. Digital pathology research allows using computational technologies to manage data, presenting an opportunity to improve the efficiency of diagnosis and treatment. Artificial intelligence (AI) has a great advantage in the data analytics phase. Extensive research has shown that AI algorithms can produce more up-to-date and standardized conclusions for whole slide images. In conjunction with the development of high-throughput sequencing technologies, algorithms can integrate and analyze data from multiple modalities to explore the correspondence between morphological features and gene expression. This review investigates using the most popular image data, hematoxylin-eosin stained tissue slide images, to find a strategic solution for the imbalance of healthcare resources. The article focuses on the role that the development of deep learning technology has in assisting doctors' work and discusses the opportunities and challenges of AI.
Collapse
Affiliation(s)
- Yixuan Qiao
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianhe Zhao
- Corresponding authors: Yi Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences; Shandong First Medical University & Shandong Academy of Medical Sciences. Tel.: +86 10 6260 0822; Fax: +86 10 6260 1356; E-mail: ; Lianhe Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences. Tel.: +86 18513983324; E-mail:
| | - Chunlong Luo
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufan Luo
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Shengtong Li
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dechao Bu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Zhao
- Corresponding authors: Yi Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences; Shandong First Medical University & Shandong Academy of Medical Sciences. Tel.: +86 10 6260 0822; Fax: +86 10 6260 1356; E-mail: ; Lianhe Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences. Tel.: +86 18513983324; E-mail:
| |
Collapse
|
15
|
Cifci D, Foersch S, Kather JN. Artificial intelligence to identify genetic alterations in conventional histopathology. J Pathol 2022; 257:430-444. [PMID: 35342954 DOI: 10.1002/path.5898] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/10/2022]
Abstract
Precision oncology relies on the identification of targetable molecular alterations in tumor tissues. In many tumor types, a limited set of molecular tests is currently part of standard diagnostic workflows. However, universal testing for all targetable alterations, especially rare ones, is limited by the cost and availability of molecular assays. From 2017 to 2021, multiple studies have shown that artificial intelligence (AI) methods can predict the probability of specific genetic alterations directly from conventional hematoxylin and eosin (H&E) tissue slides. Although these methods are currently less accurate than gold-standard testing (e.g. immunohistochemistry, polymerase chain reaction or next-generation sequencing), they could be used as pre-screening tools to reduce the workload of genetic analyses. In this systematic literature review, we summarize the state of the art in predicting molecular alterations from H&E using AI. We found that AI methods perform reasonably well across multiple tumor types, although few algorithms have been broadly validated. In addition, we found that genetic alterations in FGFR, IDH, PIK3CA, BRAF, TP53 and DNA repair pathways are predictable from H&E in multiple tumor types, while many other genetic alterations have rarely been investigated or were only poorly predictable. Finally, we discuss the next steps for the implementation of AI-based surrogate tests in diagnostic workflows. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Didem Cifci
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Sebastian Foersch
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jakob Nikolas Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.,Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.,Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
16
|
Wilm F, Benz M, Bruns V, Baghdadlian S, Dexl J, Hartmann D, Kuritcyn P, Weidenfeller M, Wittenberg T, Merkel S, Hartmann A, Eckstein M, Geppert CI. Fast whole-slide cartography in colon cancer histology using superpixels and CNN classification. J Med Imaging (Bellingham) 2022; 9:027501. [PMID: 35300344 PMCID: PMC8920491 DOI: 10.1117/1.jmi.9.2.027501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/17/2022] [Indexed: 11/14/2022] Open
Abstract
Purpose: Automatic outlining of different tissue types in digitized histological specimen provides a basis for follow-up analyses and can potentially guide subsequent medical decisions. The immense size of whole-slide-images (WSIs), however, poses a challenge in terms of computation time. In this regard, the analysis of nonoverlapping patches outperforms pixelwise segmentation approaches but still leaves room for optimization. Furthermore, the division into patches, regardless of the biological structures they contain, is a drawback due to the loss of local dependencies. Approach: We propose to subdivide the WSI into coherent regions prior to classification by grouping visually similar adjacent pixels into superpixels. Afterward, only a random subset of patches per superpixel is classified and patch labels are combined into a superpixel label. We propose a metric for identifying superpixels with an uncertain classification and evaluate two medical applications, namely tumor area and invasive margin estimation and tumor composition analysis. Results: The algorithm has been developed on 159 hand-annotated WSIs of colon resections and its performance is compared with an analysis without prior segmentation. The algorithm shows an average speed-up of 41% and an increase in accuracy from 93.8% to 95.7%. By assigning a rejection label to uncertain superpixels, we further increase the accuracy by 0.4%. While tumor area estimation shows high concordance to the annotated area, the analysis of tumor composition highlights limitations of our approach. Conclusion: By combining superpixel segmentation and patch classification, we designed a fast and accurate framework for whole-slide cartography that is AI-model agnostic and provides the basis for various medical endpoints.
Collapse
Affiliation(s)
- Frauke Wilm
- Fraunhofer Institute for Integrated Circuits IIS, Image Processing and Medical Engineering Department, Erlangen, Germany.,Friedrich-Alexander-University, Erlangen-Nuremberg, Department of Computer Science, Erlangen, Germany
| | - Michaela Benz
- Fraunhofer Institute for Integrated Circuits IIS, Image Processing and Medical Engineering Department, Erlangen, Germany
| | - Volker Bruns
- Fraunhofer Institute for Integrated Circuits IIS, Image Processing and Medical Engineering Department, Erlangen, Germany
| | - Serop Baghdadlian
- Fraunhofer Institute for Integrated Circuits IIS, Image Processing and Medical Engineering Department, Erlangen, Germany
| | - Jakob Dexl
- Fraunhofer Institute for Integrated Circuits IIS, Image Processing and Medical Engineering Department, Erlangen, Germany
| | - David Hartmann
- Fraunhofer Institute for Integrated Circuits IIS, Image Processing and Medical Engineering Department, Erlangen, Germany
| | - Petr Kuritcyn
- Fraunhofer Institute for Integrated Circuits IIS, Image Processing and Medical Engineering Department, Erlangen, Germany
| | - Martin Weidenfeller
- Fraunhofer Institute for Integrated Circuits IIS, Image Processing and Medical Engineering Department, Erlangen, Germany
| | - Thomas Wittenberg
- Fraunhofer Institute for Integrated Circuits IIS, Image Processing and Medical Engineering Department, Erlangen, Germany.,Friedrich-Alexander-University, Erlangen-Nuremberg, Department of Computer Science, Erlangen, Germany
| | - Susanne Merkel
- University Hospital Erlangen, Department of Surgery, FAU Erlangen-Nuremberg, Erlangen, Germany.,University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN (CCC), FAU Erlangen-Nuremberg, Erlangen, Germany
| | - Arndt Hartmann
- University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN (CCC), FAU Erlangen-Nuremberg, Erlangen, Germany.,University Hospital Erlangen, Institute of Pathology, FAU Erlangen-Nuremberg, Erlangen, Germany
| | - Markus Eckstein
- University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN (CCC), FAU Erlangen-Nuremberg, Erlangen, Germany.,University Hospital Erlangen, Institute of Pathology, FAU Erlangen-Nuremberg, Erlangen, Germany
| | - Carol Immanuel Geppert
- University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN (CCC), FAU Erlangen-Nuremberg, Erlangen, Germany.,University Hospital Erlangen, Institute of Pathology, FAU Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
17
|
Mehrvar S, Himmel LE, Babburi P, Goldberg AL, Guffroy M, Janardhan K, Krempley AL, Bawa B. Deep Learning Approaches and Applications in Toxicologic Histopathology: Current Status and Future Perspectives. J Pathol Inform 2021; 12:42. [PMID: 34881097 PMCID: PMC8609289 DOI: 10.4103/jpi.jpi_36_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/18/2021] [Indexed: 12/13/2022] Open
Abstract
Whole slide imaging enables the use of a wide array of digital image analysis tools that are revolutionizing pathology. Recent advances in digital pathology and deep convolutional neural networks have created an enormous opportunity to improve workflow efficiency, provide more quantitative, objective, and consistent assessments of pathology datasets, and develop decision support systems. Such innovations are already making their way into clinical practice. However, the progress of machine learning - in particular, deep learning (DL) - has been rather slower in nonclinical toxicology studies. Histopathology data from toxicology studies are critical during the drug development process that is required by regulatory bodies to assess drug-related toxicity in laboratory animals and its impact on human safety in clinical trials. Due to the high volume of slides routinely evaluated, low-throughput, or narrowly performing DL methods that may work well in small-scale diagnostic studies or for the identification of a single abnormality are tedious and impractical for toxicologic pathology. Furthermore, regulatory requirements around good laboratory practice are a major hurdle for the adoption of DL in toxicologic pathology. This paper reviews the major DL concepts, emerging applications, and examples of DL in toxicologic pathology image analysis. We end with a discussion of specific challenges and directions for future research.
Collapse
Affiliation(s)
- Shima Mehrvar
- Preclinical Safety, AbbVie Inc., North Chicago, IL, USA
| | | | - Pradeep Babburi
- Business Technology Solutions, AbbVie Inc., North Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
18
|
Burgos-Panadero R, El Moukhtari SH, Noguera I, Rodríguez-Nogales C, Martín-Vañó S, Vicente-Munuera P, Cañete A, Navarro S, Blanco-Prieto MJ, Noguera R. Unraveling the extracellular matrix-tumor cell interactions to aid better targeted therapies for neuroblastoma. Int J Pharm 2021; 608:121058. [PMID: 34461172 DOI: 10.1016/j.ijpharm.2021.121058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
Treatment in children with high-risk neuroblastoma remains largely unsuccessful due to the development of metastases and drug resistance. The biological complexity of these tumors and their microenvironment represent one of the many challenges to face. Matrix glycoproteins such as vitronectin act as bridge elements between extracellular matrix and tumor cells and can promote tumor cell spreading. In this study, we established through a clinical cohort and preclinical models that the interaction of vitronectin and its ligands, such as αv integrins, are related to the stiffness of the extracellular matrix in high-risk neuroblastoma. These marked alterations found in the matrix led us to specifically target tumor cells within these altered matrices by employing nanomedicine and combination therapy. Loading the conventional cytotoxic drug etoposide into nanoparticles significantly increased its efficacy in neuroblastoma cells. We noted high synergy between etoposide and cilengitide, a high-affinity cyclic pentapeptide αv integrin antagonist. The results of this study highlight the need to characterize cell-extracellular matrix interactions, to improve patient care in high-risk neuroblastoma.
Collapse
Affiliation(s)
- Rebeca Burgos-Panadero
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010 Valencia, Spain; Low Prevalence Tumors, Centro de investigación biomédica en red de cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Souhaila H El Moukhtari
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Inmaculada Noguera
- Central Support Service for Experimental Research (SCSIE), University of Valencia, Burjassot, Valencia, Spain.
| | - Carlos Rodríguez-Nogales
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Susana Martín-Vañó
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010 Valencia, Spain; Low Prevalence Tumors, Centro de investigación biomédica en red de cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Pablo Vicente-Munuera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, Seville 41013, Spain.
| | - Adela Cañete
- Pediatric Oncology, La Fe Hospital, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain.
| | - Samuel Navarro
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010 Valencia, Spain; Low Prevalence Tumors, Centro de investigación biomédica en red de cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010 Valencia, Spain; Low Prevalence Tumors, Centro de investigación biomédica en red de cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|