1
|
Juan YC, Chen X, Tseng JY, Lin HJ, Hung CH, Hsueh PR, Lin JJ, Cho DY, Chen CC. Beyond the blood-brain barrier: feasibility and technical validation of dual-compartment circulating tumor cells detection in high-grade glioma patients. Neurosurg Rev 2025; 48:359. [PMID: 40214852 PMCID: PMC11991960 DOI: 10.1007/s10143-025-03511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/18/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
The elusive nature of brain tumor progression, hidden behind the blood-brain barrier, presents significant challenges for treatment monitoring in high-grade gliomas. In this feasibility study, we evaluate a novel approach to tracking glioblastoma through liquid biopsy, assessing whether tumor cells leave detectable molecular footprints in both blood and cerebrospinal fluid (CSF). Using the MiSelect R II System with specialized microfluidic technology, we analyzed paired blood and CSF samples from six glioblastoma patients, revealing a striking presence of circulating tumor cells (CTCs)- with higher abundance in CSF, where detection rates reached 100% compared to 83.3% in blood. Our technical validation demonstrates the system's capability to identify CTCs through multi-marker analysis (EGFR+/GFAP+/CD45-). Preliminary observations revealed higher CTC counts in CSF (median 15.5 cells/mL) compared to blood (median 3.0 cells/mL), with notable differences between compartments suggesting they may reflect distinct aspects of disease biology. In a patient who developed progressive disease, we observed a substantial increase in CSF CTCs from 14 to 116 cells/mL, warranting further investigation in larger cohorts. Additionally, we detected CTC clusters in both compartments, an intriguing finding with potential biological significance. While our interim analysis provides technical proof-of-concept for CTC detection in glioblastoma patients, the limited sample size precludes definitive conclusions regarding clinical utility. These findings establish a methodological foundation for future comprehensive studies exploring the relationship between CTC dynamics and clinical outcomes in high-grade gliomas.
Collapse
Affiliation(s)
- Yu-Chung Juan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - XianXiu Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
| | | | - Hui-Ju Lin
- Department of Laboratory Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Cheng-Hao Hung
- Department of Laboratory Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, China Medical University and Hospital, Taichung, Taiwan
- Department of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jung-Ju Lin
- Sleep Medicine Center, China Medical University Hospital, Taichung, Taiwan
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Chung Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan.
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
2
|
Taori S, Habib A, Adida S, Gecici NN, Sharma N, Calcaterra M, Tang A, Pandya S, Mehra A, Deng H, Elidrissy H, Idrissi YA, Amjadzadeh M, Zinn PO. Circulating biomarkers in high-grade gliomas: current insights and future perspectives. J Neurooncol 2025; 172:41-49. [PMID: 39671020 DOI: 10.1007/s11060-024-04903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
PURPOSE High-grade gliomas (HGG) represent a challenging subset of brain tumors characterized by aggressive nature and poor prognosis. Histopathology remains to be the standard for diagnosis, however, it is invasive, prone to sampling errors, and may not capture the full tumor heterogeneity and evolution over time. In recent years, there has been a growing interest in the potential utility of circulating biomarkers, obtained through minimally-invasive liquid biopsies, providing an opportunity for diagnosis, prognostication, monitoring treatment response and developing targeted therapies. METHODS We have reviewed the literature on circulating biomarkers for HGG, including circulating tumor cells (CTCs), circulating tumor-derived exosomes/extracellular vesicles (ctEVs), circulating tumor-derived DNA (ctDNA), circulating tumor-derived miRNA (ctmiRNA), and circulating tumor-derived proteins. RESULTS CTCs provide real-time information about tumor characteristics for molecular profiling and monitoring treatment response, yet their low numbers in circulation makes detection challenging. ctEVs carry a range of biomolecules and are easily detectable. However, they are not exclusively released from tumor cells and heterogeneity in their content requires standardized isolation and analysis methods. ctDNA is another promising biomarker with its levels correlating with the disease stage. However, its low concentration in blood requires highly sensitive techniques for identification and differentiation from normal cell-free DNA. ctmiRNA and tumor-derived proteins show promise but are limited by their susceptibility to dilution and lack of specificity in current technology. CONCLUSION This review highlights the transformative potential of circulating biomarkers in the management of HGG, with implications for improving patient outcomes, optimizing treatment strategies, and advancing precision oncology in neuro-oncology practice.
Collapse
Affiliation(s)
- Suchet Taori
- School of Medicine, University of Pittsburgh, Pennsylvania, PA, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Ahmed Habib
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Samuel Adida
- School of Medicine, University of Pittsburgh, Pennsylvania, PA, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Neslihan Nisa Gecici
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Nikhil Sharma
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | | | - Anthony Tang
- School of Medicine, University of Pittsburgh, Pennsylvania, PA, USA
| | - Sumaarg Pandya
- School of Medicine, University of Pittsburgh, Pennsylvania, PA, USA
| | - Arnav Mehra
- School of Medicine, University of Pittsburgh, Pennsylvania, PA, USA
| | - Hansen Deng
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Hayat Elidrissy
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Yassine Alami Idrissi
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Mohammadreza Amjadzadeh
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Pascal O Zinn
- School of Medicine, University of Pittsburgh, Pennsylvania, PA, USA.
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA.
| |
Collapse
|
3
|
Jiang J, Mo W, Lian X, Cao D, Cheng H, Wang H. Detection of PD‑L1 expression and epithelial‑mesenchymal transition of circulating tumor cells in non‑small cell lung cancer. Exp Ther Med 2024; 28:294. [PMID: 38827467 PMCID: PMC11140314 DOI: 10.3892/etm.2024.12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 06/04/2024] Open
Abstract
The present study aimed to assess the roles of peripheral circulating tumor cell (CTC) count, CTC subtypes and programmed death ligand 1 (PD-L1) expression in the clinical staging and prognosis of patients with non-small cell lung cancer (NSCLC). A total of 100 patients with NSCLC with available tumor tissues were enrolled in the present study, and 7.5 ml peripheral blood was collected. Patients were divided into PD-L1-positive and PD-L1-negative groups according to PD-L1 immunohistochemical staining. Peripheral blood samples from both groups were analyzed to determine the CTC count, epithelial-type CTCs (E-CTCs), mesenchymal-type CTCs (M-CTCs) and PD-L1 expression. Clinical data were collected, and patients were followed up for a maximum of 36 months, with patient death as the endpoint event. Patients with PD-L1-positive tumors had a worse prognosis compared with those with PD-L1-negative tumors (P=0.045). The PD-L1-positive group exhibited significantly higher numbers of CTCs and M-CTCs compared with the PD-L1-negative group (P≤0.05). However, the number of E-CTCs did not differ significantly between the two groups (P>0.05). PD-L1-positive patients with higher CTC and M-CTC counts had relatively poorer prognoses (P≤0.05), while the number of E-CTCs had no significant effect on prognosis (P>0.05). Compared with the early-stage NSCLC group, the late-stage NSCLC group exhibited a significant increase in the CTC count (P≤0.05), while E-CTC and M-CTC counts did not significantly differ between the two groups (P>0.05). The PD-L1-positive group exhibited a significant increase in the number of PD-L1+ CTCs and PD-L1+ M-CTCs compared with the PD-L1-negative group (P≤0.05), while PD-L1+ E-CTC counts did not differ significantly between the two groups (P>0.05). The PD-L1-positive patients with a higher number of PD-L1+ CTCs and PD-L1+ M-CTCs had relatively poorer prognoses (P≤0.05), while the PD-L1+ E-CTC count had no significant effect on prognosis (P>0.05). Compared with the early-stage NSCLC group, the late-stage NSCLC group exhibited a significant increase in the number of PD-L1+ CTCs and PD-L1+ M-CTCs (P≤0.05), while PD-L1+ E-CTC counts did not significantly differ between the two groups (P>0.05). Based on univariate and multivariate analyses, the number of PD-L1+ M-CTCs was identified as an independent prognostic factor for NSCLC. In conclusion, the presence of CTCs in peripheral blood, particularly PD-L1+ M-CTC subtype, indicated poorer clinical staging and prognosis in patients with NSCLC. These findings suggested that CTCs, specifically the PD-L1+ M-CTC subtype, could serve as a monitoring indicator for the clinical staging and prognosis of patients with NSCLC.
Collapse
Affiliation(s)
- Jianping Jiang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Weiqiang Mo
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xue Lian
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Dakui Cao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Haiying Cheng
- Department of Nursing Administration, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Haiqin Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
4
|
O'Neill K, Syed N, Crook T, Dubey S, Potharaju M, Limaye S, Ranade A, Anichini G, Patil D, Datta V, Datar R. Profiling of circulating glial cells for accurate blood-based diagnosis of glial malignancies. Int J Cancer 2024; 154:1298-1308. [PMID: 38146864 DOI: 10.1002/ijc.34827] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/27/2023]
Abstract
Here, we describe a blood test for the detection of glial malignancies (GLI-M) based on the identification of circulating glial cells (CGCs). The test is highly specific for GLI-M and can detect multiple grades (II-IV) and subtypes including gliomas, astrocytomas, oligodendrogliomas, oligoastrocytomas and glioblastomas, irrespective of gender and age. Analytical validation of the test was performed as per Clinical and Laboratory Standards Institute (CLSI) guidelines. Real-world performance characteristics of the test were evaluated in four clinical (observational) studies. The test has high analytical sensitivity (95%), specificity (100%) and precision (coefficient of variation [CV] = 13.7% for repeatability and CV = 23.5% for within laboratory precision, both at the detection threshold) and is not prone to interference from common drugs and serum factors. The ability of the test to detect and differentiate GLI-M from non-malignant brain tumours (NBT), brain metastases from primary epithelial malignancies (EPI-M) and healthy individual donors (HD) was evaluated in four clinical cohorts. Across these clinical studies, the test showed 99.35% sensitivity (95% confidence interval [CI]: 96.44%-99.98%) and 100% specificity (95% CI: 99.37%-100%). The performance characteristics of this test support its clinical utility for diagnostic triaging of individuals presenting with intracranial space-occupying lesions (ICSOL).
Collapse
Affiliation(s)
- Kevin O'Neill
- Department of Neurosurgery, Imperial College Healthcare NHS Trust, London, UK
| | - Nelofer Syed
- Department of Brain Sciences, Hammersmith Hospital, Imperial College London, London, UK
| | - Timothy Crook
- Department of Brain Sciences, Hammersmith Hospital, Imperial College London, London, UK
| | - Sudhir Dubey
- Institute of Neurosciences, Medanta-The Medicity, Gurugram, India
| | - Mahadev Potharaju
- Department of Radiation Oncology, Apollo Speciality Hospitals, Chennai, India
| | - Sewanti Limaye
- Department of Medical and Precision Oncology, Sir HN Reliance Foundation Hospital and Research Centre, Mumbai, India
| | | | - Giulio Anichini
- Department of Brain Sciences, Hammersmith Hospital, Imperial College London, London, UK
| | - Darshana Patil
- Department of Research and Innovations, Datar Cancer Genetics, Nasik, India
| | - Vineet Datta
- Department of Research and Innovations, Datar Cancer Genetics, Nasik, India
| | - Rajan Datar
- Department of Research and Innovations, Datar Cancer Genetics, Nasik, India
| |
Collapse
|
5
|
Trivedi R, Bhat KP. Liquid biopsy: creating opportunities in brain space. Br J Cancer 2023; 129:1727-1746. [PMID: 37752289 PMCID: PMC10667495 DOI: 10.1038/s41416-023-02446-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, liquid biopsy has emerged as an alternative method to diagnose and monitor tumors. Compared to classical tissue biopsy procedures, liquid biopsy facilitates the repetitive collection of diverse cellular and acellular analytes from various biofluids in a non/minimally invasive manner. This strategy is of greater significance for high-grade brain malignancies such as glioblastoma as the quantity and accessibility of tumors are limited, and there are collateral risks of compromised life quality coupled with surgical interventions. Currently, blood and cerebrospinal fluid (CSF) are the most common biofluids used to collect circulating cells and biomolecules of tumor origin. These liquid biopsy analytes have created opportunities for real-time investigations of distinct genetic, epigenetic, transcriptomics, proteomics, and metabolomics alterations associated with brain tumors. This review describes different classes of liquid biopsy biomarkers present in the biofluids of brain tumor patients. Moreover, an overview of the liquid biopsy applications, challenges, recent technological advances, and clinical trials in the brain have also been provided.
Collapse
Affiliation(s)
- Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
6
|
Zanganeh S, Abbasgholinejad E, Doroudian M, Esmaelizad N, Farjadian F, Benhabbour SR. The Current Landscape of Glioblastoma Biomarkers in Body Fluids. Cancers (Basel) 2023; 15:3804. [PMID: 37568620 PMCID: PMC10416862 DOI: 10.3390/cancers15153804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal primary brain cancer that necessitates early detection and accurate diagnosis for effective treatment and improved patient outcomes. Traditional diagnostic methods, such as imaging techniques and tissue biopsies, have limitations in providing real-time information and distinguishing treatment-related changes from tumor progression. Liquid biopsies, used to analyze biomarkers in body fluids, offer a non-invasive and dynamic approach to detecting and monitoring GBM. This article provides an overview of GBM biomarkers in body fluids, including circulating tumor cells (CTCs), cell-free DNA (cfDNA), cell-free RNA (cfRNA), microRNA (miRNA), and extracellular vesicles. It explores the clinical utility of these biomarkers for GBM detection, monitoring, and prognosis. Challenges and limitations in implementing liquid biopsy strategies in clinical practice are also discussed. The article highlights the potential of liquid biopsies as valuable tools for personalized GBM management but underscores the need for standardized protocols and further research to optimize their clinical utility.
Collapse
Affiliation(s)
- Saba Zanganeh
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Elham Abbasgholinejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (E.A.); (N.E.)
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (E.A.); (N.E.)
| | - Nazanin Esmaelizad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (E.A.); (N.E.)
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Soumya Rahima Benhabbour
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Manzi J, Hoff CO, Ferreira R, Glehn-Ponsirenas R, Selvaggi G, Tekin A, O'Brien CB, Feun L, Vianna R, Abreu P. Cell-Free DNA as a Surveillance Tool for Hepatocellular Carcinoma Patients after Liver Transplant. Cancers (Basel) 2023; 15:3165. [PMID: 37370775 PMCID: PMC10296050 DOI: 10.3390/cancers15123165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The liver is the world's sixth most common primary tumor site, responsible for approximately 5% of all cancers and over 8% of cancer-related deaths. Hepatocellular carcinoma (HCC) is the predominant type of liver cancer, accounting for approximately 75% of all primary liver tumors. A major therapeutic tool for this disease is liver transplantation. Two of the most significant issues in treating HCC are tumor recurrence and graft rejection. Currently, the detection and monitoring of HCC recurrence and graft rejection mainly consist of imaging methods, tissue biopsies, and alpha-fetoprotein (AFP) follow-up. However, they have limited accuracy and precision. One of the many possible components of cfDNA is circulating tumor DNA (ctDNA), which is cfDNA derived from tumor cells. Another important component in transplantation is donor-derived cfDNA (dd-cfDNA), derived from donor tissue. All the components of cfDNA can be analyzed in blood samples as liquid biopsies. These can play a role in determining prognosis, tumor recurrence, and graft rejection, assisting in an overall manner in clinical decision-making in the treatment of HCC.
Collapse
Affiliation(s)
- Joao Manzi
- School of Medicine, University of Sao Paulo, Sao Paulo 05508-900, Brazil
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Camilla O Hoff
- School of Medicine, University of Sao Paulo, Sao Paulo 05508-900, Brazil
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Raphaella Ferreira
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | | | - Gennaro Selvaggi
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Akin Tekin
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Christopher B O'Brien
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Lynn Feun
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Rodrigo Vianna
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Phillipe Abreu
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
8
|
Halawa T, Baeesa S, Fadul MM, Badahdah AA, Enani M, Fathaddin AA, Kawass D, Alkhotani A, Bahakeem B, Kurdi M. The Role of Liquid Biopsy in the Diagnosis and Prognosis of WHO Grade 4 Astrocytoma. Cureus 2023; 15:e41221. [PMID: 37525780 PMCID: PMC10387356 DOI: 10.7759/cureus.41221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/02/2023] Open
Abstract
Liquid biopsy, as a non-invasive diagnostic tool, has recently gained significant attention in the field of oncology. It involves the analysis of various biomarkers present in bodily fluids, such as blood or cerebrospinal fluid, to provide information about the underlying cancer. In the case of WHO grade 4 astrocytomas, liquid biopsy has the potential to significantly impact the diagnosis and prognosis of this aggressive malignant brain tumor. By detecting specific genetic mutations, such as IDH1 or EGFR, and monitoring levels of circulating tumor DNA, liquid biopsy can aid in the early detection and monitoring of disease progression. This innovative approach is gradually being acknowledged as a less invasive and cost-effective procedure for cancer diagnosis and management to improve patient outcomes and quality of life. Various kinds of biomarkers circulating in cerebrospinal fluid (CSF), such as circulating tumor cells (CTC) and different types of nucleic acids like cell-free DNA (cfDNA), cell-free RNA (ctRNA), and microRNAs (miRNA), have been identified. These biomarkers, which require dependable detection methods, are comparatively simple to obtain and allow for repeated measurements, making them significantly superior for disease monitoring. This review aims to compare the latest liquid biopsy analysis tools for both CSF and plasma in the central nervous system.
Collapse
Affiliation(s)
- Taher Halawa
- Department of Pediatrics, Faculty of Medicine King Abdulaziz University, Rabigh, SAU
| | - Saleh Baeesa
- Department of Neuroscience, King Faisal Specialist Hospital and Research Centre, Jeddah, SAU
| | - Motaz M Fadul
- Department of Pathology, Faculty of Medicine King Abdulaziz University, Rabigh, SAU
| | - Adnan A Badahdah
- Department of Internal Medicine, University of Jeddah, Jeddah, SAU
| | - Maryam Enani
- Department of Surgery, King Abdulaziz University Hospital, Jeddah, SAU
| | - Amany A Fathaddin
- Department of Pathology, College of Medicine, King Saud University, Riyadh, SAU
- Department of Pathology, King Saud University Medical City, Riyadh, SAU
| | - Dania Kawass
- Department of Family Medicine, Faculty of Medicine King Abdulaziz University, Jeddah, SAU
| | - Alaa Alkhotani
- Department of Pathology, Umm Al-Qura University, Makkah, SAU
| | - Basem Bahakeem
- Department of Internal Medicine, Umm Al-Qura University, Makkah, SAU
| | - Maher Kurdi
- Department of Pathology, Faculty of Medicine King Abdulaziz University, Rabigh, SAU
| |
Collapse
|
9
|
Andrews LJ, Davies P, Herbert C, Kurian KM. Pre-diagnostic blood biomarkers for adult glioma. Front Oncol 2023; 13:1163289. [PMID: 37265788 PMCID: PMC10229864 DOI: 10.3389/fonc.2023.1163289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Glioma is one of the most common malignant primary brain tumours in adults, of which, glioblastoma is the most prevalent and malignant entity. Glioma is often diagnosed at a later stage of disease progression, which means it is associated with significant mortality and morbidity. Therefore, there is a need for earlier diagnosis of these tumours, which would require sensitive and specific biomarkers. These biomarkers could better predict glioma onset to improve diagnosis and therapeutic options for patients. While liquid biopsies could provide a cheap and non-invasive test to improve the earlier detection of glioma, there is little known on pre-diagnostic biomarkers which predate disease detection. In this review, we examine the evidence in the literature for pre-diagnostic biomarkers in glioma, including metabolomics and proteomics. We also consider the limitations of these approaches and future research directions of pre-diagnostic biomarkers for glioma.
Collapse
Affiliation(s)
- Lily J. Andrews
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Cancer Research Integrative Cancer Epidemiology Programme, University of Bristol, Bristol, United Kingdom
| | - Philippa Davies
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Cancer Research Integrative Cancer Epidemiology Programme, University of Bristol, Bristol, United Kingdom
| | - Christopher Herbert
- Bristol Haematology and Oncology Centre, University Hospitals Bristol National Health Service (NHS) Foundation Trust, Bristol, United Kingdom
| | - Kathreena M. Kurian
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Cancer Research Integrative Cancer Epidemiology Programme, University of Bristol, Bristol, United Kingdom
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
10
|
Pingle SC, Lin F, Anekoji MS, Patro CK, Datta S, Jones LD, Kesari S, Ashili S. Exploring the role of cerebrospinal fluid as analyte in neurologic disorders. Future Sci OA 2023; 9:FSO851. [PMID: 37090492 PMCID: PMC10116372 DOI: 10.2144/fsoa-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
The cerebrospinal fluid (CSF) is a clear ultrafiltrate of blood that envelopes and protects the central nervous system while regulating neuronal function through the maintenance of interstitial fluid homeostasis in the brain. Due to its anatomic location and physiological functions, the CSF can provide a reliable source of biomarkers for the diagnosis and treatment monitoring of different neurological diseases, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and primary and secondary brain malignancies. The incorporation of CSF biomarkers into the drug discovery and development can improve the efficiency of drug development and increase the chances of success. This review aims to consolidate the current use of CSF biomarkers in clinical practice and explore future perspectives for the field.
Collapse
Affiliation(s)
- Sandeep C Pingle
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | - Feng Lin
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
- Author for correspondence:
| | - Misa S Anekoji
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | - C Pawan K Patro
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | - Souvik Datta
- Rhenix Lifesciences, 237 Vengal Rao Nagar, Hyderabad, TG, 500038, India
| | - Lawrence D Jones
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | - Santosh Kesari
- Department of Translational Neurosciences, Saint John's Cancer Institute at Providence Saint John's Health Center & Pacific Neuroscience Institute, Santa Monica, CA 90404, USA
| | - Shashaanka Ashili
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| |
Collapse
|
11
|
Jia H, Zhang H, Miao F, Lu D, Wang X, Gong L, Fan Y. CSF Biopsy in Glioma: A Brief Review. Methods Mol Biol 2023; 2695:121-126. [PMID: 37450115 DOI: 10.1007/978-1-0716-3346-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Glioma is the most common intracranial malignant tumor. Over the past several years, liquid biopsy in diagnosis and treatment of solid tumors have made many progressions, but there is still a gap from a large clinical application of liquid biopsy in glioma due to many limitations. However, in recent years, researchers have made many explorations into liquid biopsy in glioma. In the future, the liquid biopsy of glioma, especially cerebrospinal fluid, will have a broad prospect. In this review, we will discuss the current research progressions of CSF biopsy in glioma in recent years.
Collapse
Affiliation(s)
- Heng Jia
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Hui Zhang
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Faan Miao
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Dong Lu
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Xingqi Wang
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Liang Gong
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Yuechao Fan
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| |
Collapse
|
12
|
Tretyakova MS, Menyailo ME, Schegoleva AA, Bokova UA, Larionova IV, Denisov EV. Technologies for Viable Circulating Tumor Cell Isolation. Int J Mol Sci 2022; 23:ijms232415979. [PMID: 36555625 PMCID: PMC9788311 DOI: 10.3390/ijms232415979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The spread of tumor cells throughout the body by traveling through the bloodstream is a critical step in metastasis, which continues to be the main cause of cancer-related death. The detection and analysis of circulating tumor cells (CTCs) is important for understanding the biology of metastasis and the development of antimetastatic therapy. However, the isolation of CTCs is challenging due to their high heterogeneity and low representation in the bloodstream. Different isolation methods have been suggested, but most of them lead to CTC damage. However, viable CTCs are an effective source for developing preclinical models to perform drug screening and model the metastatic cascade. In this review, we summarize the available literature on methods for isolating viable CTCs based on different properties of cells. Particular attention is paid to the importance of in vitro and in vivo models obtained from CTCs. Finally, we emphasize the current limitations in CTC isolation and suggest potential solutions to overcome them.
Collapse
Affiliation(s)
- Maria S. Tretyakova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Maxim E. Menyailo
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Anastasia A. Schegoleva
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Ustinia A. Bokova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Irina V. Larionova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Evgeny V. Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Correspondence: ; Tel./Fax: +7-3822-282676 (ext. 3375)
| |
Collapse
|
13
|
Functional Precision Oncology: The Next Frontier to Improve Glioblastoma Outcome? Int J Mol Sci 2022; 23:ijms23158637. [PMID: 35955765 PMCID: PMC9369403 DOI: 10.3390/ijms23158637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma remains the most malignant and intrinsically resistant brain tumour in adults. Despite intensive research over the past few decades, through which numerous potentially druggable targets have been identified, virtually all clinical trials of the past 20 years have failed to improve the outcome for the vast majority of GBM patients. The observation that small subgroups of patients displayed a therapeutic response across several unsuccessful clinical trials suggests that the GBM patient population probably consists of multiple subgroups that probably all require a distinct therapeutic approach. Due to extensive inter- and intratumoral heterogeneity, assigning the right therapy to each patient remains a major challenge. Classically, bulk genetic profiling would be used to identify suitable therapies, although the success of this approach remains limited due to tumor heterogeneity and the absence of direct relationships between mutations and therapy responses in GBM. An attractive novel strategy aims at implementing methods for functional precision oncology, which refers to the evaluation of treatment efficacies and vulnerabilities of (ex vivo) living tumor cells in a highly personalized way. Such approaches are currently being implemented for other cancer types by providing rapid, translatable information to guide patient-tailored therapeutic selections. In this review, we discuss the current state of the art of transforming technologies, tools and challenges for functional precision oncology and how these could improve therapy selection for GBM patients.
Collapse
|
14
|
Cell-free plasma microRNAs that identify patients with glioblastoma. J Transl Med 2022; 102:711-721. [PMID: 35013528 DOI: 10.1038/s41374-021-00720-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/01/2021] [Accepted: 12/12/2021] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma (GBM) is still one of the most commonly diagnosed advanced stage primary brain tumors. Current treatments for patients with primary GBM (pGBM) are often not effective and a significant proportion of the patients with pGBM recur. The effective treatment options for recurrent GBM (rGBM) are limited and survival outcomes are poor. This retrospective multicenter pilot study aims to determine potential cell-free microRNAs (cfmiRs) that identify patients with pGBM and rGBM tumors. 2,083 miRs were assessed using the HTG miRNA whole transcriptome assay (WTA). CfmiRs detection was compared in pre-operative plasma samples from patients with pGBM (n = 32) and rGBM (n = 13) to control plasma samples from normal healthy donors (n = 73). 265 cfmiRs were found differentially expressed in plasma samples from pGBM patients compared to normal healthy donors (FDR < 0.05). Of those 193 miRs were also detected in pGBM tumor tissues (n = 15). Additionally, we found 179 cfmiRs differentially expressed in rGBM, of which 68 cfmiRs were commonly differentially expressed in pGBM. Using Random Forest algorithm, specific cfmiR classifiers were found in the plasma of pGBM, rGBM, and both pGBM and rGBM combined. Two common cfmiR classifiers, miR-3180-3p and miR-5739, were found in all the comparisons. In receiving operating characteristic (ROC) curves analysis for rGBM miR-3180-3p showed a specificity of 87.7% and a sensitivity of 100% (AUC = 98.5%); while miR-5739 had a specificity of 79.5% and sensitivity of 92.3% (AUC = 90.2%). This study demonstrated that plasma samples from pGBM and rGBM patients have specific miR signatures. CfmiR-3180-3p and cfmiR-5739 have potential utility in diagnosing patients with pGBM and rGBM tumors using a minimally invasive blood assay.
Collapse
|
15
|
Wadden J, Ravi K, John V, Babila CM, Koschmann C. Cell-Free Tumor DNA (cf-tDNA) Liquid Biopsy: Current Methods and Use in Brain Tumor Immunotherapy. Front Immunol 2022; 13:882452. [PMID: 35464472 PMCID: PMC9018987 DOI: 10.3389/fimmu.2022.882452] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022] Open
Abstract
Gliomas are tumors derived from mutations in glial brain cells. Gliomas cause significant morbidity and mortality and development of precision diagnostics and novel targeted immunotherapies are critically important. Radiographic imaging is the most common technique to diagnose and track response to treatment, but is an imperfect tool. Imaging does not provide molecular information, which is becoming critically important for identifying targeted immunotherapies and monitoring tumor evolution. Furthermore, immunotherapy induced inflammation can masquerade as tumor progression in images (pseudoprogression) and confound clinical decision making. More recently, circulating cell free tumor DNA (cf-tDNA) has been investigated as a promising biomarker for minimally invasive glioma diagnosis and disease monitoring. cf-tDNA is shed by gliomas into surrounding biofluids (e.g. cerebrospinal fluid and plasma) and, if precisely quantified, might provide a quantitative measure of tumor burden to help resolve pseudoprogression. cf-tDNA can also identify tumor genetic mutations to help guide targeted therapies. However, due to low concentrations of cf-tDNA, recovery and analysis remains challenging. Plasma cf-tDNA typically represents <1% of total cf-DNA due to the blood-brain barrier, limiting their usefulness in practice and motivating the development and use of highly sensitive and specific detection methods. This mini review summarizes the current and future trends of various approaches for cf-tDNA detection and analysis, including new methods that promise more rapid, lower-cost, and accessible diagnostics. We also review the most recent clinical case studies for longitudinal disease monitoring and highlight focus areas, such as novel accurate detection methodologies, as critical research priorities to enable translation to clinic.
Collapse
Affiliation(s)
- Jack Wadden
- Department of Pediatric Hematology and Oncology, Michigan Medicine, Ann Arbor, MI, United States
| | | | | | | | - Carl Koschmann
- Department of Pediatric Hematology and Oncology, Michigan Medicine, Ann Arbor, MI, United States
| |
Collapse
|
16
|
Bonosi L, Ferini G, Giammalva GR, Benigno UE, Porzio M, Giovannini EA, Musso S, Gerardi RM, Brunasso L, Costanzo R, Paolini F, Graziano F, Scalia G, Umana GE, Di Bonaventura R, Sturiale CL, Iacopino DG, Maugeri R. Liquid Biopsy in Diagnosis and Prognosis of High-Grade Gliomas; State-of-the-Art and Literature Review. Life (Basel) 2022; 12:life12030407. [PMID: 35330158 PMCID: PMC8950809 DOI: 10.3390/life12030407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/31/2022] Open
Abstract
Gliomas, particularly high-grade gliomas, represent the most common and aggressive tumors of the CNS and are still burdened by high mortality and a very poor prognosis, regardless of the type of therapy. Their diagnosis and monitoring rely on imaging techniques and direct biopsy of the pathological tissue; however, both procedures have inherent limitations. To address these limitations, liquid biopsies have been proposed in this field. They could represent an innovative tool that could help clinicians in the early diagnosis, monitoring, and prognosis of these tumors. Furthermore, the rapid development of next-generation sequencing (NGS) technologies has led to a significant reduction in sequencing cost, with improved accuracy, providing a molecular profile of cancer and leading to better survival results and less disease burden. This paper focuses on the current clinical application of liquid biopsy in the early diagnosis and prognosis of cancer, introduces NGS-related methods, reviews recent progress, and summarizes challenges and future perspectives.
Collapse
Affiliation(s)
- Lapo Bonosi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
- Correspondence: ; Tel.: +39-0916554656
| | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia srl, 95125 Catania, Italy;
| | - Giuseppe Roberto Giammalva
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Umberto Emanuele Benigno
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Massimiliano Porzio
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Evier Andrea Giovannini
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Sofia Musso
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Rosa Maria Gerardi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Lara Brunasso
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Roberta Costanzo
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Federica Paolini
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Francesca Graziano
- Unit of Neurosurgery, Garibaldi Hospital, 95124 Catania, Italy; (F.G.); (G.S.)
| | - Gianluca Scalia
- Unit of Neurosurgery, Garibaldi Hospital, 95124 Catania, Italy; (F.G.); (G.S.)
| | - Giuseppe Emmanuele Umana
- Trauma Center, Gamma Knife Center, Department of Neurosurgery, Cannizzaro Hospital, 95125 Catania, Italy;
| | - Rina Di Bonaventura
- Department of Neurosurgery, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.D.B.); (C.L.S.)
| | - Carmelo Lucio Sturiale
- Department of Neurosurgery, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.D.B.); (C.L.S.)
| | - Domenico Gerardo Iacopino
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| | - Rosario Maugeri
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (U.E.B.); (M.P.); (E.A.G.); (S.M.); (R.M.G.); (L.B.); (R.C.); (F.P.); (D.G.I.); (R.M.)
| |
Collapse
|
17
|
Beeghly GF, Amofa KY, Fischbach C, Kumar S. Regulation of Tumor Invasion by the Physical Microenvironment: Lessons from Breast and Brain Cancer. Annu Rev Biomed Eng 2022; 24:29-59. [PMID: 35119915 DOI: 10.1146/annurev-bioeng-110220-115419] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The success of anticancer therapies is often limited by heterogeneity within and between tumors. While much attention has been devoted to understanding the intrinsic molecular diversity of tumor cells, the surrounding tissue microenvironment is also highly complex and coevolves with tumor cells to drive clinical outcomes. Here, we propose that diverse types of solid tumors share common physical motifs that change in time and space, serving as universal regulators of malignancy. We use breast cancer and glioblastoma as instructive examples and highlight how invasion in both diseases is driven by the appropriation of structural guidance cues, contact-dependent heterotypic interactions with stromal cells, and elevated interstitial fluid pressure and flow. We discuss how engineering strategies show increasing value for measuring and modeling these physical properties for mechanistic studies. Moreover, engineered systems offer great promise for developing and testing novel therapies that improve patient prognosis by normalizing the physical tumor microenvironment. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Garrett F Beeghly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Kwasi Y Amofa
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; .,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA; .,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, USA
| | - Sanjay Kumar
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; .,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
18
|
Jansen JA, Omuro A, Lucca LE. T cell dysfunction in glioblastoma: a barrier and an opportunity for the development of successful immunotherapies. Curr Opin Neurol 2021; 34:827-833. [PMID: 34569985 PMCID: PMC8595795 DOI: 10.1097/wco.0000000000000988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Immunotherapies such as immune checkpoint blockade have revolutionized cancer treatment, but current approaches have failed to improve outcomes in glioblastoma and other brain tumours. T cell dysfunction has emerged as one of the major barriers for the development of central nervous system (CNS)-directed immunotherapy. Here, we explore the unique requirements that T cells must fulfil to ensure immune surveillance in the CNS, and we analyse T cell dysfunction in glioblastoma (GBM) through the prism of CNS-resident immune responses. RECENT FINDINGS Using comprehensive and unbiased techniques such as single-cell RNA sequencing, multiple studies have dissected the transcriptional state of CNS-resident T cells that patrol the homeostatic brain. A similar approach has revealed that in GBM, tumour-infiltrating T cells lack the hallmarks of antigen-driven exhaustion typical of melanoma and other solid tumours, suggesting the need for better presentation of tumour-derived antigens. Consistently, in a mouse model of GBM, increasing lymphatic drainage to the cervical lymph node was sufficient to promote tumour rejection. SUMMARY For the success of future immunotherapy strategies, further work needs to explore the natural history of dysfunction in GBM tumour-infiltrating T cells, establish whether these originate from CNS-resident T cells and how they can be manipulated therapeutically.
Collapse
Affiliation(s)
- Josephina A. Jansen
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, USA
| | | | - Liliana E. Lucca
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, USA
| |
Collapse
|