1
|
Guerini AE, Buglione M, Nici S, Riga S, Pegurri L, Mataj E, Farina D, Ravanelli M, Rondi P, Cossali G, Tomasini D, Triggiani L, Facheris G, Spiazzi L, Magrini SM. Adaptive radiotherapy for oropharyngeal cancer with daily adapt-to-shape workflow on 1.5 T MRI-linac: Preliminary outcomes and comparison with helical tomotherapy. Clin Transl Radiat Oncol 2025; 53:100950. [PMID: 40231325 PMCID: PMC11995038 DOI: 10.1016/j.ctro.2025.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/13/2025] [Accepted: 03/15/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction MR-linac could offer several advantages for radical radiochemotherapy (RCHT) in oropharyngeal squamous cell carcinoma (OPSCC) patients. Currently, only a few case series have been published and no comparison with other techniques have been performed. Methods Data of 34 consecutive patients treated from September 2022 to May 2024 at a single Institution with RCHT on Unity® MR-linac for OPSCC with daily adaptive radiotherapy (RT) according to the adapt-to-shape (ATS) workflow were prospectively analyzed. A comparative cohort of 34 patients with similar characteristics treated with helical treatment on Radixact® was retrieved. Results Characteristics were well balanced across the two groups. Maximal toxicity grade ≥2 rate was borderline higher at RT end in MRI-linac group (p 0.049), but lower one month after RT (76.5 % vs 91.2 %; p = 0.257).Non-significantly lower rates of grade ≥2 xerostomia and dysgeusia were reported in Unity® group one and three months after RT. Higher rates of hospitalizations were reported in Radixact group at 20 fractions and at RT end (64.1 % vs 35.3 %; p = 0.015). Mean Karnofsky performance status (KPS) was higher in Unity group three months after RT (87.67 vs 83.87; p = 0.038).After a median follow up of 361.5 days, local complete response was reported for 93.6 % of patients treated with Unity® and 96.8 % of patients treated with Radixact®. Conclusions Results of this analysis support the feasibility of an ATS MR-linac workflow for RCHT in OPSCC. Compared with tomotherapy, treatment with Unity® resulted in significantly lower rates of hospitalization and higher KPS three months after RT. Grade 2 xerostomia and dysgeusia rates were non-significantly lower in Unity group. Optimal results in terms of local control were reported for both techniques.
Collapse
Affiliation(s)
- Andrea Emanuele Guerini
- Department of Radiation Oncology, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Michela Buglione
- Department of Radiation Oncology, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25123 Brescia, Italy
- Centro per lo Studio della Radioterapia guidata dalle Immagini e dai Biomarkers (BIO-RT) – Dipartimento di Specialità Medico-Chirurgiche, Scienze Radiologiche e Sanità Pubblica – University of Brescia, Italy
| | - Stefania Nici
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
| | - Stefano Riga
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
| | - Ludovica Pegurri
- Department of Radiation Oncology, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Eneida Mataj
- Department of Radiation Oncology, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Davide Farina
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Marco Ravanelli
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Paolo Rondi
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Gianluca Cossali
- Department of Radiation Oncology, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Davide Tomasini
- Department of Radiation Oncology, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Luca Triggiani
- Department of Radiation Oncology, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Giorgio Facheris
- Department of Radiation Oncology, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Luigi Spiazzi
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
- Centro per lo Studio della Radioterapia guidata dalle Immagini e dai Biomarkers (BIO-RT) – Dipartimento di Specialità Medico-Chirurgiche, Scienze Radiologiche e Sanità Pubblica – University of Brescia, Italy
| | - Stefano Maria Magrini
- Department of Radiation Oncology, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25123 Brescia, Italy
- Centro per lo Studio della Radioterapia guidata dalle Immagini e dai Biomarkers (BIO-RT) – Dipartimento di Specialità Medico-Chirurgiche, Scienze Radiologiche e Sanità Pubblica – University of Brescia, Italy
| |
Collapse
|
2
|
Mishra A, San Valentin EMD, Barcena AJR, Bolinas DKM, Bernardino MR, Canlas G, Ricks KA, Damasco JA, Melancon MP. Antibody-Targeted Bismuth Gadolinium Nanoconjugate for Image-Guided Radiotherapy of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15097-15108. [PMID: 40026156 DOI: 10.1021/acsami.4c21949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Hepatocellular carcinoma (HCC), one of the most lethal cancers of the liver, has limited treatment options at advanced stages. Here, bismuth gadolinium (BiGd) nanoparticles (NPs) conjugated with anti-vascular endothelial growth factor antibody (aVEGF) are designed and tested for targeted image-guided radiation therapy against HCC. The BiGd NPs are synthesized using the sol-gel technique, functionalized with silica NPs, and labeled with fluorescent protamine-rhodamine B. For tumor targeting, the NPs are conjugated with aVEGF, and an in vitro study confirms the binding of the aVEGF-BiGd nanoconjugate to McA-RH7777 hepatoma cells. Biocompatibility of the aVEGF-BiGd nanoconjugate is evaluated using McA-RH7777 cells, with no cytotoxicity observed even at 250 μg/mL. Also, aVEGF-BiGd demonstrates in vivo microcomputed tomography contrast enhancement. NPs and/or radiation therapy (RT) is conducted in female BALB/c nude mice with subcutaneously implanted McA-RH7777 cells, and a significant reduction in tumor size is observed in the mice treated with the aVEGF-BiGd nanoconjugate and RT compared to other groups (p < 0.01). The combined effect of nanoconjugate and RT exhibits decreased vascularity, cell proliferation, and increased apoptosis. This study demonstrates the potential of the developed hybrid BiGd nanoconjugate for targeted and image-guided radiotherapy of HCC.
Collapse
Affiliation(s)
- Archana Mishra
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Erin Marie D San Valentin
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Allan John R Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Dominic Karl M Bolinas
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Marvin R Bernardino
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Gino Canlas
- Department of Chemistry, Lamar University, Beaumont, Texas 77710, United States
| | - Kaitlin A Ricks
- Department of Chemistry, Lamar University, Beaumont, Texas 77710, United States
| | - Jossana A Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Marites P Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas 77030, United States
| |
Collapse
|
3
|
Visak J, Liao C, Zhong X, Wang B, Domal S, Wang H, Maniscalco A, Pompos A, Nyguen D, Parsons D, Godley A, Lu W, Jiang S, Moon D, Sher D, Lin M. Assessing population-based to personalized planning strategies for head and neck adaptive radiotherapy. J Appl Clin Med Phys 2025; 26:e14576. [PMID: 39626092 PMCID: PMC11905247 DOI: 10.1002/acm2.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/14/2024] [Accepted: 11/05/2024] [Indexed: 03/14/2025] Open
Abstract
PURPOSE Optimal head-and-neck cancer (HNC) treatment planning requires accurate and feasible planning goals to meet dosimetric constraints and generate robust online adaptive treatment plans. A new x-ray-based adaptive radiotherapy (ART) treatment planning system (TPS) version 2.0 emulator includes novel methods to drive the planning process including the revised intelligent optimization engine algorithm (IOE2). HNC is among the most challenging and complex sites and heavily depends on planner skill and experience to successfully generate a reference plan. Therefore, we evaluate the new TPS performance via conventionally accepted planning strategies with/without artificial intelligence (AI) and knowledge-based planning (KBP). METHODS Our institution has a pre-clinical release of the Varian Ethos2.0 TPS emulator which includes several changes that may affect current planning strategies. Twenty definitive and post-operative HNC patients were retrospectively selected with a two or three-level simultaneous integrated boost (SIB) dosing scheme. Patients were replanned in the emulator using population-based, KBP-guided with/without human intervention and AI-guided planning goals. These planning strategies were compared both dosimetrically and for plan deliverability. RESULTS All strategies generally demonstrated acceptable plan quality with KBP- and AI-guided goals offering enhanced dosimetric sparing in organs-at-risk (OAR). The average contralateral parotid gland mean dose was 20.0 ± 6.1 Gy (p < 0.001) for population-based and 15.0 ± 6.1 Gy (p = n.s.) for KBP-with human intervention versus 15.1 ± 7.4 Gy for clinical plans. Target coverage, minimum dose, and plan hotspot were acceptable in all cases. KBP-enabled strategy demonstrated higher modulation and faster optimization time than both population-based and AI-guided strategies. CONCLUSION Simply entering population, automatic KBP-enabled or AI-generated planning goals into the new Ethos2.0 TPS produced dosimetrically compliant plans, with AI-guided goals demonstrating the most OAR sparing. Several of these approaches are easy to translate to other treatment sites and will help lower the barrier to entry for x-ray-based online-ART.
Collapse
Affiliation(s)
- Justin Visak
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Medical Artificial Intelligence and Automation LaboratoryDepartment of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Chien‐Yi Liao
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Medical Artificial Intelligence and Automation LaboratoryDepartment of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Xinran Zhong
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Biling Wang
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Sean Domal
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Hui‐Ju Wang
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Medical Artificial Intelligence and Automation LaboratoryDepartment of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Austen Maniscalco
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Medical Artificial Intelligence and Automation LaboratoryDepartment of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Arnold Pompos
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Dan Nyguen
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Medical Artificial Intelligence and Automation LaboratoryDepartment of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - David Parsons
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Andrew Godley
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Medical Artificial Intelligence and Automation LaboratoryDepartment of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Weiguo Lu
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Steve Jiang
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Medical Artificial Intelligence and Automation LaboratoryDepartment of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Dominic Moon
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - David Sher
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Medical Artificial Intelligence and Automation LaboratoryDepartment of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Mu‐Han Lin
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Medical Artificial Intelligence and Automation LaboratoryDepartment of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
4
|
Boeke S, Habrich J, Kübler S, Boldt J, Schick F, Nikolaou K, Kübler J, Gani C, Niyazi M, Zips D, Thorwarth D. Longitudinal assessment of diffusion-weighted imaging during magnetic resonance-guided radiotherapy in head and neck cancer. Radiat Oncol 2025; 20:15. [PMID: 39881423 PMCID: PMC11780986 DOI: 10.1186/s13014-025-02589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND For radiotherapy of head and neck cancer (HNC) magnetic resonance imaging (MRI) plays a pivotal role due to its high soft tissue contrast. Moreover, it offers the potential to acquire functional information through diffusion weighted imaging (DWI) with the potential to personalize treatment. The aim of this study was to acquire repetitive DWI during the course of online adaptive radiotherapy on an 1.5 T MR-linear accelerator (MR-Linac) for HNC patients and to investigate temporal changes of apparent diffusion coefficient (ADC) values of the tumor and subvolume levels. METHODS 27 patients treated with curative RT on the 1.5 T MR-Linac with at least weekly DWI in treatment position were included into this prospective analysis and divided in four risk groups (HPV-status and localisation). Tumor and lymph node volumes (GTV-P/GTV-N) were delineated on b = 500 s/mm2 images while ADC maps were calculated using b = 150/200 and 500 s/mm2 images. Absolute and relative temporal changes of mean ADC values, tumor volumes and a high-risk subvolume (HRS) defined by low ADC tumor voxels (600 < ADC < 900 × 10-6 mm2/s) were analyzed. Relative changes of mean ADC values, tumor volumes and HRS were statistically tested using Wilcoxon-signed-rank test. RESULTS Median pretreatment ADC value for all patients resulted in 1167 × 10-6 mm2/s for GTV-P and 1002 × 10-6 mm2/s for GTV-N while absolute pretreatment tumor volume yielded 9.1 cm3 for GTV-P and 6.0 cm3 for GTV-N, respectively. Pretreatment HRS volumes were 1.5 cm3 for GTV-P and 1.3 cm3 for GTV-P and GTV-N. Median ADC values increase during 35 fractions of RT was 49% for GTV-P and 24% for GTV-N during RT. Median tumor volume decrease was 68% and 52% for GTV-P and GTV-N with a median HRS decrease of 93% and 87%. Significant differences from 0 for mean ADC were observed starting from week 1, for tumor volumes from week 2 for GTV-P and week 1 for GTV-N and for HRS in week 1 for GTV-P and week 2 for GTV-N. CONCLUSION Longitudinal DWI acquisition in HNC is feasible on a MR-Linac during the course of online adaptive MR-guided radiotherapy. Changes in ADC and volumes can be assessed, but future work needs to explore the potential for biologically guided treatment individualization. TRIAL REGISTRATION NCT04172753, actual study start: 09.05.2018.
Collapse
Affiliation(s)
- Simon Boeke
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas Habrich
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany.
| | - Sarah Kübler
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Jessica Boldt
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Fritz Schick
- Section for Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Jens Kübler
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Charité Clinic for Radiation Oncology and Radiation Therapy - University Medicine Berlin, Berlin, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Muti G, Felisi MMJ, Monti AF, Carsana C, Pellegrini R, Salmeri E, Palazzi M, Colombo PE. Proof of concept of fully automated adaptive workflow for head and neck radiotherapy treatments with a conventional linear accelerator. Front Oncol 2025; 15:1382537. [PMID: 39917170 PMCID: PMC11799547 DOI: 10.3389/fonc.2025.1382537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 01/03/2025] [Indexed: 02/09/2025] Open
Abstract
Introduction The objective of this study is to evaluate the performance of an automatic workflow for head-and-neck (H&N) radiotherapy using a multi-atlas based auto-contouring software and an a-priori multicriteria plan optimization algorithm and implement an adaptive online approach with CBCT images. Two different modalities are investigated, the fluence-to-position (FTP) and the adapt-to-shape (ATS) approach. Materials and methods Nine patients are used for the multi-atlas database. The organs at risk (OARs) of the H&N district and five additional structures (air, fat, tissue, bone and patient's exterior) subsequently used for the creation of the synthetic CT are auto-contoured with the Elekta ADMIRE® software. The mCycle algorithm is used for the a-priori multicriteria plan calculation. A total of twenty H&N patients are selected for this step. The automatic plans are compared to manual VMAT plans by assessing differences in planning time, dose delivered to targets and OARs, and calculating the plan quality indexes (PQIs). Two patients are chosen for the retrospective CBCT adaptive online feasibility analysis. To assess the differences for the two adaptive modalities, the clinical goals for targets and OARs and the number of passed constraints are explored. An analysis of the timing for the different steps is carried out to assess its clinical applicability. Result The dice of the five HU layer structures range between 0.66 and 0.99. The mCycle auto-planning significantly reduces planning time, from 2 hours to 10 minutes. The radiotherapist deems all plans clinically acceptable, and in the majority of cases the automatic plan is the preference choice. The automatic plans enhance OARs sparing and preserve a good target coverage, this is also confirmed by the PQIs result. Comparing FTP and ATS modes in adaptive radiotherapy, ATS exhibits superior outcomes, mostly in the target coverage. In the FTP techniques target coverage is inadequate and statistically different from the accepted values. In the ATS the results align with the initial approved values. Using the ATS mode the planning time takes around 14 minutes and approximately 20 minutes for the entire treatment. Conclusion This study contributes to the advancement of automatic and adaptive radiotherapy, demonstrating the potential of an automated workflow in H&N treatments.
Collapse
Affiliation(s)
- Gaia Muti
- Medical Physics Department, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano (ASST GOM) Niguarda, Milano, Italy
| | - Marco M. J. Felisi
- Medical Physics Department, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano (ASST GOM) Niguarda, Milano, Italy
| | - Angelo F. Monti
- Medical Physics Department, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano (ASST GOM) Niguarda, Milano, Italy
| | - Chiara Carsana
- Radioteraphy Department, ASST GOM Niguarda, Milano, Italy
| | | | | | - Mauro Palazzi
- Radioteraphy Department, ASST GOM Niguarda, Milano, Italy
| | - Paola E. Colombo
- Medical Physics Department, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano (ASST GOM) Niguarda, Milano, Italy
| |
Collapse
|
6
|
Mastella E, Calderoni F, Manco L, Ferioli M, Medoro S, Turra A, Giganti M, Stefanelli A. A systematic review of the role of artificial intelligence in automating computed tomography-based adaptive radiotherapy for head and neck cancer. Phys Imaging Radiat Oncol 2025; 33:100731. [PMID: 40026912 PMCID: PMC11871500 DOI: 10.1016/j.phro.2025.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/10/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose Adaptive radiotherapy (ART) may improve treatment quality by monitoring variations in patient anatomy and incorporating them into the treatment plan. This systematic review investigated the role of artificial intelligence (AI) in computed tomography (CT)-based ART for head and neck (H&N) cancer. Methods A comprehensive search of main electronic databases was conducted until April 2024. Titles and abstracts were reviewed to evaluate the compliance with inclusion criteria: CT-based imaging for photon ART of H&N patients and AI applications. 17 original retrospective studies with samples sizes ranging from 37 to 239 patients were included. The quality of the studies was evaluated with the Quality Assessment of Diagnostic Accuracy Studies-2 and the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) tools. Key metrics were examined to evaluate the performances of the proposed AI-methods. Results Overall, the risk of bias was low. The average CLAIM score was 70%. A major finding was that generated synthetic CTs improved similarity metrics with planning CT compared to original cone-beam CTs, with average mean absolute error up to 39 HU and maximum improvement of 80%. Auto-segmentation provided an efficient and accurate option for organ-at-risk delineation, with average Dice similarity coefficient ranging from 80 to 87%. Finally, AI models could be trained using clinical and radiomic features to predict the effectiveness of ART with accuracy above 80%. Conclusions Automation of processes in ART for H&N cancer is very promising throughout the entire chain, from the generation of synthetic CTs and auto-segmentation to predict the effectiveness of ART.
Collapse
Affiliation(s)
- Edoardo Mastella
- Medical Physics Unit, University Hospital of Ferrara I-44124 Cona, Ferrara, Italy
| | - Francesca Calderoni
- Medical Physics Unit, University Hospital of Ferrara I-44124 Cona, Ferrara, Italy
| | - Luigi Manco
- Medical Physics Unit, University Hospital of Ferrara I-44124 Cona, Ferrara, Italy
- Medical Physics Unit, Azienda USL di Ferrara I-44121 Ferrara, Italy
| | - Martina Ferioli
- Radiation Oncology Unit, University Hospital of Ferrara I-44124 Cona, Ferrara, Italy
| | - Serena Medoro
- Radiation Oncology Unit, University Hospital of Ferrara I-44124 Cona, Ferrara, Italy
| | - Alessandro Turra
- Medical Physics Unit, University Hospital of Ferrara I-44124 Cona, Ferrara, Italy
| | - Melchiore Giganti
- University Radiology Unit, University of Ferrara I-44121 Ferrara, Italy
| | - Antonio Stefanelli
- Radiation Oncology Unit, University Hospital of Ferrara I-44124 Cona, Ferrara, Italy
| |
Collapse
|
7
|
Morgenthaler J, Trommer M, Khor R, Wada M, Bahig H, Garden AS, Thai A, Gan H, Fokas E, Ping Ng S. Can we safely de-escalate HPV + oropharyngeal cancers? - A review of current practices and novel approaches. Oral Oncol 2024; 159:107089. [PMID: 39509801 DOI: 10.1016/j.oraloncology.2024.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Oropharyngeal carcinomas linked to high-risk types of human papillomavirus (HPV+OPC) as a distinct tumor entity, have a better prognosis than HPV-OPC. Current treatment approaches do not differentiate between HPV-positive and negative disease, but ongoing studies are exploring de-escalation strategies, aiming to reduce therapy-related morbidity and improve patient quality of life, particularly focusing on reducing late effects from radiotherapy.We performed a literature search for both published and ongoing clinical trials and critically discussed the presented concepts and results. Those include reduction in radiotherapy dose or volume, omission or modification of concomitant chemotherapy/immunotherapy, usage of induction chemotherapy and utilization of advanced molecular and imaging biomarkers and radiomics for selected subgroups of HPV+OPC patients. While promising data have been reported from various Phase II trials, evidence from Phase III de-escalation trials has failed to demonstrate improved outcomes. Therefore, further data and an improved risk stratification are required before de-escalated radiation treatments can be recommended outside of clinical trials.The review aims to outline current de-escalation strategies and future possibilities for enhancing patient outcomes in HPV+OPC.
Collapse
Affiliation(s)
- Janis Morgenthaler
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, Australia; Department of Radiation Oncology, Cyberknife and Radiotherapy, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Maike Trommer
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, Australia; Department of Radiation Oncology, Cyberknife and Radiotherapy, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Richard Khor
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, Australia
| | - Morikatsu Wada
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, Australia
| | - Houda Bahig
- Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Adam S Garden
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Alesha Thai
- Department of Medical Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, Victoria, Australia
| | - Hui Gan
- Department of Medical Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, Victoria, Australia
| | - Emmanouil Fokas
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, Australia
| |
Collapse
|
8
|
Cotterill J, Flynn S, Thomas R, Subiel A, Lee N, Homer M, Palmans H, De Marzi L, Prezado Y, Shipley D, Lourenço A. Challenges for the Implementation of Primary Standard Dosimetry in Proton Minibeam Radiation Therapy. Cancers (Basel) 2024; 16:4013. [PMID: 39682199 DOI: 10.3390/cancers16234013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Spatial fractionation of proton fields as sub-millimeter beamlets to treat cancer has shown better sparing of healthy tissue whilst maintaining the same tumor control. It is critical to ensure primary standard dosimetry is accurate and ready to support the modality's clinical implementation. Methods: This work provided a proof-of-concept, using the National Physical Laboratory's Primary Standard Proton Calorimeter (PSPC) to measure average absorbed dose-to-water in a pMBRT field. A 100 MeV mono-energetic field and a 2 cm wide SOBP were produced with a spot-scanned proton beam incident on a collimator comprising 15 slits of 400 µm width, each 5 cm long and separated by a center-to-center distance of 4 mm. Results: The results showed the uncertainty on the absorbed dose-to-water in the mono-energetic beam was dominated by contributions of 1.4% and 1.1% (k = 1) for the NPL PSPC and PTW Roos chambers, respectively, originating from the achievable positioning accuracy of the devices. In comparison, the uncertainty due to positioning in the SOBP for both the NPL PSPC and PTW Roos chambers were 0.4%. Conclusions: These results highlight that it may be more accurate and reliable to perform reference dosimetry measuring the Dose-Area Product or in an SOBP for spatially fractionated fields.
Collapse
Affiliation(s)
- John Cotterill
- Radiotherapy and Radiation Dosimetry, National Physical Laboratory, Teddington TW11 0LW, UK
| | - Samuel Flynn
- Radiotherapy and Radiation Dosimetry, National Physical Laboratory, Teddington TW11 0LW, UK
- Particle Physics Group, School of Physics and Astronomy, University of Birmingham, Edgbaston B15 2TT, UK
| | - Russell Thomas
- Radiotherapy and Radiation Dosimetry, National Physical Laboratory, Teddington TW11 0LW, UK
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Anna Subiel
- Radiotherapy and Radiation Dosimetry, National Physical Laboratory, Teddington TW11 0LW, UK
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Nigel Lee
- Radiotherapy and Radiation Dosimetry, National Physical Laboratory, Teddington TW11 0LW, UK
| | - Michael Homer
- Radiotherapy and Radiation Dosimetry, National Physical Laboratory, Teddington TW11 0LW, UK
| | - Hugo Palmans
- Radiotherapy and Radiation Dosimetry, National Physical Laboratory, Teddington TW11 0LW, UK
- Medical Physics Group, MedAustron Ion Therapy Center, A-2700 Wiener Neustadt, Austria
| | - Ludovic De Marzi
- Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), Institut Curie, Université Paris-Saclay, Inserm U1288, 91898 Orsay, France
- Radiation Oncology Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Yolanda Prezado
- New Approaches in Radiotherapy Lab, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
- Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, 15702 Santiago de Compostela, A Coruña, Spain
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - David Shipley
- Radiotherapy and Radiation Dosimetry, National Physical Laboratory, Teddington TW11 0LW, UK
| | - Ana Lourenço
- Radiotherapy and Radiation Dosimetry, National Physical Laboratory, Teddington TW11 0LW, UK
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| |
Collapse
|
9
|
De Pietro S, Di Martino G, Caroprese M, Barillaro A, Cocozza S, Pacelli R, Cuocolo R, Ugga L, Briganti F, Brunetti A, Conson M, Elefante A. The role of MRI in radiotherapy planning: a narrative review "from head to toe". Insights Imaging 2024; 15:255. [PMID: 39441404 PMCID: PMC11499544 DOI: 10.1186/s13244-024-01799-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024] Open
Abstract
Over the last few years, radiation therapy (RT) techniques have evolved very rapidly, with the aim of conforming high-dose volume tightly to a target. Although to date CT is still considered the imaging modality for target delineation, it has some known limited capabilities in properly identifying pathologic processes occurring, for instance, in soft tissues. This limitation, along with other advantages such as dose reduction, can be overcome using magnetic resonance imaging (MRI), which is increasingly being recognized as a useful tool in RT clinical practice. This review has a two-fold aim of providing a basic introduction to the physics of MRI in a narrative way and illustrating the current knowledge on its application "from head to toe" (i.e., different body sites), in order to highlight the numerous advantages in using MRI to ensure the best therapeutic response. We provided a basic introduction for residents and non-radiologist on the physics of MR and reported evidence of the advantages and future improvements of MRI in planning a tailored radiotherapy treatment "from head to toe". CRITICAL RELEVANCE STATEMENT: This review aims to help understand how MRI has become indispensable, not only to better characterize and evaluate lesions, but also to predict the evolution of the disease and, consequently, to ensure the best therapeutic response. KEY POINTS: MRI is increasingly gaining interest and applications in RT planning. MRI provides high soft tissue contrast resolution and accurate delineation of the target volume. MRI will increasingly become indispensable for characterizing and evaluating lesions, and to predict the evolution of disease.
Collapse
Affiliation(s)
- Simona De Pietro
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Giulia Di Martino
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Mara Caroprese
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Angela Barillaro
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
| | - Roberto Pacelli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesco Briganti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Manuel Conson
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Andrea Elefante
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
10
|
Podobnik G, Ibragimov B, Tappeiner E, Lee C, Kim JS, Mesbah Z, Modzelewski R, Ma Y, Yang F, Rudecki M, Wodziński M, Peterlin P, Strojan P, Vrtovec T. HaN-Seg: The head and neck organ-at-risk CT and MR segmentation challenge. Radiother Oncol 2024; 198:110410. [PMID: 38917883 DOI: 10.1016/j.radonc.2024.110410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND AND PURPOSE To promote the development of auto-segmentation methods for head and neck (HaN) radiation treatment (RT) planning that exploit the information of computed tomography (CT) and magnetic resonance (MR) imaging modalities, we organized HaN-Seg: The Head and Neck Organ-at-Risk CT and MR Segmentation Challenge. MATERIALS AND METHODS The challenge task was to automatically segment 30 organs-at-risk (OARs) of the HaN region in 14 withheld test cases given the availability of 42 publicly available training cases. Each case consisted of one contrast-enhanced CT and one T1-weighted MR image of the HaN region of the same patient, with up to 30 corresponding reference OAR delineation masks. The performance was evaluated in terms of the Dice similarity coefficient (DSC) and 95-percentile Hausdorff distance (HD95), and statistical ranking was applied for each metric by pairwise comparison of the submitted methods using the Wilcoxon signed-rank test. RESULTS While 23 teams registered for the challenge, only seven submitted their methods for the final phase. The top-performing team achieved a DSC of 76.9 % and a HD95 of 3.5 mm. All participating teams utilized architectures based on U-Net, with the winning team leveraging rigid MR to CT registration combined with network entry-level concatenation of both modalities. CONCLUSION This challenge simulated a real-world clinical scenario by providing non-registered MR and CT images with varying fields-of-view and voxel sizes. Remarkably, the top-performing teams achieved segmentation performance surpassing the inter-observer agreement on the same dataset. These results set a benchmark for future research on this publicly available dataset and on paired multi-modal image segmentation in general.
Collapse
Affiliation(s)
- Gašper Podobnik
- University of Ljubljana, Faculty Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia.
| | - Bulat Ibragimov
- University of Ljubljana, Faculty Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia; University of Copenhagen, Department of Computer Science, Universitetsparken 1, Copenhagen 2100, Denmark
| | - Elias Tappeiner
- UMIT Tirol - Private University for Health Sciences and Health Technology, Eduard-Wallnöfer-Zentrum 1, Hall in Tirol 6060, Austria
| | - Chanwoong Lee
- Yonsei University, College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Yonsei Cancer Center, Department of RadiationOncology, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Jin Sung Kim
- Yonsei University, College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Yonsei Cancer Center, Department of RadiationOncology, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea; Oncosoft Inc, 37 Myeongmul-gil, Seodaemun-gu, Seoul 03722, South Korea
| | - Zacharia Mesbah
- Henri Becquerel Cancer Center, 1 Rue d'Amiens, Rouen 76000, France; Siemens Healthineers, 6 Rue du Général Audran, CS20146, Courbevoie 92412, France
| | - Romain Modzelewski
- Henri Becquerel Cancer Center, 1 Rue d'Amiens, Rouen 76000, France; Litis UR 4108, 684 Av. de l'Université, Saint- Étienne-du-Rouvray 76800, France
| | - Yihao Ma
- Guizhou Medical University, School of Biology & Engineering, 9FW8+2P3, Ankang Avenue, Gui'an New Area, Guiyang, Guizhou Province 561113, China
| | - Fan Yang
- Guizhou Medical University, School of Biology & Engineering, 9FW8+2P3, Ankang Avenue, Gui'an New Area, Guiyang, Guizhou Province 561113, China
| | - Mikołaj Rudecki
- AGH University of Kraków, Department of Measurement and Electronicsal, Mickiewicza 30, Kraków 30-059, Poland
| | - Marek Wodziński
- AGH University of Kraków, Department of Measurement and Electronicsal, Mickiewicza 30, Kraków 30-059, Poland; University of Applied Sciences Western Switzerland, Information Systems Institute, Rue de la Plaine 2, Sierre 3960, Switzerland
| | - Primož Peterlin
- Institute of Oncology, Ljubljana, Zaloška cesta 2, Ljubljana 1000, Slovenia
| | - Primož Strojan
- Institute of Oncology, Ljubljana, Zaloška cesta 2, Ljubljana 1000, Slovenia
| | - Tomaž Vrtovec
- University of Ljubljana, Faculty Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia
| |
Collapse
|
11
|
Potkrajcic V, Gani C, Fischer SG, Boeke S, Niyazi M, Thorwarth D, Voigt O, Schneider M, Mönnich D, Kübler S, Boldt J, Hoffmann E, Paulsen F, Mueller AC, Wegener D. Online Adaptive MR-Guided Ultrahypofractionated Radiotherapy of Prostate Cancer on a 1.5 T MR-Linac: Clinical Experience and Prospective Evaluation. Curr Oncol 2024; 31:2679-2688. [PMID: 38785484 PMCID: PMC11120184 DOI: 10.3390/curroncol31050203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
The use of hypofractionated radiotherapy in prostate cancer has been increasingly evaluated, whereas accumulated evidence demonstrates comparable oncologic outcomes and toxicity rates compared to normofractionated radiotherapy. In this prospective study, we evaluate all patients with intermediate-risk prostate cancer treated with ultrahypofractionated (UHF) MRI-guided radiotherapy on a 1.5 T MR-Linac within our department and report on workflow and feasibility, as well as physician-recorded and patient-reported longitudinal toxicity. A total of 23 patients with intermediate-risk prostate cancer treated on the 1.5 T MR-Linac with a dose of 42.7 Gy in seven fractions (seven MV step-and-shoot IMRT) were evaluated within the MRL-01 study (NCT04172753). The duration of each treatment step, choice of workflow (adapt to shape-ATS or adapt to position-ATP) and technical and/or patient-sided treatment failure were recorded for each fraction and patient. Acute and late toxicity were scored according to RTOG and CTC V4.0, as well as the use of patient-reported questionnaires. The median follow-up was 12.4 months. All patients completed the planned treatment. The mean duration of a treatment session was 38.2 min. In total, 165 radiotherapy fractions were delivered. ATS was performed in 150 fractions, 5 fractions were delivered using ATP, and 10 fractions were delivered using both ATS and ATP workflows. Severe acute bother (G3+) regarding IPS-score was reported in five patients (23%) at the end of radiotherapy. However, this tended to normalize and no G3+ IPS-score was observed later at any point during follow-up. Furthermore, no other severe genitourinary (GU) or gastrointestinal (GI) acute or late toxicity was observed. One-year biochemical-free recurrence survival was 100%. We report the excellent feasibility of UHF MR-guided radiotherapy for intermediate-risk prostate cancer patients and acceptable toxicity rates in our preliminary study. Randomized controlled studies with long-term follow-up are warranted to detect possible advantages over current state-of-the-art RT techniques.
Collapse
Affiliation(s)
- Vlatko Potkrajcic
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Stefan Georg Fischer
- Department of Radiation Oncology, Klinikum Esslingen, 73730 Esslingen am Neckar, Germany
| | - Simon Boeke
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Daniela Thorwarth
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Otilia Voigt
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Moritz Schneider
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - David Mönnich
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Sarah Kübler
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Jessica Boldt
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Elgin Hoffmann
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
| | - Arndt-Christian Mueller
- Department of Radiation Oncology and Radiotherapy, RKH-Kliniken Ludwigsburg, 71640 Ludwigsburg, Germany
| | - Daniel Wegener
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tuebingen, Germany
- Department of Radiation Oncology, Alb-Fils Kliniken GmbH, 73035 Goeppingen, Germany
| |
Collapse
|
12
|
Podobnik G, Ibragimov B, Peterlin P, Strojan P, Vrtovec T. vOARiability: Interobserver and intermodality variability analysis in OAR contouring from head and neck CT and MR images. Med Phys 2024; 51:2175-2186. [PMID: 38230752 DOI: 10.1002/mp.16924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/31/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Accurate and consistent contouring of organs-at-risk (OARs) from medical images is a key step of radiotherapy (RT) cancer treatment planning. Most contouring approaches rely on computed tomography (CT) images, but the integration of complementary magnetic resonance (MR) modality is highly recommended, especially from the perspective of OAR contouring, synthetic CT and MR image generation for MR-only RT, and MR-guided RT. Although MR has been recognized as valuable for contouring OARs in the head and neck (HaN) region, the accuracy and consistency of the resulting contours have not been yet objectively evaluated. PURPOSE To analyze the interobserver and intermodality variability in contouring OARs in the HaN region, performed by observers with different level of experience from CT and MR images of the same patients. METHODS In the final cohort of 27 CT and MR images of the same patients, contours of up to 31 OARs were obtained by a radiation oncology resident (junior observer, JO) and a board-certified radiation oncologist (senior observer, SO). The resulting contours were then evaluated in terms of interobserver variability, characterized as the agreement among different observers (JO and SO) when contouring OARs in a selected modality (CT or MR), and intermodality variability, characterized as the agreement among different modalities (CT and MR) when OARs were contoured by a selected observer (JO or SO), both by the Dice coefficient (DC) and 95-percentile Hausdorff distance (HD95 $_{95}$ ). RESULTS The mean (±standard deviation) interobserver variability was 69.0 ± 20.2% and 5.1 ± 4.1 mm, while the mean intermodality variability was 61.6 ± 19.0% and 6.1 ± 4.3 mm in terms of DC and HD95 $_{95}$ , respectively, across all OARs. Statistically significant differences were only found for specific OARs. The performed MR to CT image registration resulted in a mean target registration error of 1.7 ± 0.5 mm, which was considered as valid for the analysis of intermodality variability. CONCLUSIONS The contouring variability was, in general, similar for both image modalities, and experience did not considerably affect the contouring performance. However, the results indicate that an OAR is difficult to contour regardless of whether it is contoured in the CT or MR image, and that observer experience may be an important factor for OARs that are deemed difficult to contour. Several of the differences in the resulting variability can be also attributed to adherence to guidelines, especially for OARs with poor visibility or without distinctive boundaries in either CT or MR images. Although considerable contouring differences were observed for specific OARs, it can be concluded that almost all OARs can be contoured with a similar degree of variability in either the CT or MR modality, which works in favor of MR images from the perspective of MR-only and MR-guided RT.
Collapse
Affiliation(s)
- Gašper Podobnik
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Bulat Ibragimov
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Tomaž Vrtovec
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
13
|
Massachi J, Singer L, Glastonbury C, Scholey J, Singhrao K, Calvin C, Yom SS, Chan JW. Incidental findings and safety events from magnetic resonance imaging simulation for head and neck radiation treatment planning: A single institution experience. Tech Innov Patient Support Radiat Oncol 2024; 29:100228. [PMID: 38179087 PMCID: PMC10765101 DOI: 10.1016/j.tipsro.2023.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Purpose Having dedicated MRI scanners within radiation oncology departments may present unexpected challenges since radiation oncologists and radiation therapists are generally not trained in this modality and there are potential patient safety concerns. This study retrospectively reviews the incidental findings and safety events that were observed at a single institution during introduction of MRI sim for head and neck radiotherapy planning. Methods Consecutive patients from March 1, 2020, to May 31, 2022, who were scheduled for MRI sim after having completed CT simulation for head and neck radiotherapy were included for analysis. Patients first underwent a CT simulation with a thermoplastic mask and in most cases with an intraoral stent. The same setup was then reproduced in the MRI simulator. Safety events were instances where scheduled MRI sims were not completed due to the MRI technologist identifying MRI-incompatible devices or objects at the time of sim. Incidental findings were identified during weekly quality assurance rounds as a joint enterprise of head and neck radiation oncology and neuroradiology. Categorical variables between completed and not completed MRI sims were compared using the Chi-Square test and continuous variables were compared using the Mann-Whitney U test with a p-value of < 0.05 considered to be statistically significant. Results 148 of 169 MRI sims (88 %) were completed as scheduled and 21 (12 %) were not completed (Table 1). Among the 21 aborted MRI sims, the most common reason was due to safety events flagged by the MRI technologist (n = 8, 38 %) because of the presence of metal or a medical device that was not noted at the time of initial screening by the administrative coordinator. Patients who did not complete MRI sim were more likely to be treated for non-squamous head and neck primary tumor (p = 0.016) and were being treated post-operatively (p < 0.001). CT and MRI sim scans each had 17 incidental findings. CT simulation detected 3 cases of new metastases in lungs, which were outside the scan parameters of MRI sim. MRI sim detected one case of dural venous thrombosis and one case of cervical spine epidural abscess, which were not detected by CT simulation. Conclusions Radiation oncology departments with dedicated MRI simulation scanners would benefit from diagnostic radiology review for incidental findings and having therapists with MRI safety credentialing to catch near-miss events.
Collapse
Affiliation(s)
- Jonathan Massachi
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Lisa Singer
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Christine Glastonbury
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica Scholey
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Kamal Singhrao
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Christina Calvin
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Sue S. Yom
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Jason W. Chan
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
McDonald BA, Dal Bello R, Fuller CD, Balermpas P. The Use of MR-Guided Radiation Therapy for Head and Neck Cancer and Recommended Reporting Guidance. Semin Radiat Oncol 2024; 34:69-83. [PMID: 38105096 PMCID: PMC11372437 DOI: 10.1016/j.semradonc.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Although magnetic resonance imaging (MRI) has become standard diagnostic workup for head and neck malignancies and is currently recommended by most radiological societies for pharyngeal and oral carcinomas, its utilization in radiotherapy has been heterogeneous during the last decades. However, few would argue that implementing MRI for annotation of target volumes and organs at risk provides several advantages, so that implementation of the modality for this purpose is widely accepted. Today, the term MR-guidance has received a much broader meaning, including MRI for adaptive treatments, MR-gating and tracking during radiotherapy application, MR-features as biomarkers and finally MR-only workflows. First studies on treatment of head and neck cancer on commercially available dedicated hybrid-platforms (MR-linacs), with distinct common features but also differences amongst them, have also been recently reported, as well as "biological adaptation" based on evaluation of early treatment response via functional MRI-sequences such as diffusion weighted ones. Yet, all of these approaches towards head and neck treatment remain at their infancy, especially when compared to other radiotherapy indications. Moreover, the lack of standardization for reporting MR-guided radiotherapy is a major obstacle both to further progress in the field and to conduct and compare clinical trials. Goals of this article is to present and explain all different aspects of MR-guidance for radiotherapy of head and neck cancer, summarize evidence, as well as possible advantages and challenges of the method and finally provide a comprehensive reporting guidance for use in clinical routine and trials.
Collapse
Affiliation(s)
- Brigid A McDonald
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Clifton D Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Panagiotis Balermpas
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Salzillo TC, Dresner MA, Way A, Wahid KA, McDonald BA, Mulder S, Naser MA, He R, Ding Y, Yoder A, Ahmed S, Corrigan KL, Manzar GS, Andring L, Pinnix C, Stafford RJ, Mohamed ASR, Christodouleas J, Wang J, Fuller CD. Development and implementation of optimized endogenous contrast sequences for delineation in adaptive radiotherapy on a 1.5T MR-linear-accelerator: a prospective R-IDEAL stage 0-2a quantitative/qualitative evaluation of in vivo site-specific quality-assurance using a 3D T2 fat-suppressed platform for head and neck cancer. J Med Imaging (Bellingham) 2023; 10:065501. [PMID: 37937259 PMCID: PMC10627232 DOI: 10.1117/1.jmi.10.6.065501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
Purpose To improve segmentation accuracy in head and neck cancer (HNC) radiotherapy treatment planning for the 1.5T hybrid magnetic resonance imaging/linear accelerator (MR-Linac), three-dimensional (3D), T2-weighted, fat-suppressed magnetic resonance imaging sequences were developed and optimized. Approach After initial testing, spectral attenuated inversion recovery (SPAIR) was chosen as the fat suppression technique. Five candidate SPAIR sequences and a nonsuppressed, T2-weighted sequence were acquired for five HNC patients using a 1.5T MR-Linac. MR physicists identified persistent artifacts in two of the SPAIR sequences, so the remaining three SPAIR sequences were further analyzed. The gross primary tumor volume, metastatic lymph nodes, parotid glands, and pterygoid muscles were delineated using five segmentors. A robust image quality analysis platform was developed to objectively score the SPAIR sequences on the basis of qualitative and quantitative metrics. Results Sequences were analyzed for the signal-to-noise ratio and the contrast-to-noise ratio and compared with fat and muscle, conspicuity, pairwise distance metrics, and segmentor assessments. In this analysis, the nonsuppressed sequence was inferior to each of the SPAIR sequences for the primary tumor, lymph nodes, and parotid glands, but it was superior for the pterygoid muscles. The SPAIR sequence that received the highest combined score among the analysis categories was recommended to Unity MR-Linac users for HNC radiotherapy treatment planning. Conclusions Our study led to two developments: an optimized, 3D, T2-weighted, fat-suppressed sequence that can be disseminated to Unity MR-Linac users and a robust image quality analysis pathway that can be used to objectively score SPAIR sequences and can be customized and generalized to any image quality optimization protocol. Improved segmentation accuracy with the proposed SPAIR sequence will potentially lead to improved treatment outcomes and reduced toxicity for patients by maximizing the target coverage and minimizing the radiation exposure of organs at risk.
Collapse
Affiliation(s)
- Joint Head and Neck Radiotherapy-MRI Development Cooperative
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
- Philips Healthcare, Cleveland, Ohio, United States
- MD Anderson Cancer Center, Radiation Physics, Houston, Texas, United States
- MD Anderson Cancer Center, Imaging Physics, Houston, Texas, United States
- Elekta AB, Stockholm, Sweden
| | - Travis C. Salzillo
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | | | - Ashley Way
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Kareem A. Wahid
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Brigid A. McDonald
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Sam Mulder
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Mohamed A. Naser
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Renjie He
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Yao Ding
- MD Anderson Cancer Center, Radiation Physics, Houston, Texas, United States
| | - Alison Yoder
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Sara Ahmed
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Kelsey L. Corrigan
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Gohar S. Manzar
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Lauren Andring
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Chelsea Pinnix
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - R. Jason Stafford
- MD Anderson Cancer Center, Imaging Physics, Houston, Texas, United States
| | | | | | - Jihong Wang
- MD Anderson Cancer Center, Radiation Physics, Houston, Texas, United States
| | | |
Collapse
|
16
|
Castelli J, Thariat J, Benezery K, Hasbini A, Gery B, Berger A, Liem X, Guihard S, Chapet S, Thureau S, Auberdiac P, Pommier P, Ruffier A, Perrier L, Devillers A, Campillo-Gimenez B, de Crevoisier R. Weekly Adaptive Radiotherapy vs Standard Intensity-Modulated Radiotherapy for Improving Salivary Function in Patients With Head and Neck Cancer: A Phase 3 Randomized Clinical Trial. JAMA Oncol 2023; 9:1056-1064. [PMID: 37261806 PMCID: PMC10236337 DOI: 10.1001/jamaoncol.2023.1352] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/08/2023] [Indexed: 06/02/2023]
Abstract
Importance Xerostomia is a major toxic effect associated with intensity-modulated radiotherapy (IMRT) for oropharyngeal cancers. Objective To assess whether adaptive radiotherapy (ART) improves salivary function compared with IMRT in patients with head and neck cancer. Design, Setting, and Participants This phase 3 randomized clinical trial was conducted in 11 French centers. Patients aged 18 to 75 years with stage III-IVB squamous cell oropharyngeal cancer treated with chemoradiotherapy were enrolled between July 5, 2013, and October 1, 2018. Data were analyzed from November 2021 to May 2022. Interventions The patients were randomly assigned (1:1) to receive standard IMRT (without replanning) or ART (systematic weekly replanning). Main Outcomes and Measures The primary end point was the frequency of xerostomia, measured by stimulating salivary flow with paraffin. Secondary end points included salivary gland excretory function measured using technetium-99m pertechnetate scintigraphy, patient-reported outcomes (Eisbruch xerostomia-specific questionnaire and the MD Anderson Symptom Inventory for Head and Neck Cancer questionnaire), early and late toxic effects, disease control, and overall and cancer-specific survival. Results A total of 132 patients were randomized, and after 1 exclusion in the ART arm, 131 were analyzed: 66 in the ART arm (mean [SD] age at inclusion, 60 [8] years; 57 [86.4%] male) and 65 in the standard IMRT arm (mean [SD] age at inclusion, 60 [8] years; 57 [87.7%] male). The median follow-up was 26.4 months (IQR, 1.2-31.3 months). The mean (SD) salivary flow (paraffin) at 12 months was 630 (450) mg/min in the ART arm and 584 (464) mg/min in the standard arm (P = .64). The mean (SD) excretory function of the parotid gland at 12 months, measured by scintigraphy, improved in the ART arm (48% [17%]) compared with the standard arm (41% [17%]) (P = .02). The 2-year-overall survival was 76.9% (95% CI, 64.7%-85.4%) in both arms. Conclusions and Relevance This randomized clinical trial did not demonstrate a benefit of ART in decreasing xerostomia compared with standard IMRT. No significant differences were found in secondary end points except for parotid gland excretory function, as assessed by scintigraphy, or in survival rates. Trial Registration ClinicalTrials.gov Identifier: NCT01874587.
Collapse
Affiliation(s)
- Joël Castelli
- University of Rennes, CLCC Eugène Marquis, Inserm, LTSI–UMR 1099, Rennes, France
| | - Juliette Thariat
- Department of Radiation Oncology, Centre François Baclesse, Laboratoire de Physique Corpusculaire, Normandie Universite, Caen, France
| | - Karen Benezery
- Department of Radiotherapy, Centre Antoine Lacassagne, Nice, France
| | - Ali Hasbini
- Radiotherapy, Clinique Pasteur-Lanroze, Brest, France
| | - Bernard Gery
- Department of Radiation Oncology, Centre François Baclesse, Laboratoire de Physique Corpusculaire, Normandie Universite, Caen, France
| | - Antoine Berger
- Department of Radiotherapy, CHU Poitiers, Poitiers, France
| | - Xavier Liem
- Academic Department of Radiation Oncology and Brachytherapy, Oscar Lambret Center, Lille, France
| | - Sébastien Guihard
- Department of Radiotherapy, Institut de Cancérologie Strasbourg Europe, Strasbourg, France
| | - Sophie Chapet
- Department of Radiotherapy, CHU Tours, Tours, France
| | | | | | - Pascal Pommier
- Department of Radiotherapy, Centre Léon Bérard, Lyon, France
| | | | - Lionel Perrier
- University Lyon, Léon Bérard Cancer Centre, Lyon, France
| | - Anne Devillers
- Department of Nuclear Medicine, Centre Eugène Marquis, Rennes, France
| | | | - Renaud de Crevoisier
- University of Rennes, CLCC Eugène Marquis, Inserm, LTSI–UMR 1099, Rennes, France
| |
Collapse
|
17
|
Zhao Y, Wang H, Yu C, Court LE, Wang X, Wang Q, Pan T, Ding Y, Phan J, Yang J. Compensation cycle consistent generative adversarial networks (Comp-GAN) for synthetic CT generation from MR scans with truncated anatomy. Med Phys 2023; 50:4399-4414. [PMID: 36698291 PMCID: PMC10356747 DOI: 10.1002/mp.16246] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND MR scans used in radiotherapy can be partially truncated due to the limited field of view (FOV), affecting dose calculation accuracy in MR-based radiation treatment planning. PURPOSE We proposed a novel Compensation-cycleGAN (Comp-cycleGAN) by modifying the cycle-consistent generative adversarial network (cycleGAN), to simultaneously create synthetic CT (sCT) images and compensate the missing anatomy from the truncated MR images. METHODS Computed tomography (CT) and T1 MR images with complete anatomy of 79 head-and-neck patients were used for this study. The original MR images were manually cropped 10-25 mm off at the posterior head to simulate clinically truncated MR images. Fifteen patients were randomly chosen for testing and the rest of the patients were used for model training and validation. Both the truncated and original MR images were used in the Comp-cycleGAN training stage, which enables the model to compensate for the missing anatomy by learning the relationship between the truncation and known structures. After the model was trained, sCT images with complete anatomy can be generated by feeding only the truncated MR images into the model. In addition, the external body contours acquired from the CT images with full anatomy could be an optional input for the proposed method to leverage the additional information of the actual body shape for each test patient. The mean absolute error (MAE) of Hounsfield units (HU), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) were calculated between sCT and real CT images to quantify the overall sCT performance. To further evaluate the shape accuracy, we generated the external body contours for sCT and original MR images with full anatomy. The Dice similarity coefficient (DSC) and mean surface distance (MSD) were calculated between the body contours of sCT and original MR images for the truncation region to assess the anatomy compensation accuracy. RESULTS The average MAE, PSNR, and SSIM calculated over test patients were 93.1 HU/91.3 HU, 26.5 dB/27.4 dB, and 0.94/0.94 for the proposed Comp-cycleGAN models trained without/with body-contour information, respectively. These results were comparable with those obtained from the cycleGAN model which is trained and tested on full-anatomy MR images, indicating the high quality of the sCT generated from truncated MR images by the proposed method. Within the truncated region, the mean DSC and MSD were 0.85/0.89 and 1.3/0.7 mm for the proposed Comp-cycleGAN models trained without/with body contour information, demonstrating good performance in compensating the truncated anatomy. CONCLUSIONS We developed a novel Comp-cycleGAN model that can effectively create sCT with complete anatomy compensation from truncated MR images, which could potentially benefit the MRI-based treatment planning.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - He Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Cenji Yu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Laurence E. Court
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Qianxia Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Tinsu Pan
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yao Ding
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack Phan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinzhong Yang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
18
|
La Greca Saint-Esteven A, Dal Bello R, Lapaeva M, Fankhauser L, Pouymayou B, Konukoglu E, Andratschke N, Balermpas P, Guckenberger M, Tanadini-Lang S. Synthetic computed tomography for low-field magnetic resonance-only radiotherapy in head-and-neck cancer using residual vision transformers. Phys Imaging Radiat Oncol 2023; 27:100471. [PMID: 37497191 PMCID: PMC10366636 DOI: 10.1016/j.phro.2023.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/28/2023] Open
Abstract
Background and purpose Synthetic computed tomography (sCT) scans are necessary for dose calculation in magnetic resonance (MR)-only radiotherapy. While deep learning (DL) has shown remarkable performance in generating sCT scans from MR images, research has predominantly focused on high-field MR images. This study presents the first implementation of a DL model for sCT generation in head-and-neck (HN) cancer using low-field MR images. Specifically, the use of vision transformers (ViTs) was explored. Materials and methods The dataset consisted of 31 patients, resulting in 196 pairs of deformably-registered computed tomography (dCT) and MR scans. The latter were obtained using a balanced steady-state precession sequence on a 0.35T scanner. Residual ViTs were trained on 2D axial, sagittal, and coronal slices, respectively, and the final sCTs were generated by averaging the models' outputs. Different image similarity metrics, dose volume histogram (DVH) deviations, and gamma analyses were computed on the test set (n = 6). The overlap between auto-contours on sCT scans and manual contours on MR images was evaluated for different organs-at-risk using the Dice score. Results The median [range] value of the test mean absolute error was 57 [37-74] HU. DVH deviations were below 1% for all structures. The median gamma passing rates exceeded 94% in the 2%/2mm analysis (threshold = 90%). The median Dice scores were above 0.7 for all organs-at-risk. Conclusions The clinical applicability of DL-based sCT generation from low-field MR images in HN cancer was proved. High sCT-dCT similarity and dose metric accuracy were achieved, and sCT suitability for organs-at-risk auto-delineation was shown.
Collapse
Affiliation(s)
- Agustina La Greca Saint-Esteven
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Rämistrasse 100, Zurich 8091, Switzerland
- Computer Vision Laboratory, Department of Information Technology and Electrical Engineering, ETH Zurich, Sternwartstrasse 7, Zurich 8092, Switzerland
| | - Ricardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Rämistrasse 100, Zurich 8091, Switzerland
| | - Mariia Lapaeva
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Rämistrasse 100, Zurich 8091, Switzerland
| | - Lisa Fankhauser
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Rämistrasse 100, Zurich 8091, Switzerland
| | - Bertrand Pouymayou
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Rämistrasse 100, Zurich 8091, Switzerland
| | - Ender Konukoglu
- Computer Vision Laboratory, Department of Information Technology and Electrical Engineering, ETH Zurich, Sternwartstrasse 7, Zurich 8092, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Rämistrasse 100, Zurich 8091, Switzerland
| | - Panagiotis Balermpas
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Rämistrasse 100, Zurich 8091, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Rämistrasse 100, Zurich 8091, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Rämistrasse 100, Zurich 8091, Switzerland
| |
Collapse
|
19
|
Almansour H, Schick F, Nachbar M, Afat S, Fritz V, Thorwarth D, Zips D, Bertram F, Müller AC, Nikolaou K, Othman AE, Wegener D. Longitudinal monitoring of Apparent Diffusion Coefficient (ADC) in patients with prostate cancer undergoing MR-guided radiotherapy on an MR-Linac at 1.5 T: a prospective feasibility study. Radiol Oncol 2023; 57:184-190. [PMID: 37341194 DOI: 10.2478/raon-2023-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/30/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Hybrid MRI linear accelerators (MR-Linac) might enable individualized online adaptation of radiotherapy using quantitative MRI sequences as diffusion-weighted imaging (DWI). The purpose of this study was to investigate the dynamics of lesion apparent diffusion coefficient (ADC) in patients with prostate cancer undergoing MR-guided radiation therapy (MRgRT) on a 1.5T MR-Linac. The ADC values at a diagnostic 3T MRI scanner were used as the reference standard. PATIENTS AND AND METHODS In this prospective single-center study, patients with biopsy-confirmed prostate cancer who underwent both an MRI exam at a 3T scanner (MRI3T) and an exam at a 1.5T MR-Linac (MRL) at baseline and during radiotherapy were included. Lesion ADC values were measured by a radiologist and a radiation oncologist on the slice with the largest lesion. ADC values were compared before vs. during radiotherapy (during the second week) on both systems via paired t-tests. Furthermore, Pearson correlation coefficient and inter-reader agreement were computed. RESULTS A total of nine male patients aged 67 ± 6 years [range 60 - 67 years] were included. In seven patients, the cancerous lesion was in the peripheral zone, and in two patients the lesion was in the transition zone. Inter-reader reliability regarding lesion ADC measurement was excellent with an intraclass correlation coefficient of (ICC) > 0.90 both at baseline and during radiotherapy. Thus, the results of the first reader will be reported. In both systems, there was a statistically significant elevation of lesion ADC during radiotherapy (mean MRL-ADC at baseline was 0.97 ± 0.18 × 10-3 mm2/s vs. mean MRL-ADC during radiotherapy 1.38 ± 0.3 × 10-3 mm2/s, yielding a mean lesion ADC elevation of 0.41 ± 0.20 × 10-3 mm2/s, p < 0.001). Mean MRI3T-ADC at baseline was 0.78 ± 0.165 × 10-3 mm2/s vs. mean MRI3T-ADC during radiotherapy 0.99 ± 0.175 × 10-3 mm2/s, yielding a mean lesion ADC elevation of 0.21 ± 0.96 × 10-3 mm2/s p < 0.001). The absolute ADC values from MRL were consistently significantly higher than those from MRI3T at baseline and during radiotherapy (p < = 0.001). However, there was a strong positive correlation between MRL-ADC and MRI3T-ADC at baseline (r = 0.798, p = 0.01) and during radiotherapy (r = 0.863, p = 0.003). CONCLUSIONS Lesion ADC as measured on MRL increased significantly during radiotherapy and ADC measurements of lesions on both systems showed similar dynamics. This indicates that lesion ADC as measured on the MRL may be used as a biomarker for evaluation of treatment response. In contrast, absolute ADC values as calculated by the algorithm of the manufacturer of the MRL showed systematic deviations from values obtained on a diagnostic 3T MRI system. These preliminary findings are promising but need large-scale validation. Once validated, lesion ADC on MRL might be used for real-time assessment of tumor response in patients with prostate cancer undergoing MR-guided radiation therapy.
Collapse
Affiliation(s)
- Haidara Almansour
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, Tuebingen, Germany
| | - Fritz Schick
- Section for Experimental Radiology, Department of Radiology, Eberhard-Karls University, Tuebingen, Germany
| | - Marcel Nachbar
- Department of Radiation Oncology, Charité University Medicine Berlin, Berlin, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, Eberhard-Karls University, Tuebingen, Germany
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, Tuebingen, Germany
| | - Victor Fritz
- Section for Experimental Radiology, Department of Radiology, Eberhard-Karls University, Tuebingen, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, Eberhard-Karls University, Tuebingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Charité University Medicine Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Eberhard-Karls University, Tuebingen, Germany
| | - Felix Bertram
- Department of Radiation Oncology, Eberhard-Karls University, Tuebingen, Germany
| | - Arndt-Christian Müller
- Department of Radiation Oncology, Eberhard-Karls University, Tuebingen, Germany
- Department of Radiation Oncology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Ahmed E Othman
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, Tuebingen, Germany
- Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
| | - Daniel Wegener
- Department of Radiation Oncology, Eberhard-Karls University, Tuebingen, Germany
| |
Collapse
|
20
|
Ladbury C, Amini A, Schwer A, Liu A, Williams T, Lee P. Clinical Applications of Magnetic Resonance-Guided Radiotherapy: A Narrative Review. Cancers (Basel) 2023; 15:cancers15112916. [PMID: 37296879 DOI: 10.3390/cancers15112916] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Magnetic resonance-guided radiotherapy (MRgRT) represents a promising new image guidance technology for radiation treatment delivery combining an onboard MRI scanner with radiation delivery technology. By enabling real-time low-field or high-field MRI acquisition, it facilitates improved soft tissue delineation, adaptive treatment, and motion management. Now that MRgRT has been available for nearly a decade, research has shown the technology can be used to effectively shrink treatment margins to either decrease toxicity (in breast, prostate cancer, and pancreatic cancer) or facilitate dose-escalation and improved oncologic outcomes (in pancreatic and liver cancer), as well as enabling indications that require clear soft tissue delineation and gating (lung and cardiac ablation). In doing so, the use of MRgRT has the potential to significantly improve the outcomes and quality of life of the patients it treats. The present narrative review aims to describe the rationale for MRgRT, the current and forthcoming state of technology, existing studies, and future directions for the advancement of MRgRT, including associated challenges.
Collapse
Affiliation(s)
- Colton Ladbury
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Arya Amini
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Amanda Schwer
- Department of Radiation Oncology, City of Hope Orange County Lennar Foundation Cancer Center, Irvine, CA 92618, USA
| | - An Liu
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Terence Williams
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Percy Lee
- Department of Radiation Oncology, City of Hope Orange County Lennar Foundation Cancer Center, Irvine, CA 92618, USA
| |
Collapse
|
21
|
Dorsch S, Paul K, Beyer C, Karger CP, Jäkel O, Debus J, Klüter S. Quality assurance and temporal stability of a 1.5 T MRI scanner for MR-guided Photon and Particle Therapy. Z Med Phys 2023:S0939-3889(23)00046-6. [PMID: 37150727 DOI: 10.1016/j.zemedi.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/12/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023]
Abstract
PURPOSE To describe performance measurements, adaptations and time stability over 20 months of a diagnostic MR scanner for integration into MR-guided photon and particle radiotherapy. MATERIAL AND METHODS For realization of MR-guided photon and particle therapy (MRgRT/MRgPT), a 1.5 T MR scanner was installed at the Heidelberg Ion Beam Therapy Center. To integrate MRI into the treatment process, a flat tabletop and dedicated coil holders for flex coils were used, which prevent deformation of the patient external contour and allow for the use of immobilization tools for reproducible positioning. The signal-to-noise ratio (SNR) was compared for the diagnostic and therapy-specific setup using the flat couch top and flexible coils for the a) head & neck and b) abdominal region as well as for different bandwidths and clinical pulse sequences. Additionally, a quality assurance (QA) protocol with monthly measurements of the ACR phantom and measurement of geometric distortions for a large field-of-view (FOV) was implemented to assess the imaging quality parameters of the device over the course of 20 months. RESULTS The SNR measurements showed a decreased SNR for the RT-specific as compared to the diagnostic setup of (a) 26% to 34% and (b) 11% to 33%. No significant bandwidth dependency for this ratio was found. The longitudinal assessment of the image quality parameters with the ACR and distortion phantom confirmed the long-term stability of the MRI device. CONCLUSION A diagnostic MRI was commissioned for use in MR-guided particle therapy. Using a radiotherapy specific setup, a high geometric accuracy and signal homogeneity was obtained after some adaptions and the measured parameters were shown to be stable over a period of 20 months.
Collapse
Affiliation(s)
- Stefan Dorsch
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.
| | - Katharina Paul
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Cedric Beyer
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Oliver Jäkel
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Core center Heidelberg, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sebastian Klüter
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.
| |
Collapse
|
22
|
Delaby N, Barateau A, Chiavassa S, Biston MC, Chartier P, Graulières E, Guinement L, Huger S, Lacornerie T, Millardet-Martin C, Sottiaux A, Caron J, Gensanne D, Pointreau Y, Coutte A, Biau J, Serre AA, Castelli J, Tomsej M, Garcia R, Khamphan C, Badey A. Practical and technical key challenges in head and neck adaptive radiotherapy: The GORTEC point of view. Phys Med 2023; 109:102568. [PMID: 37015168 DOI: 10.1016/j.ejmp.2023.102568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/15/2023] [Accepted: 03/18/2023] [Indexed: 04/05/2023] Open
Abstract
Anatomical variations occur during head and neck (H&N) radiotherapy (RT) treatment. These variations may result in underdosage to the target volume or overdosage to the organ at risk. Replanning during the treatment course can be triggered to overcome this issue. Due to technological, methodological and clinical evolutions, tools for adaptive RT (ART) are becoming increasingly sophisticated. The aim of this paper is to give an overview of the key steps of an H&N ART workflow and tools from the point of view of a group of French-speaking medical physicists and physicians (from GORTEC). Focuses are made on image registration, segmentation, estimation of the delivered dose of the day, workflow and quality assurance for an implementation of H&N offline and online ART. Practical recommendations are given to assist physicians and medical physicists in a clinical workflow.
Collapse
|
23
|
Conrad M, Dal Bello R, van Timmeren JE, Andratschke N, Wilke L, Guckenberger M, Tanadini-Lang S, Balermpas P. Effect of 0.35 T and 1.5 T magnetic fields on superficial dose in MR-guided radiotherapy of laryngeal cancer. Clin Transl Radiat Oncol 2023; 40:100624. [PMID: 37090848 PMCID: PMC10113768 DOI: 10.1016/j.ctro.2023.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Background Treatment of head and neck cancer on linear accelerators with on-board magnetic resonance imaging (MR-linac) might be beneficial to reduce side effects and increase accuracy. For many head and neck cancer patients, dose coverage of the often superficially located planning target volumes (PTVs) is required. This study examines the impact of the electron return effect (ERE) on the surface dose in MR-guided radiotherapy (MRgRT) compared to conventional radiotherapy. Materials and methods For this bicentric dosimetric study, 14 cases of laryngeal carcinomas with PTVs reaching up to the skin surface were included. For each patient, five different plans were compared, two VMAT plans (with and without a 5 mm bolus) and three IMRT MRgRT plans (0.35 T, 1.5 T and 0 T, each without bolus). Dose distributions were also validated with film measurements. Results A similar coverage on the most superficial 3-5 mm of the PTV was achieved in the VMAT plans with bolus and the MRgRT plans for both 0.35 T and 1.5 T. However, coverage on this region was usually not achieved for VMAT without bolus and the 0 T plans. The film measurements on phantoms confirmed the results with the relative error never exceeding the calculated differences between the plans. Conclusion The present study could demonstrate that the ERE for both commercially available MR-linac variants provides sufficient coverage of the superficial tissue layers in MRgRT-plans for laryngeal carcinoma.
Collapse
|
24
|
Bryant JM, Weygand J, Keit E, Cruz-Chamorro R, Sandoval ML, Oraiqat IM, Andreozzi J, Redler G, Latifi K, Feygelman V, Rosenberg SA. Stereotactic Magnetic Resonance-Guided Adaptive and Non-Adaptive Radiotherapy on Combination MR-Linear Accelerators: Current Practice and Future Directions. Cancers (Basel) 2023; 15:2081. [PMID: 37046741 PMCID: PMC10093051 DOI: 10.3390/cancers15072081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Stereotactic body radiotherapy (SBRT) is an effective radiation therapy technique that has allowed for shorter treatment courses, as compared to conventionally dosed radiation therapy. As its name implies, SBRT relies on daily image guidance to ensure that each fraction targets a tumor, instead of healthy tissue. Magnetic resonance imaging (MRI) offers improved soft-tissue visualization, allowing for better tumor and normal tissue delineation. MR-guided RT (MRgRT) has traditionally been defined by the use of offline MRI to aid in defining the RT volumes during the initial planning stages in order to ensure accurate tumor targeting while sparing critical normal tissues. However, the ViewRay MRIdian and Elekta Unity have improved upon and revolutionized the MRgRT by creating a combined MRI and linear accelerator (MRL), allowing MRgRT to incorporate online MRI in RT. MRL-based MR-guided SBRT (MRgSBRT) represents a novel solution to deliver higher doses to larger volumes of gross disease, regardless of the proximity of at-risk organs due to the (1) superior soft-tissue visualization for patient positioning, (2) real-time continuous intrafraction assessment of internal structures, and (3) daily online adaptive replanning. Stereotactic MR-guided adaptive radiation therapy (SMART) has enabled the safe delivery of ablative doses to tumors adjacent to radiosensitive tissues throughout the body. Although it is still a relatively new RT technique, SMART has demonstrated significant opportunities to improve disease control and reduce toxicity. In this review, we included the current clinical applications and the active prospective trials related to SMART. We highlighted the most impactful clinical studies at various tumor sites. In addition, we explored how MRL-based multiparametric MRI could potentially synergize with SMART to significantly change the current treatment paradigm and to improve personalized cancer care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Stephen A. Rosenberg
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.M.B.)
| |
Collapse
|
25
|
Podobnik G, Strojan P, Peterlin P, Ibragimov B, Vrtovec T. HaN-Seg: The head and neck organ-at-risk CT and MR segmentation dataset. Med Phys 2023; 50:1917-1927. [PMID: 36594372 DOI: 10.1002/mp.16197] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/17/2022] [Accepted: 12/07/2022] [Indexed: 01/04/2023] Open
Abstract
PURPOSE For the cancer in the head and neck (HaN), radiotherapy (RT) represents an important treatment modality. Segmentation of organs-at-risk (OARs) is the starting point of RT planning, however, existing approaches are focused on either computed tomography (CT) or magnetic resonance (MR) images, while multimodal segmentation has not been thoroughly explored yet. We present a dataset of CT and MR images of the same patients with curated reference HaN OAR segmentations for an objective evaluation of segmentation methods. ACQUISITION AND VALIDATION METHODS The cohort consists of HaN images of 56 patients that underwent both CT and T1-weighted MR imaging for image-guided RT. For each patient, reference segmentations of up to 30 OARs were obtained by experts performing manual pixel-wise image annotation. By maintaining the distribution of patient age and gender, and annotation type, the patients were randomly split into training Set 1 (42 cases or 75%) and test Set 2 (14 cases or 25%). Baseline auto-segmentation results are also provided by training the publicly available deep nnU-Net architecture on Set 1, and evaluating its performance on Set 2. DATA FORMAT AND USAGE NOTES The data are publicly available through an open-access repository under the name HaN-Seg: The Head and Neck Organ-at-Risk CT & MR Segmentation Dataset. Images and reference segmentations are stored in the NRRD file format, where the OAR filenames correspond to the nomenclature recommended by the American Association of Physicists in Medicine, and OAR and demographics information is stored in separate comma-separated value files. POTENTIAL APPLICATIONS The HaN-Seg: The Head and Neck Organ-at-Risk CT & MR Segmentation Challenge is launched in parallel with the dataset release to promote the development of automated techniques for OAR segmentation in the HaN. Other potential applications include out-of-challenge algorithm development and benchmarking, as well as external validation of the developed algorithms.
Collapse
Affiliation(s)
- Gašper Podobnik
- Faculty Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Bulat Ibragimov
- Faculty Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Tomaž Vrtovec
- Faculty Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
26
|
Ansinelli H, Gay C, Nguyen S, Morrison CM, Robbins JR. Personalized precision radiotherapy and its evolving role for human papillomavirus-positive oropharyngeal cancer. JOURNAL OF THE NATIONAL CANCER CENTER 2023; 3:72-82. [PMID: 39036313 PMCID: PMC11256722 DOI: 10.1016/j.jncc.2022.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/19/2022] [Accepted: 11/30/2022] [Indexed: 12/31/2022] Open
Abstract
Human papilloma virus (HPV)-associated oropharyngeal cancer (OPC) is a unique entity with increased responsiveness to treatment and excellent oncologic outcomes. The purpose of this narrative review is to highlight how an improved prognosis for HPV (+) tumors and an ever-increasing understanding of the risk factors, risk stratification, and areas of potential spread are shaping management options. Additionally, we aim to detail how advances in treatment technology on both the surgical and radiation fronts are facilitating the delivery of increasingly personalized and precise treatments. This review will describe key aspects of recent and currently-ongoing trials investigating the de-escalation and individualization of treatment in this patient cohort, and how they are building a foundation for distinct treatment paradigms for HPV (+) tumors. Further studies into the integration of biomarker-guided treatments combined with clinical trial enrollment will help ensure a future of personalized treatments and improved outcomes, both in terms of oncologic outcomes and toxicity, for patients with HPV (+) OPC.
Collapse
Affiliation(s)
- Hayden Ansinelli
- University of Arizona College of Medicine, Department of Radiation Oncology, Tucson, United States
| | - Chris Gay
- University of Arizona College of Medicine, Department of Radiation Oncology, Tucson, United States
| | - Steven Nguyen
- University of Arizona College of Medicine, Department of Radiation Oncology, Tucson, United States
| | - Christopher M. Morrison
- University of Arizona College of Medicine, Department of Radiation Oncology, Tucson, United States
| | - Jared R. Robbins
- University of Arizona College of Medicine, Department of Radiation Oncology, Tucson, United States
| |
Collapse
|
27
|
Developments in the Surgical Approach to Staging and Resection of Rhabdomyosarcoma. Cancers (Basel) 2023; 15:cancers15020449. [PMID: 36672397 PMCID: PMC9857078 DOI: 10.3390/cancers15020449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Although survival after rhabdosarcoma treatment has improved over the years, one third of patients still develop locoregional relapse. This review aims to highlight developments pertaining to staging and local treatment of specific RMS tumor sites, including head and neck, chest/trunk, bladder-prostate, female genito-urinary, perianal, and extremity sites.
Collapse
|
28
|
Lavigne D, Ng SP, O’Sullivan B, Nguyen-Tan PF, Filion E, Létourneau-Guillon L, Fuller CD, Bahig H. Magnetic Resonance-Guided Radiation Therapy for Head and Neck Cancers. Curr Oncol 2022; 29:8302-8315. [PMID: 36354715 PMCID: PMC9689607 DOI: 10.3390/curroncol29110655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Despite the significant evolution of radiation therapy (RT) techniques in recent years, many patients with head and neck cancer still experience significant toxicities during and after treatments. The increased soft tissue contrast and functional sequences of magnetic resonance imaging (MRI) are particularly attractive in head and neck cancer and have led to the increasing development of magnetic resonance-guided RT (MRgRT). This approach refers to the inclusion of the additional information acquired from a diagnostic or planning MRI in radiation treatment planning, and now extends to online high-quality daily imaging generated by the recently developed MR-Linac. MRgRT holds numerous potentials, including enhanced baseline and planning evaluations, anatomical and functional treatment adaptation, potential for hypofractionation, and multiparametric assessment of response. This article offers a structured review of the current literature on these established and upcoming roles of MRI for patients with head and neck cancer undergoing RT.
Collapse
Affiliation(s)
- Danny Lavigne
- Department of Radiation Oncology, Centre Hospitalier de l’Université de Montréal, University of Montreal, Montreal, QC H2X 3E4, Canada
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer Centre, Austin Health, Melbourne, VI 3084, Australia
| | - Brian O’Sullivan
- Department of Radiation Oncology, Centre Hospitalier de l’Université de Montréal, University of Montreal, Montreal, QC H2X 3E4, Canada
| | - Phuc Felix Nguyen-Tan
- Department of Radiation Oncology, Centre Hospitalier de l’Université de Montréal, University of Montreal, Montreal, QC H2X 3E4, Canada
| | - Edith Filion
- Department of Radiation Oncology, Centre Hospitalier de l’Université de Montréal, University of Montreal, Montreal, QC H2X 3E4, Canada
| | - Laurent Létourneau-Guillon
- Department of Radiology, Centre Hospitalier de l’Université de Montréal, University of Montreal, Montreal, QC H2X 3E4, Canada
| | - Clifton D. Fuller
- Department of Radiation Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Houda Bahig
- Department of Radiation Oncology, Centre Hospitalier de l’Université de Montréal, University of Montreal, Montreal, QC H2X 3E4, Canada
- Correspondence:
| |
Collapse
|
29
|
Gurney-Champion OJ, Landry G, Redalen KR, Thorwarth D. Potential of Deep Learning in Quantitative Magnetic Resonance Imaging for Personalized Radiotherapy. Semin Radiat Oncol 2022; 32:377-388. [DOI: 10.1016/j.semradonc.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Li L, Wang X, Xin X, Fan M, Lu S, Wang W, Yin G. Application report of automatic unlocking baseplate in radiotherapy. J Appl Clin Med Phys 2022; 23:e13778. [PMID: 36094026 PMCID: PMC9588263 DOI: 10.1002/acm2.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose To reduce the potential risk during radiotherapy treatment of patients with head and neck tumors, we improved upon the design of an existing immobilization device by adding a feature to improve patient safety during emergency releases, and we verified its clinical application. Method We designed an improved automatic unlocking baseplate (AUB), and conducted a dosimetry comparison with Solo Align Full Body System (SAFBS, Klarity, China). The dosimetry comparison included dose‐attenuation measurements and results from human simulation. We selected four points for measurement to allow comparison between the SAFBS and our AUB. A simulated human body model was used for CT scanning, whereby the target area and structure and simulated radiotherapy plan were conducted according to the American Academy of Pain Medicine Task Group–119 report (TG‐119), whereby the dose differences were compared. The purpose of the clinical test was to verify the reliability of the AUB system in practical clinical applications. The application tests were conducted in CT simulation (CT‐sim) and treatment rooms. The test included assessments of the stability of the system and the reliability of our device. Results The dose‐attenuation measurements of the two baseplates were as follows: The transmission values with our unlocking system were 0.10% higher at the first point and 0.67% lower at the third. The same dose was obtained at points 2 and 4. In the simulation study, the PTV of the AUB was lower than that of the SAFBS, including 0.39% lower D99 and 0.18% lower D90. Among the organ‐at‐risk doses, the average dose of the AUB in the spinal cord was 0.6% higher than that of the SAFBS, and the average dose in the left and right parotid glands was more than 1.4% lower than that of SAFBS. The clinical test results were applied in treatment room and a CT‐sim room, which show a 100% success rate after being unlocked more than 5000 times. Conclusion The AUB designed for head and neck patients had good functional versatility, the dose distribution met the requirements, and the automatic unlocking function was demonstrated to be stable and reliable.
Collapse
Affiliation(s)
- Lintao Li
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Xianliang Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Xin Xin
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Ming Fan
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Shun Lu
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Wei Wang
- Klrity Medical&Equipment Co. Ltd., Guangzhou, China
| | - Gang Yin
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
31
|
Wegener D, Thome A, Paulsen F, Gani C, Boldt J, Butzer S, Thorwarth D, Moennich D, Nachbar M, Müller AC, Zips D, Boeke S. First Experience and Prospective Evaluation on Feasibility and Acute Toxicity of Online Adaptive Radiotherapy of the Prostate Bed as Salvage Treatment in Patients with Biochemically Recurrent Prostate Cancer on a 1.5T MR-Linac. J Clin Med 2022; 11:jcm11164651. [PMID: 36012885 PMCID: PMC9410121 DOI: 10.3390/jcm11164651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction: Novel MRI-linear accelerator hybrids (MR-Linacs, MRL) promise an optimization of radiotherapy (RT) through daily MRI imaging with enhanced soft tissue contrast and plan adaptation on the anatomy of the day. These features might potentially improve salvage RT of prostate cancer (SRT), where the clinical target volume is confined by the mobile organs at risk (OAR) rectum and bladder. So far, no data exist about the feasibility of the MRL technology for SRT. In this study, we prospectively examined patients treated with SRT on a 1.5 T MRL and report on workflow, feasibility and acute toxicity. Patients and Methods: Sixteen patients were prospectively enrolled within the MRL-01 study (NCT: NCT04172753). All patients were staged and had an indication for SRT after radical prostatectomy according to national guidelines. RT consisted of 66 Gy in 33 fractions or 66.5/70 Gy in 35 fractions in case of a defined high-risk region. On the 1.5 T MRL, daily plan adaption was performed using one of two workflows: adapt to shape (ATS, using contour adaptation and replanning) or adapt to position (ATP, rigid replanning onto the online anatomy with virtual couch shift). Duration of treatment steps, choice of workflow and treatment failure were recorded for each fraction of each patient. Patient-reported questionnaires about patient comfort were evaluated as well as extensive reporting of acute toxicity (patient reported and clinician scored). Results: A total of 524/554 (94.6%) of fractions were successfully treated on the MRL. No patient-sided treatment failures occurred. In total, ATP was chosen in 45.7% and ATS in 54.3% of fractions. In eight cases, ATP was performed on top of the initial ATS workflow. Mean (range) duration of all fractions (on-table time until end of treatment) was 25.1 (17.6–44.8) minutes. Mean duration of the ATP workflow was 20.60 (17.6–25.2) minutes and of the ATS workflow 31.3 (28.2–34.1) minutes. Patient-reported treatment experience questionnaires revealed high rates of tolerability of the treatment procedure. Acute toxicity (RTOG, CTC as well as patient-reported CTC, IPSS and ICIQ) during RT and 3 months after was mild to moderate with a tendency of recovery to baseline levels at 3 months post RT. No G3+ toxicity was scored for any item. Conclusions: In this first report on SRT of prostate cancer patients on a 1.5 T MRL, we could demonstrate the feasibility of both available workflows. Daily MR-guided adaptive SRT of mean 25.1 min per fraction was well tolerated in this pretreated collective, and we report low rates of acute toxicity for this treatment. This study suggests that SRT on a 1.5 T MRL can be performed in clinical routine and it serves as a benchmark for future analyses.
Collapse
Affiliation(s)
- Daniel Wegener
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
- Correspondence:
| | - Alexandra Thome
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Jessica Boldt
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Sarah Butzer
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - David Moennich
- Section for Biomedical Physics, Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Marcel Nachbar
- Section for Biomedical Physics, Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Arndt-Christian Müller
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
- Department of Radiation Oncology, Klinikum Ludwigsburg, 71640 Ludwigsburg, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Radiation Oncology, Charité Berlin, 10117 Berlin, Germany
| | - Simon Boeke
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| |
Collapse
|
32
|
Zijlema SE, Breimer W, Gosselink MWJM, Bruijnen T, Arteaga de Castro CS, Tijssen RHN, Lagendijk JJW, Philippens MEP, van den Berg CAT. A mask-compatible, radiolucent, 8-channel head and neck receive array for MRI-guided radiotherapy treatments and pre-treatment simulation. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6ebd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Immobilization masks are used to prevent patient movement during head and neck (H&N) radiotherapy. Motion restriction is beneficial both during treatment, as well as in the pre-treatment simulation phase, where magnetic resonance imaging (MRI) is often used for target definition. However, the shape and size of the immobilization masks hinder the use of regular, close-fitting MRI receive arrays. In this work, we developed a mask-compatible 8-channel H&N array that consists of a single-channel baseplate, on which the mask can be secured, and a flexible 7-channel anterior element that follows the shape of the mask. The latter uses high impedance coils to achieve its flexibility and radiolucency. A fully-functional prototype was manufactured, its radiolucency was characterized, and the gain in imaging performance with respect to current clinical setups was quantified. Dosimetry measurements showed an overall dose change of −0.3%. Small, local deviations were up to −2.7% but had no clinically significant impact on a full treatment plan, as gamma pass rates (3%/3 mm) only slightly reduced from 97.9% to 97.6% (clinical acceptance criterion: ≥95%). The proposed H&N array improved the imaging performance with respect to three clinical setups. The H&N array more than doubled (+123%) and tripled (+246%) the signal-to-noise ratio with respect to the clinical MRI-simulation and MR-linac setups, respectively. G-factors were also lower with the proposed H&N array. The improved imaging performance resulted in a clearly visible signal-to-noise ratio improvement of clinically used TSE and DWI acquisitions. In conclusion, the 8-channel H&N array improves the imaging performance of MRI-simulation and MR-linac acquisitions, while dosimetry suggests that no clinically significant dose changes are induced.
Collapse
|
33
|
Gros SAA, Santhanam AP, Block AM, Emami B, Lee BH, Joyce C. Retrospective Clinical Evaluation of a Decision-Support Software for Adaptive Radiotherapy of Head and Neck Cancer Patients. Front Oncol 2022; 12:777793. [PMID: 35847951 PMCID: PMC9279735 DOI: 10.3389/fonc.2022.777793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose This study aimed to evaluate the clinical need for an automated decision-support software platform for adaptive radiation therapy (ART) of head and neck cancer (HNC) patients. Methods We tested RTapp (SegAna), a new ART software platform for deciding when a treatment replan is needed, to investigate a set of 27 HNC patients’ data retrospectively. For each fraction, the software estimated key components of ART such as daily dose distribution and cumulative doses received by targets and organs at risk (OARs) from daily 3D imaging in real-time. RTapp also included a prediction algorithm that analyzed dosimetric parameter (DP) trends against user-specified thresholds to proactively trigger adaptive re-planning up to four fractions ahead. The DPs evaluated for ART were based on treatment planning dose constraints. Warning (V95<95%) and adaptation (V95<93%) thresholds were set for PTVs, while OAR adaptation dosimetric endpoints of +10% (DE10) were set for all Dmax and Dmean DPs. Any threshold violation at end of treatment (EOT) triggered a review of the DP trends to determine the threshold-crossing fraction Fx when the violations occurred. The prediction model accuracy was determined as the difference between calculated and predicted DP values with 95% confidence intervals (CI95). Results RTapp was able to address the needs of treatment adaptation. Specifically, we identified 18/27 studies (67%) for violating PTV coverage or parotid Dmean at EOT. Twelve PTVs had V95<95% (mean coverage decrease of −6.8 ± 2.9%) including six flagged for adaptation at median Fx= 6 (range, 1–16). Seventeen parotids were flagged for exceeding Dmean dose constraints with a median increase of +2.60 Gy (range, 0.99–6.31 Gy) at EOT, including nine with DP>DE10. The differences between predicted and calculated PTV V95 and parotid Dmean was up to 7.6% (mean ± CI95, −2.7 ± 4.1%) and 5 Gy (mean ± CI95, 0.3 ± 1.6 Gy), respectively. The most accurate predictions were obtained closest to the threshold-crossing fraction. For parotids, the results showed that Fx ranged between fractions 1 and 23, with a lack of specific trend demonstrating that the need for treatment adaptation may be verified for every fraction. Conclusion Integrated in an ART clinical workflow, RTapp aids in predicting whether specific treatment would require adaptation up to four fractions ahead of time.
Collapse
Affiliation(s)
- Sebastien A. A. Gros
- Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Maywood, IL, United States
- *Correspondence: Sebastien A. A. Gros,
| | - Anand P. Santhanam
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alec M. Block
- Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Maywood, IL, United States
| | - Bahman Emami
- Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Maywood, IL, United States
| | - Brian H. Lee
- Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Maywood, IL, United States
| | - Cara Joyce
- Department of Public Health, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
34
|
Xue C, Yuan J, Zhou Y, Wong OL, Cheung KY, Yu SK. Acquisition repeatability of MRI radiomics features in the head and neck: a dual-3D-sequence multi-scan study. Vis Comput Ind Biomed Art 2022; 5:10. [PMID: 35359245 PMCID: PMC8971276 DOI: 10.1186/s42492-022-00106-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/23/2022] [Indexed: 02/08/2023] Open
Abstract
Radiomics has increasingly been investigated as a potential biomarker in quantitative imaging to facilitate personalized diagnosis and treatment of head and neck cancer (HNC), a group of malignancies associated with high heterogeneity. However, the feature reliability of radiomics is a major obstacle to its broad validity and generality in application to the highly heterogeneous head and neck (HN) tissues. In particular, feature repeatability of radiomics in magnetic resonance imaging (MRI) acquisition, which is considered a crucial confounding factor of radiomics feature reliability, is still sparsely investigated. This study prospectively investigated the acquisition repeatability of 93 MRI radiomics features in ten HN tissues of 15 healthy volunteers, aiming for potential magnetic resonance-guided radiotherapy (MRgRT) treatment of HNC. Each subject underwent four MRI acquisitions with MRgRT treatment position and immobilization using two pulse sequences of 3D T1-weighed turbo spin-echo and 3D T2-weighed turbo spin-echo on a 1.5 T MRI simulator. The repeatability of radiomics feature acquisition was evaluated in terms of the intraclass correlation coefficient (ICC), whereas within-subject acquisition variability was evaluated in terms of the coefficient of variation (CV). The results showed that MRI radiomics features exhibited heterogeneous acquisition variability and uncertainty dependent on feature types, tissues, and pulse sequences. Only a small fraction of features showed excellent acquisition repeatability (ICC > 0.9) and low within-subject variability. Multiple MRI scans improved the accuracy and confidence of the identification of reliable features concerning MRI acquisition compared to simple test-retest repeated scans. This study contributes to the literature on the reliability of radiomics features with respect to MRI acquisition and the selection of reliable radiomics features for use in modeling in future HNC MRgRT applications.
Collapse
Affiliation(s)
- Cindy Xue
- Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Jing Yuan
- Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China.
| | - Yihang Zhou
- Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Oi Lei Wong
- Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Kin Yin Cheung
- Medical Physics Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Siu Ki Yu
- Medical Physics Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| |
Collapse
|
35
|
Dunkerley DAP, Hyer DE, Snyder JE, St-Aubin JJ, Anderson CM, Caster JM, Smith MC, Buatti JM, Yaddanapudi S. Clinical Implementational and Site-Specific Workflows for a 1.5T MR-Linac. J Clin Med 2022; 11:jcm11061662. [PMID: 35329988 PMCID: PMC8954784 DOI: 10.3390/jcm11061662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
MR-guided adaptive radiotherapy (MRgART) provides opportunities to benefit patients through enhanced use of advanced imaging during treatment for many patients with various cancer treatment sites. This novel technology presents many new challenges which vary based on anatomic treatment location, technique, and potential changes of both tumor and normal tissue during treatment. When introducing new treatment sites, considerations regarding appropriate patient selection, treatment planning, immobilization, and plan-adaption criteria must be thoroughly explored to ensure adequate treatments are performed. This paper presents an institution’s experience in developing a MRgART program for a 1.5T MR-linac for the first 234 patients. The paper suggests practical treatment workflows and considerations for treating with MRgART at different anatomical sites, including imaging guidelines, patient immobilization, adaptive workflows, and utilization of bolus.
Collapse
|
36
|
Magnetic Resonance Guided Radiotherapy for Head and Neck Cancers. J Clin Med 2022; 11:jcm11051388. [PMID: 35268479 PMCID: PMC8911481 DOI: 10.3390/jcm11051388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy is an integral component of head/neck squamous cell carcinomas (HNSCCs) treatment, and technological developments including advances in image-guided radiotherapy over the past decades have offered improvements in the technical treatment of these cancers. Integration of magnetic resonance imaging (MRI) into image guidance through the development of MR-guided radiotherapy (MRgRT) offers further potential for refinement of the techniques by which HNSCCs are treated. This article provides an overview of the literature supporting the current use of MRgRT for HNSCC, challenges with its use, and developing research areas.
Collapse
|
37
|
Wahid KA, He R, McDonald BA, Anderson BM, Salzillo T, Mulder S, Wang J, Sharafi CS, McCoy LA, Naser MA, Ahmed S, Sanders KL, Mohamed ASR, Ding Y, Wang J, Hutcheson K, Lai SY, Fuller CD, van Dijk LV. Intensity standardization methods in magnetic resonance imaging of head and neck cancer. Phys Imaging Radiat Oncol 2021; 20:88-93. [PMID: 34849414 PMCID: PMC8607477 DOI: 10.1016/j.phro.2021.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background and Purpose Conventional magnetic resonance imaging (MRI) poses challenges in quantitative analysis because voxel intensity values lack physical meaning. While intensity standardization methods exist, their effects on head and neck MRI have not been investigated. We developed a workflow based on healthy tissue region of interest (ROI) analysis to determine intensity consistency within a patient cohort. Through this workflow, we systematically evaluated intensity standardization methods for MRI of head and neck cancer (HNC) patients. Materials and Methods Two HNC cohorts (30 patients total) were retrospectively analyzed. One cohort was imaged with heterogenous acquisition parameters (HET cohort), whereas the other was imaged with homogenous acquisition parameters (HOM cohort). The standard deviation of cohort-level normalized mean intensity (SD NMIc), a metric of intensity consistency, was calculated across ROIs to determine the effect of five intensity standardization methods on T2-weighted images. For each cohort, a Friedman test followed by a post-hoc Bonferroni-corrected Wilcoxon signed-rank test was conducted to compare SD NMIc among methods. Results Consistency (SD NMIc across ROIs) between unstandardized images was substantially more impaired in the HET cohort (0.29 ± 0.08) than in the HOM cohort (0.15 ± 0.03). Consequently, corrected p-values for intensity standardization methods with lower SD NMIc compared to unstandardized images were significant in the HET cohort (p < 0.05) but not significant in the HOM cohort (p > 0.05). In both cohorts, differences between methods were often minimal and nonsignificant. Conclusions Our findings stress the importance of intensity standardization, either through the utilization of uniform acquisition parameters or specific intensity standardization methods, and the need for testing intensity consistency before performing quantitative analysis of HNC MRI.
Collapse
Affiliation(s)
- Kareem A Wahid
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Renjie He
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brigid A McDonald
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brian M Anderson
- Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Travis Salzillo
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sam Mulder
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jarey Wang
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christina Setareh Sharafi
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lance A McCoy
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mohamed A Naser
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sara Ahmed
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Keith L Sanders
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Abdallah S R Mohamed
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yao Ding
- Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jihong Wang
- Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kate Hutcheson
- Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephen Y Lai
- Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Clifton D Fuller
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisanne V van Dijk
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
38
|
Konnerth D, Eze C, Nierer L, Thum P, Braun J, Niyazi M, Belka C, Corradini S. Novel modified patient immobilisation device with an integrated coil support system for MR-guided online adaptive radiotherapy in the management of brain and head-and-neck tumours. Tech Innov Patient Support Radiat Oncol 2021; 20:35-40. [PMID: 34841095 PMCID: PMC8605429 DOI: 10.1016/j.tipsro.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022] Open
Abstract
Magnetic resonance imaging (MR)-guided online adaptive radiotherapy is a promising technique in the field of radiation oncology providing excellent visualisation of soft-tissues, and allowing for online plan adaptation and tumour tracking. In order to facilitate the accurate dose delivery to the target volume while sparing healthy surrounding normal tissue in the brain or head-and-neck (H&N) region, precise patient immobilisation with good image quality is pertinent. Herein, we present a customised thermoplastic mask holder with an integrated anterior MR receiver coil support system for MR-guided online adaptive radiotherapy in the brain and head-and-neck region. The approved medical product was developed by Innovative Technologie Voelp (IT-V), Innsbruck, Austria. MR image uniformity measurements demonstrated improved image uniformity at the expense of decreased signal-to-noise ratio due to a more defined and larger distance between the anterior receiver coil and the phantom or patient. This integrated coil support system represents a practical solution facilitating stable and reproducible anterior coil placement while maintaining the thermoplastic mask holder functionality, a widely established immobilisation technique.
Collapse
Affiliation(s)
- Dinah Konnerth
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Corresponding author at: Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany.
| | - Chukwuka Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Lukas Nierer
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Patrick Thum
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Juliane Braun
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
39
|
Garcia Schüler HI, Pavic M, Mayinger M, Weitkamp N, Chamberlain M, Reiner C, Linsenmeier C, Balermpas P, Krayenbühl J, Guckenberger M, Baumgartl M, Wilke L, Tanadini-Lang S, Andratschke N. Operating procedures, risk management and challenges during implementation of adaptive and non-adaptive MR-guided radiotherapy: 1-year single-center experience. Radiat Oncol 2021; 16:217. [PMID: 34775998 PMCID: PMC8591958 DOI: 10.1186/s13014-021-01945-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Main purpose was to describe procedures and identify challenges in the implementation process of adaptive and non-adaptive MR-guided radiotherapy (MRgRT), especially new risks in workflow due to the new technique. We herein report the single center experience for the implementation of (MRgRT) and present an overview on our treatment practice. METHODS Descriptive statistics were used to summarize clinical and technical characteristics of treatment and patient characteristics including sites treated between April 2019 and end of March 2020 after ethical approval. A risk analysis was performed to identify risks of the online adaptive workflow. RESULTS A summary of the processes on the MR-Linac including workflows, quality assurance and possible pitfalls is presented. 111 patients with 124 courses were treated during the first year of MR-guided radiotherapy. The most commonly treated site was the abdomen (42% of all treatment courses). 73% of the courses were daily online adapted and a high number of treatment courses (75%) were treated with stereotactic body irradiation. Only 4/382 fractions could not be treated due to a failing online adaptive quality assurance. In the risk analysis for errors, the two risks with the highest risk priority number were both in the contouring category, making it the most critical step in the workflow. CONCLUSION Although challenging, establishment of MRgRT as a routinely used technique at our department was successful for all sites and daily o-ART was feasible from the first day on. However, ongoing research and reports will have to inform us on the optimal indications for MRgRT because careful patient selection is necessary as it continues to be a time-consuming treatment technique with restricted availability. After risk analysis, the most critical workflow category was the contouring process, which resembles the need of experienced staff and safety check paths.
Collapse
Affiliation(s)
- Helena Isabel Garcia Schüler
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland. .,University of Zurich (UZH), Rämistrasse 100, 8091, Zurich, Switzerland.
| | - Matea Pavic
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Michael Mayinger
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Nienke Weitkamp
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Madalyne Chamberlain
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Cäcilia Reiner
- University of Zurich (UZH), Rämistrasse 100, 8091, Zurich, Switzerland.,Department of Diagnostic and Interventional Radiology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Claudia Linsenmeier
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Panagiotis Balermpas
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.,University of Zurich (UZH), Rämistrasse 100, 8091, Zurich, Switzerland
| | - Jerome Krayenbühl
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.,University of Zurich (UZH), Rämistrasse 100, 8091, Zurich, Switzerland
| | - Michael Baumgartl
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Lotte Wilke
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.,University of Zurich (UZH), Rämistrasse 100, 8091, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.,University of Zurich (UZH), Rämistrasse 100, 8091, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich and University Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.,University of Zurich (UZH), Rämistrasse 100, 8091, Zurich, Switzerland
| |
Collapse
|
40
|
MR-Guided Adaptive Radiotherapy for Head and Neck Cancer: Prospective Evaluation of Migration and Anatomical Changes of the Major Salivary Glands. Cancers (Basel) 2021; 13:cancers13215404. [PMID: 34771567 PMCID: PMC8582485 DOI: 10.3390/cancers13215404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/13/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to quantify anatomical changes of parotids and submandibular glands and evaluate potential dosimetric advantages during weekly adaptive MR-guided radiotherapy (MRgRT) for the definitive treatment of head and neck cancer (HNC). The data and plans of 12 patients treated with bilateral intensity-modulated radiotherapy for HNC using MR-linac, with weekly offline adaptations, were prospectively evaluated. The positional and volumetric changes of the salivary glands were analyzed by manual segmentation in weekly MRI images and the dosimetric impact of these anatomical changes on the adapted treatment plans was assessed. The mean volume change in parotid and submandibular gland volume was -31.9% (p < 0.0001) and -29.7% (p < 0.0001) after five weeks, respectively. The volume change was significantly correlated with the cumulative dose for the respective gland at the time of volume measurement. Inter-parotid distance changed by -5.4% (6.5 mm) on average after five weeks (p = 0.0005). The distance became significantly smaller only in the left-right direction. The inter-submandibular gland distance changed by 0.7 mm (p = 0.38). This study demonstrated significant changes in salivary gland volumes and position following daily MR guidance and weekly plan adaptation. Ongoing clinical trials will provide data on the clinical impact of these changes and novel MR-based adaptation strategies.
Collapse
|
41
|
Wegener D, Zips D, Gani C, Boeke S, Nikolaou K, Othman AE, Almansour H, Paulsen F, Müller AC. [Primary treatment of prostate cancer using 1.5 T MR-linear accelerator]. Radiologe 2021; 61:839-845. [PMID: 34297139 PMCID: PMC8410708 DOI: 10.1007/s00117-021-00882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 11/26/2022]
Abstract
Hintergrund Der potenzielle Nutzen des verbesserten Weichteilkontrastes von MR-Sequenzen gegenüber der Computertomographie (CT) für die Radiotherapie des Prostatakarzinoms ist bekannt und führt zu konsistenteren und kleineren Zielvolumina sowie verbesserter Risikoorganschonung. Hybridgeräte aus Magnetresonanztomographie (MRT) und Linearbeschleuniger (MR-Linac) stellen eine neue vielversprechende Erweiterung der radioonkologischen Therapieoptionen dar. Material und Methoden Dieser Artikel gibt eine Übersicht über bisherige Erfahrungen, Indikationen, Vorteile und Herausforderungen für die Radiotherapie des primären Prostatakarzinoms mit dem 1,5-T-MR-Linac. Ergebnisse Alle strahlentherapeutischen Therapieindikationen für das primäre Prostatakarzinom können mit dem 1,5-T-MR-Linac abgedeckt werden. Die potenziellen Vorteile umfassen die tägliche MR-basierte Lagekontrolle in Bestrahlungsposition und die Möglichkeit der täglichen Echtzeitanpassung des Bestrahlungsplans an die aktuelle Anatomie der Beckenorgane (adaptive Strahlentherapie). Zusätzlich werden am 1,5-T-MR-Linac funktionelle MRT-Sequenzen für individuelles Response-Assessment für die Therapieanpassung untersucht. Dadurch soll das therapeutische Fenster weiter optimiert werden. Herausforderungen stellen u. a. die technische Komplexität und die Dauer der Behandlungssitzung dar. Schlussfolgerung Der 1,5-T-MR-Linac erweitert das radioonkologische Spektrum in der Therapie des Prostatakarzinoms und bietet Vorteile durch tagesaktuelle MRT-basierte Zielvolumendefinition und Planadaptation. Weitere klinische Untersuchungen sind notwendig, um die Patienten zu identifizieren, die von der Behandlung am MR-Linac gegenüber anderen strahlentherapeutischen Methoden besonders profitieren.
Collapse
Affiliation(s)
- Daniel Wegener
- Universitätsklinik für Radioonkologie, Universitätsklinikum Tübingen, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland.
| | - Daniel Zips
- Universitätsklinik für Radioonkologie, Universitätsklinikum Tübingen, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | - Cihan Gani
- Universitätsklinik für Radioonkologie, Universitätsklinikum Tübingen, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | - Simon Boeke
- Universitätsklinik für Radioonkologie, Universitätsklinikum Tübingen, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | - Konstantin Nikolaou
- Universitätsklinik für Radiologie, Eberhard Karls Universität Tübingen, Tübingen, Deutschland
| | - Ahmed E Othman
- Universitätsklinik für Radiologie, Eberhard Karls Universität Tübingen, Tübingen, Deutschland
- Universitätsklink für Neuroradiologie, Johannes Gutenberg-Universität Mainz, Mainz, Deutschland
| | - Haidara Almansour
- Universitätsklinik für Radiologie, Eberhard Karls Universität Tübingen, Tübingen, Deutschland
| | - Frank Paulsen
- Universitätsklinik für Radioonkologie, Universitätsklinikum Tübingen, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | | |
Collapse
|