1
|
Dawoud R, Saman H, Rasul K, Jibril F, Sahal A, Al-Okka R, Mahfouz Y, Omar NE, Hamad A, Mohsen R, Kanbour A, Battikh N, Chandra P, Elazzazy S. Real-World Data Presenting the Descriptive Analysis of the Use of Tyrosine Kinase Inhibitors (TKIs) Among Metastatic Non-Small-Cell Lung Cancer (mNSCLC) Patients in Qatar: A Nationwide Retrospective Cohort Study. Clin Med Insights Oncol 2024; 18:11795549241272490. [PMID: 39416762 PMCID: PMC11481063 DOI: 10.1177/11795549241272490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/11/2024] [Indexed: 10/19/2024] Open
Abstract
Background There has been significant improvement in treating metastatic non-small-cell lung cancer (mNSCLC) over the past 2 decades. The aim of this study is to describe the use of tyrosine kinase inhibitors (TKIs) in Qatar. This study focuses on the objective response rate (ORR) and reported adverse drug events (ADEs) of TKIs used for the management of patients with mNSCLC. Methods This is a descriptive retrospective cohort study. All non-small-cell lung cancers (NSCLCs) with epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) mutations who received TKIs between 2015 and 2019 in Qatar were included. The TKIs used during this period include EGFR inhibitors such as afatinib, erlotinib, gefitinib, and osimertinib and ALK inhibitors such as alectinib and crizotinib. The response on each TKI was identified by reporting the ORR (as the sum of the complete response [CR] and the partial response [PR]), in addition stable disease (SD) and disease progression (DP) were reported. While ADEs were reported using the National Cancer Institute's Common Terminology Criteria for Adverse Events (NCI-CTCAE). Results A total of 63 patients were included, of which 36 cases (57.1%) expressed EGFR mutation, and 27 patients (42.9%) expressed ALK rearrangement. The ORR in EGFR inhibitors was as follows: osimertinib 40%, gefitinib 33%, afatinib 22%, and erlotinib 18%. However, the response to the ALK-targeted therapy was 43% with alectinib and 40% with crizotinib. A total of 112 ADEs were reported. They were distributed as 63.4% (71 of 112) with the anti-EGFR and 36.6% (41 of 112) ADEs with the ALK inhibitors. In the anti-EGFR group, the most common types of ADEs were dermatological toxicity 30%, whereas, in the anti-ALK group, gastrointestinal toxicity was the most common (29%). Conclusions The EGFR-targeted and ALK-targeted therapies appear to have acceptable clinical response rate and safety profile in our population. Close and frequent monitoring of adverse events is advised to ensure a good quality of life and prevent serious complications.
Collapse
Affiliation(s)
- Rawan Dawoud
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Harman Saman
- Department of Pulmonary Medicine, Hazm Mebaireek General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Kakil Rasul
- Department of Medical Oncology, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Farah Jibril
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Arwa Sahal
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Randa Al-Okka
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Yaser Mahfouz
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nabil E. Omar
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Anas Hamad
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- College of Pharmacy, QU Health, Qatar University, Qatar
| | - Reyad Mohsen
- Department of Medical Oncology, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Aladdin Kanbour
- Department of Medical Oncology, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Naim Battikh
- Department of Medicine, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Prem Chandra
- Department of Medical Research, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shereen Elazzazy
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- College of Pharmacy, QU Health, Qatar University, Qatar
| |
Collapse
|
2
|
Yoon AR, Lee S, Kim JH, Park Y, Koo T, Yun CO. CRISPR-mediated ablation of TP53 and EGFR mutations enhances gefitinib sensitivity and anti-tumor efficacy in lung cancer. Mol Ther 2024; 32:3618-3628. [PMID: 39066480 PMCID: PMC11489544 DOI: 10.1016/j.ymthe.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/10/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
Multiple pathogenic single-nucleotide polymorphisms (SNPs) have been identified as contributing factors in the aggravation of cancer prognosis and emergence of drug resistance in various cancers. Here, we targeted mutated EGFR and TP53 oncogenes harboring single-nucleotide missense mutations (EGFR-T790M and TP53-R273H) that are associated with gefitinib resistance. Co-delivery of adenine base editor (ABE) and EGFR- and TP53-SNP specific single-guide RNA via adenovirus (Ad) resulted in precise correction of the oncogenic mutations with high accuracy and efficiency in vitro and in vivo. Importantly, compared with a control group treated only with gefitinib, an EGFR inhibitor, co-treatment with Ad/ABE targeting SNPs in TP53 and EGFR in combination with gefitinib increased drug sensitivity and suppressed abnormal tumor growth more efficiently. Taken together, these results indicate that ABE-mediated correction of dual oncogenic SNPs can be an effective strategy for the treatment of drug-resistant cancers.
Collapse
Affiliation(s)
- A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, Republic of Korea
| | - Soyeon Lee
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ju Hee Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Yejin Park
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Taeyoung Koo
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, Republic of Korea; GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Hu S, Ming H, He Q, Ding M, Ding H, Li C. A study of high dose furmonertinib in EGFR exon 20 insertion mutation-positive advanced non-small cell lung cancer. Front Oncol 2024; 14:1314301. [PMID: 38651148 PMCID: PMC11033419 DOI: 10.3389/fonc.2024.1314301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 04/25/2024] Open
Abstract
Background The epidermal growth factor receptor (EGFR) ex20ins mutation, as a rare subtype of mutation, has gradually attracted attention. Its heterogeneity is high, its prognosis is extremely poor, and the efficacy of existing traditional treatment plans is limited. In this study, we aimed to evaluate efficacy of high dose furmonertinib as a first-line treatment for EGFR ex20ins-positive NSCLC. Methods This is a retrospective, multi-center, non-interventional study. From May 2021 to March 2023, 9 NSCLC patients with EGFR ex20ins were enrolled. Efficacy and safety of 160 mg furmonertinib were evaluated. Objective response rate (ORR), disease control rate (DCR), median progression-free survival (PFS) and treatment related adverse events (TRAEs) were assessed. Results Of the evaluated patients, six patients experienced partial remission (PR), two patients experienced stable disease (SD) and one patient experienced progress disease (PD). Data indicated 66.7% ORR and 88.9% DCR. The median progression free survival (PFS) was 7.2 months (95% CI: 6.616 - 7.784). Besides, a longgest PFS with 18 months was found in one patient with p.H773_V774insGTNPH mutation. No ≥ level 3 adverse events have been found. Conclusions The study proved the potential efficacy of 160mg furmonertinib in patients with advanced NSCLC with EGFR ex20ins. Meanwhile, 160mg furmonertinib had a good safety profile.
Collapse
Affiliation(s)
- Song Hu
- Department of Respiratory and Critical Care Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hao Ming
- Department of Respiratory and Critical Care Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qian He
- Department of Respiratory and Critical Care Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ming Ding
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hao Ding
- Division of Respiratory Disease, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Chong Li
- Department of Respiratory and Critical Care Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
4
|
Lu L, Ma D, Xi Z. Coexpression of TP53, BIM, and PTEN Enhances the Therapeutic Efficacy of Non-Small-Cell Lung Cancer. Biomacromolecules 2024; 25:792-808. [PMID: 38237562 DOI: 10.1021/acs.biomac.3c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
For non-small-cell lung cancer (NSCLC), the ubiquitous occurrence of concurrent multiple genomic alterations poses challenges to single-gene therapy. To increase therapeutic efficacy, we used the branch-PCR method to develop a multigene nanovector, NP-TP53-BIM-PTEN, that carried three therapeutic gene expression cassettes for coexpression. NP-TP53-BIM-PTEN exhibited a uniform size of 104.8 ± 24.2 nm and high serum stability. In cell transfection tests, NP-TP53-BIM-PTEN could coexpress TP53, BIM, and PTEN in NCI-H1299 cells and induce cell apoptosis with a ratio of up to 94.9%. Furthermore, NP-TP53-BIM-PTEN also inhibited cell proliferation with a ratio of up to 42%. In a mouse model bearing an NCI-H1299 xenograft tumor, NP-TP53-BIM-PTEN exhibited a stronger inhibitory effect on the NCI-H1299 xenograft tumor than the other test vectors without any detectable side effects. These results exhibited the potential of NP-TP53-BIM-PTEN as an effective and safe multigene nanovector to enhance NSCLC therapy efficacy, which will provide a framework for genome therapy with multigene combinations.
Collapse
Affiliation(s)
- Liqing Lu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dejun Ma
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Loh J, Low JL, Sachdeva M, Low PQ, Wong RSJ, Huang Y, Chia PL, Soo RA. Management of Oncogene Driven Locally Advanced Unresectable Non-small Cell Lung Cancer. Expert Rev Anticancer Ther 2023; 23:913-926. [PMID: 37551698 DOI: 10.1080/14737140.2023.2245140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION The current standard of care of locally advanced non-small cell lung cancer (LA-NSCLC) is concurrent chemoradiation, followed by consolidation durvalumab. However, there is evidence that the efficacy of chemoradiation and also immunotherapy in many oncogene-positive LA-NSCLC are attenuated, and dependent on the subgroup. AREAS COVERED We will firstly review the outcomes of standard-of-care therapy in oncogene-driven LA-NSCLC. We looked at various oncogene driven subgroups and the tumor microenvironment that may explain differential response. Finally, we review the role of targeted therapy in the treatment of LA-NSCLC. EXPERT OPINION Each oncogene-positive subgroup should be treated as its own entity, and continued efforts should be undertaken to incorporate targeted therapy, which is likely to yield superior survival outcomes if trial design can be optimized and toxicities can be managed.
Collapse
Affiliation(s)
- Jerold Loh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Jia Li Low
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Manavi Sachdeva
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Peter Qj Low
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Rachel Su Jen Wong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Yiqing Huang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Puey Ling Chia
- Department of Medical Oncology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| |
Collapse
|
6
|
Zalaquett Z, Catherine Rita Hachem M, Kassis Y, Hachem S, Eid R, Raphael Kourie H, Planchard D. Acquired resistance mechanisms to osimertinib: The constant battle. Cancer Treat Rev 2023; 116:102557. [PMID: 37060646 DOI: 10.1016/j.ctrv.2023.102557] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Detectable driver mutations have now changed the course of lung cancer treatment with the emergence of targeted therapy as a novel strategy that widely improved lung cancer prognosis, especially in metastatic patients. Osimertinib (AZD9291) is an irreversible third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) used to treat stage IV EGFR-mutated non-small-cell lung cancer. It was initially designed to target both EGFR-activating mutations and the EGFR T790M mutation as well, which is the most common resistance mechanism to first- and second-generation EGFR-TKIs. Following the FLAURA trial, osimertinib is now widely used in the first-line setting. However, resistance to osimertinib inevitably develops, with numerous mechanisms leading to its resistance, classified into two main categories: EGFR-dependent and EGFR-independent mechanisms. While EGFR-dependent mechanisms consist mainly of the C797S EGFR mutation, EGFR-independent mechanisms include bypass pathways, oncogenic fusions, and phenotypic transformation, among others. This review summarizes the molecular resistance mechanisms to osimertinib, with the aim of identifying novel therapeutic approaches to overcome osimertinib resistance and improve patient outcome.
Collapse
Affiliation(s)
- Ziad Zalaquett
- Department of Hematology-Oncology, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon.
| | - Maria Catherine Rita Hachem
- Department of Hematology-Oncology, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Yara Kassis
- Department of Hematology-Oncology, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Samir Hachem
- Department of Hematology-Oncology, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Roland Eid
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Hampig Raphael Kourie
- Department of Hematology-Oncology, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - David Planchard
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
7
|
Wang Z, Yan X, Tang P, Tang T, Wang Y, Peng S, Wang S, Lan W, Wang L, Zhang Y, Zhang J, Li K, Shu Z, Xu J, Qin J, Zhang D, Jiang J, Liu Q. Genetic profiling of hormone-sensitive and castration-resistant prostate cancers and identification of genetic mutations prone to castration-resistant prostate cancer. Prostate Cancer Prostatic Dis 2023; 26:180-187. [PMID: 36401126 DOI: 10.1038/s41391-022-00618-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Genetic profiling of patients with prostate cancer could potentially identify mutations prone to castration-resistant prostate cancer (CRPC). Here, we aimed to identify the differences in genetic profiles of patients with hormone-sensitive prostate cancer (HSPC) and CRPC and stratify HSPC patients to identify mutations associated with CRPC progression. METHODS A total of 103 samples were collected, including 62 DNA samples from the tumor tissues of 59 HSPC patients and 41 cell-free DNA (cfDNA) samples from prostate cancer patients at different cancer stages. Targeted sequence was conducted on both the tissue DNA and cfDNA. The associations between mutations and clinical outcomes (CRPC-free time) were analyzed using χ2 test, logistic regression analysis, Kaplan-Meier analysis, and Cox regression analysis. RESULTS By comparing to that of cfDNA sequencing, the results from DNA sequencing of 1-needle (80%) and mixed 12-needle (77.8%) biopsies are highly comparable. FOXA1 (30.5%), CDK12 (23.7%), and TP53 (22.0%) were the top 3 most frequently mutated genes in HSPC patients; 50.8% (30/59) and 44.1% (26/59) HSPC patients had mutations in DDR and HRR pathway, respectively. Mutations in AR and APC as well as the members involved in the regulation of stem cell pluripotency and EMT pathway were often observed in CRPC samples. We established a panel of four genetic mutations (MSH2, CDK12, TP53, and RB1) to predict the risk of CRPC early progression with concordance index = 0.609 and the area under curve of the ROC curve as 0.838. CONCLUSIONS In this study, we demonstrated that the cfDNA can be used in genetic profiling in prostate cancer and our newly established panel is capable of predicting which mHSPC patient has a high risk of early CRPC progression.
Collapse
Affiliation(s)
- Ze Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Xuzhi Yan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Peng Tang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Tang Tang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Yapeng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Song Peng
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Shuo Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Yao Zhang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jun Zhang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Ke Li
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Zehua Shu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jing Xu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PR China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China.
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China.
| |
Collapse
|
8
|
Zhao C, Li J, Zhang Y, Han R, Wang Y, Li L, Zhang Y, Zhu M, Zheng J, Du H, Hu C, Zhou C, Yang N, Cai S, He Y. The rational application of liquid biopsy based on next-generation sequencing in advanced non-small cell lung cancer. Cancer Med 2023; 12:5603-5614. [PMID: 36341686 PMCID: PMC10028052 DOI: 10.1002/cam4.5410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/09/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Plasma and tissue biopsy have both used for targeting actionable driver gene mutations in lung cancer, whose concordance is imperfect. A reliable method to predict the concordance is urgently needed to ease clinical application. METHODS A total of 1012 plasma samples, including 519 with paired-tissue biopsy samples, derived from lung adenocarcinoma patients were retrospectively enrolled. We assessed the associations of several clinicopathological characteristics and serum tumor markers with the concordance between plasma and tissue biopsies. RESULTS When carcinoembryonic antigen (CEA) levels were higher than thresholds of 15.01 ng/ml and 51.15 ng/ml, the positive predictive value of concordance reached 90% and 95%, respectively. When CEA levels were lower than thresholds of 5.19 ng/ml and 3.26 ng/mL, the negative predictive value of concordance reached 45% and 50%. The performance of CYFRA21-1 in predicting concordance was similar but inferior to CEA (AUC: 0.727 vs. 0.741, p = 0.633). The performance of CEA combined with CYFRA21-1 in predicting the concordance was similar to that of the combination of independent factors derived from the LASSO regression model (AUC: 0.796 vs. 0.818, p = 0.067). CEA (r = 0.47, p < 0.01) and CYFRA21-1 levels (r = 0.45, p < 0.05) were significantly correlated with the maximum variant allele frequency, respectively. CONCLUSIONS CEA combined with CYFRA21-1 could effectively predict the concordance between plasma and tissue biopsies, which could be used for evaluating the priority of plasma and tissue biopsies for gene testing to timely guide clinical applications in advanced lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Chenglong Zhao
- Department of Respiratory DiseaseDaping Hospital, Army Medical UniversityChongqingChina
| | - Jianghua Li
- Department of Intensive care unitDaping Hospital, Army Medical UniversityChongqingChina
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal UnitHunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
| | - Rui Han
- Department of Respiratory DiseaseDaping Hospital, Army Medical UniversityChongqingChina
| | - Yubo Wang
- Department of Respiratory DiseaseDaping Hospital, Army Medical UniversityChongqingChina
| | - Li Li
- Department of Respiratory DiseaseDaping Hospital, Army Medical UniversityChongqingChina
| | - Yimin Zhang
- Department of Respiratory DiseaseDaping Hospital, Army Medical UniversityChongqingChina
| | - Mengxiao Zhu
- Department of Respiratory DiseaseDaping Hospital, Army Medical UniversityChongqingChina
| | - Jie Zheng
- Department of Respiratory DiseaseDaping Hospital, Army Medical UniversityChongqingChina
| | | | - Chen Hu
- Department of Respiratory DiseaseDaping Hospital, Army Medical UniversityChongqingChina
| | - Chengzhi Zhou
- Respiratory Medicine Department, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal UnitHunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
| | | | - Yong He
- Department of Respiratory DiseaseDaping Hospital, Army Medical UniversityChongqingChina
| |
Collapse
|
9
|
Li YZ, Kong SN, Liu YP, Yang Y, Zhang HM. Can Liquid Biopsy Based on ctDNA/cfDNA Replace Tissue Biopsy for the Precision Treatment of EGFR-Mutated NSCLC? J Clin Med 2023; 12:jcm12041438. [PMID: 36835972 PMCID: PMC9966257 DOI: 10.3390/jcm12041438] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
More and more clinical trials have explored the role of liquid biopsy in the diagnosis and treatment of EGFR-mutated NSCLC. In certain circumstances, liquid biopsy has unique advantages and offers a new way to detect therapeutic targets, analyze drug resistance mechanisms in advanced patients, and monitor MRD in patients with operable NSCLC. Although its potential cannot be ignored, more evidence is needed to support the transition from the research stage to clinical application. We reviewed the latest progress in research on the efficacy and resistance mechanisms of targeted therapy for advanced NSCLC patients with plasma ctDNA EGFR mutation and the evaluation of MRD based on ctDNA detection in perioperative and follow-up monitoring.
Collapse
|
10
|
Yang Y, Zhang H, Huang S, Chu Q. KRAS Mutations in Solid Tumors: Characteristics, Current Therapeutic Strategy, and Potential Treatment Exploration. J Clin Med 2023; 12:jcm12020709. [PMID: 36675641 PMCID: PMC9861148 DOI: 10.3390/jcm12020709] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Kristen rat sarcoma (KRAS) gene is one of the most common mutated oncogenes in solid tumors. Yet, KRAS inhibitors did not follow suit with the development of targeted therapy, for the structure of KRAS has been considered as being implausible to target for decades. Chemotherapy was the initial recommended therapy for KRAS-mutant cancer patients, which was then replaced by or combined with immunotherapy. KRAS G12C inhibitors became the most recent breakthrough in targeted therapy, with Sotorasib being approved by the Food and Drug Administration (FDA) based on its significant efficacy in multiple clinical studies. However, the subtypes of the KRAS mutations are complex, and the development of inhibitors targeting non-G12C subtypes is still at a relatively early stage. In addition, the monotherapy of KRAS inhibitors has accumulated possible resistance, acquiring the exploration of combination therapies or next-generation KRAS inhibitors. Thus, other non-target, conventional therapies have also been considered as being promising. Here in this review, we went through the characteristics of KRAS mutations in cancer patients, and the prognostic effect that it poses on different therapies and advanced therapeutic strategy, as well as cutting-edge research on the mechanisms of drug resistance, tumor development, and the immune microenvironment.
Collapse
|
11
|
Liu S, Yu J, Zhang H, Liu J. TP53 Co-Mutations in Advanced EGFR-Mutated Non-Small Cell Lung Cancer: Prognosis and Therapeutic Strategy for Cancer Therapy. Front Oncol 2022; 12:860563. [PMID: 35444951 PMCID: PMC9013831 DOI: 10.3389/fonc.2022.860563] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/16/2022] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. As the most prevalent molecular mutation subtypes in non-small cell lung cancer (NSCLC), EGFR-TKIs are currently a standard first-line therapy for targeting the mutated EGFR in advanced NSCLC patients. However, 20-30% of this subset of patients shows primary resistance to EGFR-TKIs. Patients with co-mutations of EGFR and several other genes have a poor response to EGFR-TKIs, whereas the prognostic and predictive significance of EGFR/TP53 co-mutation in NSCLC patients remains controversial. Meanwhile, little is known about how to choose an optimal therapeutic strategy for this subset of patients. Presently, no drugs targeting TP53 mutations are available on the market, and some p53 protein activators are in the early stage of clinical trials. A combination of EGFR-TKIs with antiangiogenic agents or chemotherapy or other agents might be a more appropriate strategy to tackle the problem. In this review, we describe the prognostic and predictive value of EGFR/TP53 co-mutation in NSCLC patients, investigate the mechanisms of this co-mutation affecting the response to EGFR-TKIs, and further explore optimal regimens effectively to prolong the survival time of the NSCLC patients harboring this co-mutation.
Collapse
Affiliation(s)
- Surui Liu
- Department of Oncology, Jinan Central Hospital, Jinan, China.,Department of Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jin Yu
- Department of Oncology, Jinan Central Hospital, Jinan, China
| | - Hui Zhang
- Department of Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Liu
- Department of Oncology, Jinan Central Hospital, Jinan, China
| |
Collapse
|
12
|
Zeng Y, Feng Y, Fu G, Jiang J, Liu X, Pan Y, Hu C, Liu X, Wu F. Acquired Concurrent EGFR T790M and Driver Gene Resistance From EGFR-TKIs Hampered Osimertinib Efficacy in Advanced Lung Adenocarcinoma: Case Reports. Front Pharmacol 2022; 13:838247. [PMID: 35462930 PMCID: PMC9020767 DOI: 10.3389/fphar.2022.838247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/11/2022] [Indexed: 01/04/2023] Open
Abstract
The acquired resistance of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is inevitable and heterogeneous. The strategies to overcome acquired resistance are significant. For patients with secondary T790M-positive after early generation EGFR-TKIs, osimertinib is the standard second-line therapy. In patients resistant to prior early generation EGFR-TKIs, the acquired T790M mutation overlaps with other driver gene resistance, such as HER2-and MET amplification, accounting for 4-8%. The efficacy of osimertinib is unclear in patients with concurrent multiple driver gene resistance. We here report a patient who acquired EGFR T790M, STRN-ALK fusion, and EGFR amplification after gefitinib progression and subsequent MET amplification acquired from osimertinib. The other patient acquired EGFR T790M and MET amplification post-dacomitinib and acquired CCDC6-RET fusion after osimertinib treatment. Besides, subsequent new bypass activations were the possible resistance mechanisms to second-line osimertinib. Both patients had progression-free survival (PFS) less than 4 months and limited benefits from osimertinib second-line therapy. The T790M accompanying driver gene resistance will be a new subtype after EGFR-TKIs progression, needing effective treatment options.
Collapse
Affiliation(s)
- Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuanqing Feng
- Department of Oncology, Xiangtan Central Hospital, Xiangtan, China
| | - Guihua Fu
- Department of Oncology, Xiangtan Central Hospital, Xiangtan, China
| | | | - Xiaohan Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yue Pan
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, China
| | - Xianling Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Testa U, Pelosi E, Castelli G. Molecular charcterization of lung adenocarcinoma combining whole exome sequencing, copy number analysis and gene expression profiling. Expert Rev Mol Diagn 2021; 22:77-100. [PMID: 34894979 DOI: 10.1080/14737159.2022.2017774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Lung cancer is the leading cause of cancer mortality worldwide; lung adenocarcinoma (LUAD) corresponds to about 40% of lung cancers. LUAD is a genetically heterogeneous disease and the definition of this heterogeneity is of fundamental importance for prognosis and treatment. AREAS COVERED Based on primary literature, this review provides an updated analysis of multiomics studies based on the study of mutation profiling, copy number alterations and gene expression allowing for definition of molecular subgroups, prognostic factors based on molecular biomarkers, and identification of therapeutic targets. The authors sum up by providing the reader with their expert opinion on the potentialities of multiomics analysis of LUADs. EXPERT OPINION A detailed and comprehensive study of the co-occurring genetic abnormalities characterizing different LUAD subsets represents a fundamental tool for a better understanding of the disease heterogeneity and for the identification of subgroups of patients responding or resistant to targeted treatments and for the discovery of new therapeutic targets. It is expected that a comprehensive characterization of LUADs may provide a fundamental contribution to improve the survival of LUAD patients.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
14
|
Palacín-Aliana I, García-Romero N, Asensi-Puig A, Carrión-Navarro J, González-Rumayor V, Ayuso-Sacido Á. Clinical Utility of Liquid Biopsy-Based Actionable Mutations Detected via ddPCR. Biomedicines 2021; 9:906. [PMID: 34440110 PMCID: PMC8389639 DOI: 10.3390/biomedicines9080906] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide and remains a major public health challenge. The introduction of more sensitive and powerful technologies has permitted the appearance of new tumor-specific molecular aberrations with a significant cancer management improvement. Therefore, molecular pathology profiling has become fundamental not only to guide tumor diagnosis and prognosis but also to assist with therapeutic decisions in daily practice. Although tumor biopsies continue to be mandatory in cancer diagnosis and classification, several studies have demonstrated that liquid biopsies could be used as a potential tool for the detection of cancer-specific biomarkers. One of the main advantages is that circulating free DNA (cfDNA) provides information about intra-tumoral heterogeneity, reflecting dynamic changes in tumor burden. This minimally invasive tool has become an accurate and reliable instrument for monitoring cancer genetics. However, implementing liquid biopsies across the clinical practice is still ongoing. The main challenge is to detect genomic alterations at low allele fractions. Droplet digital PCR (ddPCR) is a powerful approach that can overcome this issue due to its high sensitivity and specificity. Here we explore the real-world clinical utility of the liquid biopsy ddPCR assays in the most diagnosed cancer subtypes.
Collapse
Affiliation(s)
- Irina Palacín-Aliana
- Atrys Health, 08025 Barcelona, Spain; (I.P.-A.); (A.A.-P.); (V.G.-R.)
- Fundación de Investigación HM Hospitales, HM Hospitales, 28015 Madrid, Spain
- Faculty of Science, Universidad de Alcalá, 28801 Madrid, Spain
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | - Adrià Asensi-Puig
- Atrys Health, 08025 Barcelona, Spain; (I.P.-A.); (A.A.-P.); (V.G.-R.)
| | - Josefa Carrión-Navarro
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | | | - Ángel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| |
Collapse
|