1
|
Chen C, Ma Y, Gao Y, Ge H, Zhang X. Prognostic significance of neutrophil extracellular trap-related genes in childhood acute lymphoblastic leukemia: insights from multi-omics and in vitro experiment. Hematology 2025; 30:2452701. [PMID: 39829399 DOI: 10.1080/16078454.2025.2452701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND This study aimed to develop a prognostic model based on extracellular trap-related genes (NETRGs) for patients with cALL. METHODS Data from the TARGET-ALL-P2 and TARGET-ALL-P3 cohorts in the Genomic Data Commons database, the transcriptome dataset GSE26713, the single-cell transcriptome dataset GSE130116 from the Gene Expression Omnibus database and 306 NETRGs identified were analysed. Differentially expressed genes (DEGs) were identified from GSE26713 and differentially expressed NETRGs (DE-NETRGs) were obtained by overlapping DEGs with NETRGs. Functional analyses were conducted. Key feature genes were identified through univariate and least absolute shrinkage and selection operator (LASSO) regression. Prognostic genes were determined via multivariate Cox regression analysis, followed by the construction and validation of a risk model and nomogram. Additional analyses included immune profiling, drug sensitivity, functional differences, cell-type-specific expression, enrichment analysis and RT-qPCR. RESULTS A total of 1,270 DEGs were identified in GSE26713, of which 74 overlapped with NETRGs. Seven prognostic genes were identified using univariate, LASSO and multivariate Cox regression analyses. Survival analysis revealed lower survival rates in the high-risk group. Independent prognostic analysis identified risk scores and primary diagnosis as independent predictors of prognosis. Immune cell profiling showed significant differences in cell populations such as aDCs, eosinophils and Th2 cells between risk groups. Six cell subtypes were annotated, with prognostic genes predominantly expressed in myeloid cells. RT-qPCR revealed that PTAFR, FCGR2A, RETN and CAT were significantly downregulated, while TLR2 and S100A12 were upregulated in cALL. CONCLUSION TLR2, PTAFR, FCGR2A, RETN, S100A12 and CAT may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Pediatrics, Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan, People's Republic of China
| | - Yu Ma
- Department of Pediatrics, Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan, People's Republic of China
| | - Yadai Gao
- Department of Pediatrics, Yinchuan Women and Children Healthcare Hospital, Yinchuan, People's Republic of China
| | - Huiqing Ge
- Department of Pediatrics, Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan, People's Republic of China
| | - Xiaochun Zhang
- Department of Pediatrics, Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan, People's Republic of China
| |
Collapse
|
2
|
Jin J, Shang Y, Zheng S, Dai L, Tang J, Bian X, He Q. Exosomes as nanostructures deliver miR-204 in alleviation of mitochondrial dysfunction in diabetic nephropathy through suppressing methyltransferase-like 7A-mediated CIDEC N6-methyladenosine methylation. Aging (Albany NY) 2024; 16:3302-3331. [PMID: 38334961 PMCID: PMC10929828 DOI: 10.18632/aging.205535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE The exosomal cargo mainly comprises proteins, lipids, and microRNAs (miRNAs). Among these, miRNAs undertake multiple biological effects of exosomes (Exos). Some stem cell-derived exosomal miRNAs have shown the potential to treat diabetic nephropathy (DN). However, there is little research into the therapeutic effects of adipose-derived stem cell (ADSC)-derived exosomal miRNAs on DN. We aimed to explore the potential of miR-204-modified ADSC-derived Exos to mitigate DN. METHODS Exos were extracted and identified from ADSCs. Histopathological injury, oxidative stress (OS), mitochondrial function, cell viability, and apoptosis were assessed to explore the effects of ADSC-derived Exos on DN. For mechanism exploration, quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to measure miR-204, methyltransferase (METTL3, METTL14, and METTL7A), and CIDEC. Also, CIDEC m6A methylation and miR-204-METTL7A, and METTL7A-CIDEC interactions were determined. RESULTS Initially, OS-induced mitochondrial dysfunction was observed in DN rats. ADSC-derived Exos inhibited histopathological injury, cell apoptosis, OS, and mitochondrial dysfunction in DN rats. The similar therapeutic effects of ADSC-derived Exos were detected in the in vitro model. Intriguingly, miR-204 was released by ADSC-derived Exos and its upregulation enhanced the anti-DN effects of Exos. Mechanically, miR-204 reduced METTL7A expression to CIDEC m6A methylation, thus suppressing OS and mitochondrial dysfunction. CONCLUSIONS ADSC-derived exosomal miR-204 rescued OS-induced mitochondrial dysfunction by inhibiting METTL7A-mediated CIDEC m6A methylation. This study first revealed the significant role of ADSC-derived exosomal miR-204 in DN, paving the way for the development of novel therapeutic strategies to improve the clinical outcomes of DN patients.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Yiwei Shang
- Clinical School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310004, China
| | - Siqiang Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Limiao Dai
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Jiyu Tang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Xueyan Bian
- Department of Nephrology, Ningbo First Hospital, Ningbo, Zhejiang 315010, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| |
Collapse
|
3
|
Sun Y, Jin D, Zhang Z, Ji H, An X, Zhang Y, Yang C, Sun W, Zhang Y, Duan Y, Kang X, Jiang L, Zhao X, Lian F. N6-methyladenosine (m6A) methylation in kidney diseases: Mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194967. [PMID: 37553065 DOI: 10.1016/j.bbagrm.2023.194967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The N6-methyladenosine (m6A) modification is regulated by methylases, commonly referred to as "writers," and demethylases, known as "erasers," leading to a dynamic and reversible process. Changes in m6A levels have been implicated in a wide range of cellular processes, including nuclear RNA export, mRNA metabolism, protein translation, and RNA splicing, establishing a strong correlation with various diseases. Both physiologically and pathologically, m6A methylation plays a critical role in the initiation and progression of kidney disease. The methylation of m6A may also facilitate the early diagnosis and treatment of kidney diseases, according to accumulating research. This review aims to provide a comprehensive overview of the potential role and mechanism of m6A methylation in kidney diseases, as well as its potential application in the treatment of such diseases. There will be a thorough examination of m6A methylation mechanisms, paying particular attention to the interplay between m6A writers, m6A erasers, and m6A readers. Furthermore, this paper will elucidate the interplay between various kidney diseases and m6A methylation, summarize the expression patterns of m6A in pathological kidney tissues, and discuss the potential therapeutic benefits of targeting m6A in the context of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hangyu Ji
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Xu X, Zhao J, Yang M, Han L, Yuan X, Chi W, Jiang J. The emerging roles of N6-methyladenosine RNA modifications in thyroid cancer. Eur J Med Res 2023; 28:475. [PMID: 37915103 PMCID: PMC10621220 DOI: 10.1186/s40001-023-01382-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023] Open
Abstract
Thyroid cancer (TC) is the most predominant malignancy of the endocrine system, with steadily growing occurrence and morbidity worldwide. Although diagnostic and therapeutic methods have been rapidly developed in recent years, the underlying molecular mechanisms in the pathogenesis of TC remain enigmatic. The N6-methyladenosine(m6A) RNA modification is designed to impact RNA metabolism and further gene regulation. This process is intricately regulated by a variety of regulators, such as methylases and demethylases. Aberrant m6A regulators expression is related to the occurrence and development of TC and play an important role in drug resistance. This review comprehensively analyzes the effect of m6A methylation on TC progression and the potential clinical value of m6A regulators as prognostic markers and therapeutic targets in this disease.
Collapse
Affiliation(s)
- Xiaoxin Xu
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Jiayao Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Mingyue Yang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lutuo Han
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Xingxing Yuan
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
- Heilongjiang Academy of Traditional Chinese Medicine Science, No. 33 of West Dazhi Street, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Wencheng Chi
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China.
- Heilongjiang Academy of Traditional Chinese Medicine Science, No. 33 of West Dazhi Street, Harbin, 150001, Heilongjiang, People's Republic of China.
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| | - Jiakang Jiang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China.
- Heilongjiang Academy of Traditional Chinese Medicine Science, No. 33 of West Dazhi Street, Harbin, 150001, Heilongjiang, People's Republic of China.
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
5
|
Hu J, Lin H, Wang C, Su Q, Cao B. METTL14‑mediated RNA methylation in digestive system tumors. Int J Mol Med 2023; 52:86. [PMID: 37539726 PMCID: PMC10555478 DOI: 10.3892/ijmm.2023.5289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
N6‑methyladenosine (m6A) RNA methylation is one of the most common post‑transcriptional modification mechanism in eukaryotes. m6A is involved in almost all stages of the mRNA life cycle, specifically regulating its stability, splicing, export and translation. Methyltransferase‑like 14 (METTL14) is a particularly important m6A methylation 'writer' that can recognize RNA substrates. METTL14 has been documented to improve the activity and catalytic efficiency of METTL3. However, as individual proteins they can also regulate different biological processes. Malignancies in the digestive system are some of the most common malignancies found in humans, which are typically associated with poor prognoses with limited clinical solutions. METTL14‑mediated methylation has been implicated in both the potentiation and inhibition of digestive system tumor growth, cell invasion and metastasis, in addition to drug resistance. In the present review, the research progress and regulatory mechanisms of METTL14‑mediated methylation in digestive system malignancies were summarized. In addition, future research directions and the potential for its clinical application were examined.
Collapse
Affiliation(s)
- Jiexuan Hu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Haishan Lin
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Cong Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Qiang Su
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
6
|
Ji J, Liu S, Liang Y, Zheng G. Comprehensive analysis of m6A regulators and relationship with tumor microenvironment, immunotherapy strategies in colorectal adenocarcinoma. BMC Genom Data 2023; 24:44. [PMID: 37568073 PMCID: PMC10422724 DOI: 10.1186/s12863-023-01149-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND The N6-methyladenosine (m6A) RNA modification is the most prevalent and abundant type found in eukaryotic cells. It plays a crucial role in the initiation and progression of cancers. In this study, we aimed to comprehensively investigate the landscape of m6A regulators and their association with tumor microenvironment (TME), immunotherapeutic strategies in colon adenocarcinoma (COAD). RESULTS The differential expression, mutation, CNV frequency and prognostic value of 27 m6A regulators were systematically analyzed in COAD. Patients were classified into two clusters based on m6A regulators through consistent clustering analysis, with cluster A showing significant survival benefits. Most of the m6A regulators were negatively correlated with immune cells, except for WTAP, IGF2BP3, FTO, ALKBH5, which showed a positive correlation. We developed an m6A scoring system to calculate the m6Ascore for each patient. Patients with a high-m6Ascore had a better outcome, with the AUC of 0.775. An independent cohort of 416 COAD patients acquired from GSE38832 database was used to validate the prognosis prediction ability of m6Ascore. Moreover, the m6Ascore was negatively correlated with infiltration of anti-tumor immune cells. Additionally, patients with a high-m6Ascore responded better to anti-PD1 and anti-CTLA4 therapies, and those with MSI-H had a higher m6Ascore. Finally, we investigated the value of m6Ascore in predicting the response of patients to 15 commonly used drugs. CONCLUSIONS We comprehensively analyzed m6A regulators in COAD, including RNA expression, CNV changes, mutations and their correlation with TME. Our results showed that the m6A scoring system had significant predictive power for the prognosis of COAD patients, potentially leading to new personalized immunotherapy strategies.
Collapse
Affiliation(s)
- Jian Ji
- Department of Clinical Laboratory, Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Shichao Liu
- Department of Clinical Laboratory, Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Department of Clinical Laboratory, Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, People's Republic of China
| | - Yongyuan Liang
- Department of Clinical Laboratory, Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Department of Clinical Laboratory, Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, People's Republic of China
| | - Guixi Zheng
- Department of Clinical Laboratory, Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
7
|
Dong W, Huang Y. Common Genetic Factors and Pathways in Alzheimer's Disease and Ischemic Stroke: Evidences from GWAS. Genes (Basel) 2023; 14:353. [PMID: 36833280 PMCID: PMC9957001 DOI: 10.3390/genes14020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) and ischemic stroke (IS) are common neurological disorders, and the comorbidity of these two brain diseases is often seen. Although AD and IS were regarded as two distinct disease entities, in terms of different etiologies and clinical presentation, recent genome-wide association studies (GWASs) revealed that there were common risk genes between AD and IS, indicating common molecular pathways and their common pathophysiology. In this review, we summarize AD and IS risk single nucleotide polymorphisms (SNPs) and their representative genes from the GWAS Catalog database, and find thirteen common risk genes, but no common risk SNPs. Furthermore, the common molecular pathways associated with these risk gene products are summarized from the GeneCards database and clustered into inflammation and immunity, G protein-coupled receptor, and signal transduction. At least seven of these thirteen genes can be regulated by 23 microRNAs identified from the TargetScan database. Taken together, the imbalance of these molecular pathways may give rise to these two common brain disorders. This review sheds light on the pathogenesis of comorbidity of AD and IS, and provides molecular targets for disease prevention, manipulation, and brain health maintenance.
Collapse
Affiliation(s)
- Wei Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yue Huang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Chen P, Xu J, Cui Z, Wu S, Xie T, Zhang X. Multi-omics analysis of N6-methyladenosine reader IGF2BP3 as a promising biomarker in pan-cancer. Front Immunol 2023; 14:1071675. [PMID: 36761737 PMCID: PMC9905439 DOI: 10.3389/fimmu.2023.1071675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Background Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) has been reported to exhibit an oncogenic effect as an RNA-binding protein (RBP) by promoting tumor cell proliferation, migration and invasion in several tumor types. However, a pan-cancer analysis of IGF2BP3 is not currently available, and the exact roles of IGF2BP3 in prognosis and immunology in cancer patients remain enigmatic. The main aim of this study was to provide visualization of the systemic prognostic landscape of IGF2BP3 in pan-cancer and to uncover the potential relationship between IGF2BP3 expression in the tumor microenvironment and immune infiltration profile. Methods Raw data on IGF2BP3 expression were obtained from GTEx, CCLE, TCGA, and HPA data portals. We have investigated the expression patterns, diagnostic and prognostic significance, mutation landscapes, functional analysis, and functional states of IGF2BP3 utilizing multiple databases, including HPA, TISIDB, cBioPortal, GeneMANIA, GESA, and CancerSEA. Moreover, the relationship of IGF2BP3 expression with immune infiltrates, TMB, MSI and immune-related genes was evaluated in pan-cancer. IGF2BP3 with drug sensitivity analysis was performed from the CellMiner database. Furthermore, the expression of IGF2BP3 in different grades of glioma was detected by immunohistochemical staining and western blot. Results We found that IGF2BP3 was ubiquitously highly expressed in pan-cancer and significantly correlated with diagnosis, prognosis, TMB, MSI, and drug sensitivity in various types of cancer. Besides, IGF2BP3 was involved in many cancer pathways and varied in different immune and molecular subtypes of cancers. Additionally, IGF2BP3 is critically associated with genetic markers of immunomodulators in various cancers. Finally, we validated that IGF2BP3 protein expression was significantly higher in glioma than in normal tissue, especially in GBM. Conclusions IGF2BP3 may be a potential molecular biomarker for diagnosis and prognosis in pan-cancer, especially for glioma. It could become a novel therapeutic target for various cancers.
Collapse
Affiliation(s)
- Pin Chen
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Xu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zihan Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Silin Wu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Xie
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaobiao Zhang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China.,Digital Medical Research Center, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Wang Z, Zhang M, Seery S, Zheng G, Wang W, Zhao Y, Wang X, Zhang Y. Construction and validation of an m6A RNA methylation regulator prognostic model for early-stage clear cell renal cell carcinoma. Oncol Lett 2022; 24:250. [PMID: 35761938 PMCID: PMC9214704 DOI: 10.3892/ol.2022.13370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
N6-methyladenosine (m6A) is the most common type of RNA methylation and is considered to participate in various biological and pathological processes, specifically in the regulation of tumorigenesis and metastasis. However, the exact prognostic role of m6A methylation regulators in early-stage clear cell renal cell carcinoma (ccRCC) is currently unknown. In the present study, a prognostic model consisting of m6A RNA methylation regulators in early stage ccRCC was constructed and the reliability of the signature was assessed by proteomics and immunohistochemistry. Additionally, the relationship between the prognostic model and tumor infiltrating immune cells within the tumor microenvironment was investigated. Gene mutation and RNA sequencing data of 19 m6A methylation regulators for early-stage ccRCC patients were extracted from The Cancer Genome Atlas (TCGA) database with the corresponding clinical information. Univariate and multivariate Cox regression analysis were applied to construct a prognostic model and the proteomic data as well as immunohistochemistry were used to validate the result. The correlations between the prognostic model and tumor infiltrating immune cells were assessed using Spearman's rank correlation analysis. A total of 192 early stage ccRCC gene mutation data as well as 261 RNA sequencing data with relative clinical data were extracted from the TCGA. The overall mutation frequency of the 19 m6A RNA methylation regulators was relatively low with 4.69%. The transcriptome data revealed that 11 genes were differentially expressed between cancer tissues and relatively normal tissues. Survival analysis highlighted four specific genes as having a significant influence on overall survival. An established model with four genes demonstrated the best predictability for early-stage ccRCC. After integrating clinical characteristics into the multivariate analysis, the model remained effective at predicting ccRCC prognosis. Spearman's rank analysis suggested several tumor infiltrating immune cells such as dendric cells, CD4+ cells, CD8+ T cells and macrophages were significantly correlated with the model. Proteomic data analysis as well as immunohistochemistry from the Human Protein Atlas showed that all the genes used to construct the model were differentially expressed between ccRCC and normal tissues. In conclusion, a novel m6A methylation regulators-based prognostic signature was established and validated with proteomics and immunohistochemistry. In addition, the model was significantly correlated with multiple infiltrating immune cells in tumor microenvironment.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Mingxin Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Samuel Seery
- School of Humanities and Social Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China.,Faculty of Health and Medicine, Division of Health Research, Lancaster University, Lancaster LA1 4YW, United Kingdom
| | - Guoyang Zheng
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Wenda Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yang Zhao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xu Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
10
|
Zhu H, Zhao H, Wang J, Zhao S, Ma C, Wang D, Gao H, Yang F, Ni Q, Li H, Zhou X, Zhang C, Lu J. Potential prognosis index for m 6A-related mRNA in cholangiocarcinoma. BMC Cancer 2022; 22:620. [PMID: 35672673 PMCID: PMC9170563 DOI: 10.1186/s12885-022-09665-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Background Cholangiocarcinoma (CHOL) is a malignant tumor that originates in the extrahepatic bile duct and can extend from the hilar region to the lower end of the common bile duct. The prognosis of CHOL patients is particularly poor; therefore, in this study, we screened mRNAs correlated with N6-methyladenosine (m6A) to construct a risk model for prognosis in CHOL. Methods The TCGA-CHOL dataset was applied to obtain and analyze the coexpression of 1281 m6A-related mRNAs, from which 14 were selected for further analysis through univariate proportional hazards (cox) regression analysis. Aryl hydrocarbon receptor interacting protein (AIP), CCAAT/enhancer binding protein beta (CEBPB), syndecan1 (SDC1), vacuolar protein sorting 25 homolog (VPS25) and syntaxin binding protein 2 (STXBP2) were then screened out through the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis to develop a precise m6A-related mRNA prognosis risk model (MRMRPM) with an area under curve (AUC) of 0.908 and 0.923 after 1 and 2 years, respectively. We divided the samples into high-risk and low-risk groups using the m6A-related mRNA prognosis risk model. Results Kaplan–Meier analysis indicated poor overall survival (OS) for the high-risk group. Two Gene Expression Omnibus (GEO) datasets (GSE89748 and GSE107943) were used to validate the risk model. The results of drug sensitivity and immune cell infiltration analysis showed that the risk model could serve as a prognosis index of potential immunotherapeutic characteristics and drug sensitivity. Furthermore, the proportion of resting dendritic cells and regulatory T cells was positively associated with an increased expression of four m6A-related mRNAs — AIP, CEBPB, SDC1, and VPS25 — in the high-risk CHOL group. Conclusions Our findings suggest that this model can be a prognostic indicator for CHOL patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09665-3.
Collapse
Affiliation(s)
- Huaqiang Zhu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Haini Zhao
- Jinan Health Publicity and Education Center, Jinan, 250021, Shandong, China
| | - Jianlu Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shuchao Zhao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Chaoqun Ma
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Dongliang Wang
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, 100176, China
| | - Hengjun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Faji Yang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Qingqiang Ni
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hongguang Li
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xu Zhou
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Chunqing Zhang
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
11
|
Guan Q, Lin H, Miao L, Guo H, Chen Y, Zhuo Z, He J. Functions, mechanisms, and therapeutic implications of METTL14 in human cancer. J Hematol Oncol 2022; 15:13. [PMID: 35115038 PMCID: PMC8812173 DOI: 10.1186/s13045-022-01231-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
RNA modification plays a crucial role in many biological functions, and its abnormal regulation is associated with the progression of cancer. Among them, N6-methyladenine (m6A) is the most abundant RNA modification. Methyltransferase-like 14 (METTL14) is the central component of the m6A methylated transferase complex, which is involved in the dynamic reversible process of m6A modification. METTL14 acts as both an oncogene and tumor suppressor gene to regulate the occurrence and development of various cancers. The abnormal m6A level induced by METTL14 is related to tumorigenesis, proliferation, metastasis, and invasion. To date, the molecular mechanism of METTL14 in various malignant tumors has not been fully studied. In this paper, we systematically summarize the latest research progress on METTL14 as a new biomarker for cancer diagnosis and its biological function in human tumors and discuss its potential clinical application. This study aims to provide new ideas for targeted therapy and improved prognoses in cancer.
Collapse
Affiliation(s)
- Qian Guan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Huiran Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yongping Chen
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
12
|
hong J, zhang L, peng H, Lihong J. Oncogenic role of HNRNPC in multiple cancer types, with a particular focus on LUAD, using a pan-cancer analysis and cell line experiments. J Environ Pathol Toxicol Oncol 2022; 41:77-93. [DOI: 10.1615/jenvironpatholtoxicoloncol.2022042822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Zhan L, Zhang J, Zhu S, Liu X, Zhang J, Wang W, Fan Y, Sun S, Wei B, Cao Y. N 6-Methyladenosine RNA Modification: An Emerging Immunotherapeutic Approach to Turning Up Cold Tumors. Front Cell Dev Biol 2021; 9:736298. [PMID: 34616742 PMCID: PMC8488118 DOI: 10.3389/fcell.2021.736298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/16/2021] [Indexed: 01/10/2023] Open
Abstract
Immunotherapy is a novel clinical approach that has shown clinical efficacy in multiple cancers. However, only a fraction of patients respond well to immunotherapy. Immuno-oncological studies have identified the type of tumors that are sensitive to immunotherapy, the so-called hot tumors, while unresponsive tumors, known as “cold tumors,” have the potential to turn into hot ones. Therefore, the mechanisms underlying cold tumor formation must be elucidated, and efforts should be made to turn cold tumors into hot tumors. N6-methyladenosine (m6A) RNA modification affects the maturation and function of immune cells by controlling mRNA immunogenicity and innate immune components in the tumor microenvironment (TME), suggesting its predominant role in the development of tumors and its potential use as a target to improve cancer immunotherapy. In this review, we first describe the TME, cold and hot tumors, and m6A RNA modification. Then, we focus on the role of m6A RNA modification in cold tumor formation and regulation. Finally, we discuss the potential clinical implications and immunotherapeutic approaches of m6A RNA modification in cancer patients. In conclusion, m6A RNA modification is involved in cold tumor formation by regulating immunity, tumor-cell-intrinsic pathways, soluble inhibitory mediators in the TME, increasing metabolic competition, and affecting the tumor mutational burden. Furthermore, m6A RNA modification regulators may potentially be used as diagnostic and prognostic biomarkers for different types of cancer. In addition, targeting m6A RNA modification may sensitize cancers to immunotherapy, making it a promising immunotherapeutic approach for turning cold tumors into hot ones.
Collapse
Affiliation(s)
- Lei Zhan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, China
| | - Junhui Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, China
| | - Suding Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaojing Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yijun Fan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shiying Sun
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bing Wei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Huang W, Chen TQ, Fang K, Zeng ZC, Ye H, Chen YQ. N6-methyladenosine methyltransferases: functions, regulation, and clinical potential. J Hematol Oncol 2021; 14:117. [PMID: 34315512 PMCID: PMC8313886 DOI: 10.1186/s13045-021-01129-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A) has emerged as an abundant modification throughout the transcriptome with widespread functions in protein-coding and noncoding RNAs. It affects the fates of modified RNAs, including their stability, splicing, and/or translation, and thus plays important roles in posttranscriptional regulation. To date, m6A methyltransferases have been reported to execute m6A deposition on distinct RNAs by their own or forming different complexes with additional partner proteins. In this review, we summarize the function of these m6A methyltransferases or complexes in regulating the key genes and pathways of cancer biology. We also highlight the progress in the use of m6A methyltransferases in mediating therapy resistance, including chemotherapy, targeted therapy, immunotherapy and radiotherapy. Finally, we discuss the current approaches and clinical potential of m6A methyltransferase-targeting strategies.
Collapse
Affiliation(s)
- Wei Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Tian-Qi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ke Fang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhan-Cheng Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hua Ye
- Department of Hepatobiliary, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
15
|
Mutual Correlation between Non-Coding RNA and S-Adenosylmethionine in Human Cancer: Roles and Therapeutic Opportunities. Cancers (Basel) 2021; 13:cancers13133264. [PMID: 34209866 PMCID: PMC8268931 DOI: 10.3390/cancers13133264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Non-coding RNAs and S-adenosylmethionine, the methyl donor required in all epigenetic methylation reactions, have emerged in recent years as crucial players in the modulation of gene expression in different types of human cancers. This review summarizes the most recent findings on reciprocal regulation between AdoMet and non-coding RNAs. AdoMet was found to exert anticancer activity through epigenetic regulation of non-coding RNAs, including microRNAs, long non-coding RNAs and circular RNAs. On the other hand, several microRNAs and long non-coding RNAs have been reported to display regulatory effects on the expression of genes involved in AdoMet synthesis and metabolism. Increasing knowledge on the relationship between AdoMet and non-coding RNAs will provide insights for further development of diagnostic and therapeutic strategies for cancer treatments. Abstract Epigenetics includes modifications in DNA methylation, histone and chromatin structure, and expression of non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Knowledge of the relationships between S-adenosylmethionine (AdoMet or SAM), the universal methyl donor for all epigenetic methylation reactions and miRNAs or lncRNAs in human cancer may provide helpful insights for the development of new end more effective anticancer therapeutic approaches. In recent literature, a complex network of mutual interconnections between AdoMet and miRNAs or lncRNAs has been reported and discussed. Indeed, ncRNAs expression may be regulated by epigenetic mechanisms such as DNA and RNA methylation and histone modifications. On the other hand, miRNAs or lncRNAs may influence the epigenetic apparatus by modulating the expression of its enzymatic components at the post-transcriptional level. Understanding epigenetic mechanisms, such as dysregulation of miRNAs/lncRNAs and DNA methylation, has become of central importance in modern research. This review summarizes the recent findings on the mechanisms by which AdoMet and miRNA/lncRNA exert their bioactivity, providing new insights to develop innovative and more efficient anticancer strategies based on the interactions between these epigenetic modulators.
Collapse
|