1
|
Ghosh S, Goswami D, Dutta R, Ghatak D, De R. A Comprehensive Pan-Cancer Analysis of Cytochrome C Oxidase Assembly Factor 1 (COA1) Reveals Instrumental Role of Mitochondrial Protein Assembly in Cancer that Modulates Disease Progression and Prognostic Outcome. Cell Biochem Biophys 2024; 82:2533-2555. [PMID: 38907941 DOI: 10.1007/s12013-024-01366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Cytochrome c oxidase assembly factor 1 (COA1), a mitochondrial respiratory chain complex assembly factor protein of inner mitochondrial membrane (IMM), is involved in translating many mitochondrial components and assembling nuclear-encoded components within mitochondria. Given the lack of extensive research on COA1 in cancer, this study undertakes a comprehensive pan-cancer analysis of COA1, which is overexpressed across various cancer types, shedding light on its multifaceted role in tumorigenesis, prognosis, and tumor microenvironment (TME) modulation. Leveraging bioinformatics tools and public databases, we elucidated its potential as a diagnostic cancer biomarker as well as a target for novel anti-cancer therapeutics. Gene expression analysis using "TIMER2.0", "UALCAN" and "GEPIA2" platforms, supported by protein expression data, revealed a significant correlation between COA1 upregulation and poor prognosis in Kaplan-Meir analysis, underscoring its clinical relevance. Additionally, genetic mutation analysis of COA1 with the help of "cBioPortal" warrants further exploration into its functional significance. Moreover, our investigation of the tumor microenvironment unveiled the interplay of COA1 with fibroblast and T cell infiltration implicating the role of COA1 in the tumor immune microenvironment. Furthermore, COA1-related gene enrichment study in "GeneMANIA" and pathway cross-talk analysis with Gene Ontology (GO) gene sets established comprehensive clarifications about the molecular pathways and protein networks associated with COA1 deregulation. Overall, this study lays a sturdy foundation to support future research endeavors targeting COA1, unraveling the molecular mechanisms underlying COA1 deregulation, and exploring its therapeutic potential in cancer.
Collapse
Affiliation(s)
- Sayak Ghosh
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Devyani Goswami
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rittick Dutta
- Swami Vivekananda University, Kolkata, 700121, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
2
|
Cheng Y, Lu Y, Xue J, Wang X, Zhou L, Luo Y, Li Y. DDX19A promotes gastric cancer cell proliferation and migration by activating the PI3K/AKT pathway. Cancer Cell Int 2024; 24:272. [PMID: 39097730 PMCID: PMC11297674 DOI: 10.1186/s12935-024-03448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 07/12/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND DEAD-box RNA helicase 19 A (DDX19A) is overexpressed in cervical squamous cell carcinoma. However, its role in gastric cancer remains unclear. The present study aimed to explore the role and underlying mechanism of DDX19A in the development of gastric cancer. METHODS The expression of DDX19A in gastric cancer and paracancerous tissues was evaluated through quantitative polymerase chain reaction, western blotting, and immunohistochemical staining. The biological functions of DDX19A in gastric cancer were determined using CCK8, plate colony-forming, and Transwell migration assays. The specific mechanism of DDX19A in gastric cancer cells was studied using western blotting, RNA-binding protein immunoprecipitation, mRNA half-life detection, and nuclear and cytoplasmic RNA isolation. RESULTS DDX19A was highly expressed in gastric cancer and positively associated with malignant clinicopathological features and poor prognosis. Additionally, DDX19A promoted gastric cancer cell proliferation, migration, and epithelial-mesenchymal transition phenotypes. Mechanistically, DDX19A activated the PI3K/AKT pathway by upregulating phosphatidylinositol-3-kinase (PIK3CA) expression. Furthermore, DDX19A interacted with PIK3CA mRNA, stabilized it, and facilitated its export from the nucleus. CONCLUSIONS Our study reveals a novel mechanism whereby DDX19A promotes the proliferation and migration of gastric cancer cells by enhancing the stability and nuclear export of PIK3CA mRNA, thereby activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
| | - Yanjie Lu
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
- Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei Province, China
| | - Jing Xue
- Morphological Experimental Center, Chengde Medical College, Chengde, Hebei Province, China
| | - Xuemei Wang
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
| | - Lili Zhou
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
| | - Yu Luo
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
| | - Yuhong Li
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China.
- Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei Province, China.
- Department of Pathology, Cancer Research Laboratory, Chengde Medical College, Anyuan Road, Chengde, Hebei, 067000, China.
| |
Collapse
|
3
|
Gu L, Feng C, Li M, Hong Z, Di W, Qiu L. Exosomal NOX1 promotes tumor-associated macrophage M2 polarization-mediated cancer progression by stimulating ROS production in cervical cancer: a preliminary study. Eur J Med Res 2023; 28:323. [PMID: 37679792 PMCID: PMC10483767 DOI: 10.1186/s40001-023-01246-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/26/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Cervical cancer the fourth most frequently diagnosed cancer and the fourth leading cause of cancer death in women, with an estimated 604,000 new cases and 342,000 deaths worldwide in 2020 for high rates of recurrence and metastasis. Identification of novel targets could aid in the prediction and treatment of cervical cancer. NADPH oxidase 1 (NOX1) gene-mediated production of reactive oxygen species (ROS) could induce migration and invasion of cervical cancer cells. Tumor-associated macrophages (TAMs) play important roles in cervical cancer. Tumor cell-derived exosomes mediate signal transduction between the tumor and tumor microenvironment. Elucidation of the mechanisms of NOX1-carrying exosomes involved in the regulation of TAMs may provide valuable insights into the progression of cervical cancer. METHODS Uniformly standardized mRNA data of pan-carcinoma from the UCSC database were downloaded. Expression of NOX1 in tumor and adjacent normal tissues for each tumor type was calculated using R language software and significant differences were analyzed. SNP data set were downloaded for all TCGA samples processed using MuTect2 software from GDC. Cell experiment and animal tumor formation experiment were used to evaluate whether exosomal NOX1 stimulating ROS production to promote M2 polarization of TAM in cervical cancer. RESULTS NOX1 is highly expressed with a low mutational frequency in pan-carcinoma. Upregulation of NOX1 may be associated with infiltration of M2-type macrophages in cervical cancer tissues, and NOX1 promotes malignant features of cervical cancer cells by stimulating ROS production. Exosomal NOX1 promotes M2 polarization of by stimulating ROS production. Exosomal NOX1 enhances progression of cervical cancer and M2 polarization in vivo by stimulating ROS production. CONCLUSION Exosomal NOX1 promotes TAM M2 polarization-mediated cancer progression through stimulating ROS production in cervical cancer.
Collapse
Affiliation(s)
- Liying Gu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunyang Feng
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Li
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zubei Hong
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lihua Qiu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Huang X, Dong H, Liu Y, Yu F, Yang S, Chen Z, Li J. Silencing of let-7b-5p inhibits ovarian cancer cell proliferation and stemness characteristics by Asp-Glu-Ala-Asp-box helicase 19A. Bioengineered 2021; 12:7666-7677. [PMID: 34612147 PMCID: PMC8806929 DOI: 10.1080/21655979.2021.1982276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The emergence and recurrence of ovarian cancer are associated with ovarian cancer stem cells. For cancer treatment, gene delivery of microbubbles (MB)-mediated microRNA (miRNA) is considered as a promising approach. In this study, our aim is to investigate the effects of MB-mediated let-7b-5p inhibitor on the proliferation and stemness characteristics of ovarian cancer (OVCA) cells. Let-7b-5p inhibitor mediated by MB was prepared (termed MB-let-7b-5p inhibitor), and the effects of MB-let-7b-5p inhibitor and let-7b-5p inhibitor on OVCA cell viability, proliferation and stemness characteristics were investigated. We found that MB-let-7b-5p inhibitor presented a higher transfection efficiency than let-7b-5p inhibitor alone. The inhibitory effect of MB-let-7b-5p inhibitor on OVCA cells was more significant than let-7b-5p inhibitor. Let-7b-5p targeted DEAD (Asp-Glu-Ala-Asp)-box helicase 19A (DDX19A), which was downregulated in OVCA cells. The downregulation of DDX19A reversed the inhibitory effects of MB-let-7b-5p inhibitor on OVCA cells. To sum up, we found that MB-let-7b-5p suppressed OVCA cell malignant behaviors by targeting DDX19A.
Collapse
Affiliation(s)
- Xiujuan Huang
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Hongxia Dong
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Yang Liu
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Fen Yu
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Shunshi Yang
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Jueying Li
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| |
Collapse
|