1
|
Liu Y, Liu Y, Chen X, Yin Y, Xu Z, Xie J, Shen J, Huang H, Guo H. Novel perceptions and insights into the rare hematologic malignancy of acute megakaryocytic leukemia: a multicenter clinical retrospective study. Front Med (Lausanne) 2025; 12. [DOI: 10.3389/fmed.2025.1574132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2025] Open
Abstract
ObjectiveAcute megakaryocytic leukemia (AMKL) constitutes a rare subtype of acute myeloid leukemia in clinical practice and exhibits a high degree of heterogeneity. This study endeavors to explore the clinical manifestations, diagnosis, treatment, and prognosis of AMKL, offering novel perspectives for both basic and clinical investigations of rare myeloid tumors in the fields of oncology and hematology.MethodsThe clinical data of 23 patients with AMKL admitted to the Fujian Medical University Union Hospital, the Affiliated Hospital of Putian University, and the First Affiliated Hospital of Gannan Medical University from January 2014 to July 2024 were retrospectively analyzed. The clinical characteristics, diagnosis and differential diagnosis, treatment, and prognosis of AMKL patients were examined. Additionally, the latest literature in the PubMed database was retrieved for review and discussion regarding the research advancements of AMKL and its diagnosis and treatment.ResultsA total of 23 patients with AMKL were encompassed in this study, the clinical manifestations of all patients were predominantly hematological non-specific symptoms, such as anemia, bleeding, infection, and invasive swelling or occupation of tissues and organs. All patients underwent bone marrow puncture biopsy, cytochemical staining of bone marrow cells of AMKL patients demonstrated that the staining of POX, NAS-DCE, and hot brine test were negative, however, the PAS staining, α-NAE staining and NaF inhibition test were positive. Except for 2 patients who were not detected by flow immunotyping, cytogenetics and molecular biology, the remaining 21 patients were detected accordingly, and megakaryocyte antigens (CD41, CD42, CD61) were expressed in these 21 patients with AMKL, accompanied by certain cytogenetic or molecular biological abnormalities. There were two patients forsook treatment in our study, and remaining 21 patients who underwent clinical treatment measures, 1 patient (4.76%) died after 1 course of chemotherapy, 3 patients (14.29%) succumbed to severe infection occasioned by bone marrow suppression after 2 courses of chemotherapy, and 7 patients (33.33%) achieved CR after 1 course of chemotherapy, 4 patients (19.05%) attained CR after 2 courses of chemotherapy, and 6 patients (28.57%) failed to achieve remission (NR) after 2 courses of induction chemotherapy. Correspondingly, a total of 6 patients received allogeneic hematopoietic stem cell transplantation (HSCT) in this study, among which 3 patients received HSCT after CR in the first induction chemotherapy, 1 patient received HSCT after CR in the second round of induction chemotherapy, and 2 patients with NR after induction chemotherapy underwent HSCT. We conducted follow-up until July 31, 2024 and discovered that among the 17 patients who received complete and standardized treatment and survived, 3 (17.65%) patients were lost to follow-up and 8 (47.06%) patients perished within 2 years due to treatment failure attributed to disease progression, recurrence, and uncontrollable disease. The remaining 6 patients (35.29%) are still alive at present and have not experienced disease progression or recurrence. The median follow-up period was 33.5 months (ranging from 4.5 to 76 months) as of July 31, 2024, the results of survival analysis indicate: the OS and EFS of AMKL patients treated with chemotherapy alone were inferior to those treated with chemotherapy combined with HSCT (all p < 0.05). Additionally, AMKL patients with severely abnormal cytogenetic test results had poorer OS and EFS (all p < 0.05). Concurrently, the OS and EFS of AMKL patients who achieved CR after 2 courses of induction chemotherapy were significantly superior to those of AMKL patients who did not achieve CR (all p < 0.05).ConclusionAMKL is infrequent in clinical practice, features a poor prognosis, lacks specificity in clinical manifestations, and is prone to misdiagnosis or omission. Clinical trials of new drugs should be prioritized, while close monitoring of measurable residual disease (MRD) should be implemented. Patients with AMKL might benefit from induced remission chemotherapy combined with novel targeted therapy. Hematopoietic stem cell transplantation should be carried out as soon as possible after the first CR induced by standard chemotherapy to optimize the prognosis.
Collapse
|
2
|
Liu Y, Liu Y, Chen X, Yin Y, Xu Z, Xie J, Shen J, Huang H, Guo H. Novel perceptions and insights into the rare hematologic malignancy of acute megakaryocytic leukemia: a multicenter clinical retrospective study. Front Med (Lausanne) 2025; 12. [DOI: doi 10.3389/fmed.2025.1574132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2025] Open
Abstract
ObjectiveAcute megakaryocytic leukemia (AMKL) constitutes a rare subtype of acute myeloid leukemia in clinical practice and exhibits a high degree of heterogeneity. This study endeavors to explore the clinical manifestations, diagnosis, treatment, and prognosis of AMKL, offering novel perspectives for both basic and clinical investigations of rare myeloid tumors in the fields of oncology and hematology.MethodsThe clinical data of 23 patients with AMKL admitted to the Fujian Medical University Union Hospital, the Affiliated Hospital of Putian University, and the First Affiliated Hospital of Gannan Medical University from January 2014 to July 2024 were retrospectively analyzed. The clinical characteristics, diagnosis and differential diagnosis, treatment, and prognosis of AMKL patients were examined. Additionally, the latest literature in the PubMed database was retrieved for review and discussion regarding the research advancements of AMKL and its diagnosis and treatment.ResultsA total of 23 patients with AMKL were encompassed in this study, the clinical manifestations of all patients were predominantly hematological non-specific symptoms, such as anemia, bleeding, infection, and invasive swelling or occupation of tissues and organs. All patients underwent bone marrow puncture biopsy, cytochemical staining of bone marrow cells of AMKL patients demonstrated that the staining of POX, NAS-DCE, and hot brine test were negative, however, the PAS staining, α-NAE staining and NaF inhibition test were positive. Except for 2 patients who were not detected by flow immunotyping, cytogenetics and molecular biology, the remaining 21 patients were detected accordingly, and megakaryocyte antigens (CD41, CD42, CD61) were expressed in these 21 patients with AMKL, accompanied by certain cytogenetic or molecular biological abnormalities. There were two patients forsook treatment in our study, and remaining 21 patients who underwent clinical treatment measures, 1 patient (4.76%) died after 1 course of chemotherapy, 3 patients (14.29%) succumbed to severe infection occasioned by bone marrow suppression after 2 courses of chemotherapy, and 7 patients (33.33%) achieved CR after 1 course of chemotherapy, 4 patients (19.05%) attained CR after 2 courses of chemotherapy, and 6 patients (28.57%) failed to achieve remission (NR) after 2 courses of induction chemotherapy. Correspondingly, a total of 6 patients received allogeneic hematopoietic stem cell transplantation (HSCT) in this study, among which 3 patients received HSCT after CR in the first induction chemotherapy, 1 patient received HSCT after CR in the second round of induction chemotherapy, and 2 patients with NR after induction chemotherapy underwent HSCT. We conducted follow-up until July 31, 2024 and discovered that among the 17 patients who received complete and standardized treatment and survived, 3 (17.65%) patients were lost to follow-up and 8 (47.06%) patients perished within 2 years due to treatment failure attributed to disease progression, recurrence, and uncontrollable disease. The remaining 6 patients (35.29%) are still alive at present and have not experienced disease progression or recurrence. The median follow-up period was 33.5 months (ranging from 4.5 to 76 months) as of July 31, 2024, the results of survival analysis indicate: the OS and EFS of AMKL patients treated with chemotherapy alone were inferior to those treated with chemotherapy combined with HSCT (all p < 0.05). Additionally, AMKL patients with severely abnormal cytogenetic test results had poorer OS and EFS (all p < 0.05). Concurrently, the OS and EFS of AMKL patients who achieved CR after 2 courses of induction chemotherapy were significantly superior to those of AMKL patients who did not achieve CR (all p < 0.05).ConclusionAMKL is infrequent in clinical practice, features a poor prognosis, lacks specificity in clinical manifestations, and is prone to misdiagnosis or omission. Clinical trials of new drugs should be prioritized, while close monitoring of measurable residual disease (MRD) should be implemented. Patients with AMKL might benefit from induced remission chemotherapy combined with novel targeted therapy. Hematopoietic stem cell transplantation should be carried out as soon as possible after the first CR induced by standard chemotherapy to optimize the prognosis.
Collapse
|
3
|
Chen CP, Tsai TH, Liu YL, Lee NC, Yang CN, Lin CW. Prevalence of ophthalmic abnormalities and refractive changes in Taiwanese children with Down syndrome. PLoS One 2025; 20:e0324366. [PMID: 40397898 DOI: 10.1371/journal.pone.0324366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/24/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Ophthalmological manifestations in children with Down syndrome remain significantly underdiagnosed, particularly in Asian populations. This study aimed to investigate the prevalence and characteristics of ophthalmic disorders in Taiwanese children with Down syndrome, analyze their refractive changes over time, and compare findings with existing research across diverse ethnic populations. METHODS Comprehensive ophthalmologic examinations were conducted on 148 Taiwanese children with Down syndrome, documenting age, sex, medical history, ocular alignment, visual acuity, and cycloplegic refraction. Annual refractive change assessments were performed using multivariate linear regression analysis for subjects with minimum one-year follow-up. RESULTS Visually significant refractive errors were identified in 75.7% of subjects, with astigmatism being most prevalent (70.3%), followed by hyperopia (31.8%) and myopia (19.6%). Our cohort showed higher astigmatism prevalence compared to previous studies of Asian children with Down syndrome. Longitudinal analysis revealed an annual refractive change of -0.16 ± 0.65 diopters, with age and baseline spherical equivalence emerging as significant contributing factors. CONCLUSIONS This study provides unprecedented data on ophthalmic disorders and refractive changes in Taiwanese children with Down syndrome. The high prevalence of refractive errors, particularly astigmatism, underscores the importance of early and regular screening in this population. These findings may inform the development of targeted screening protocols and optimal intervention timing.
Collapse
Affiliation(s)
- Chia-Ping Chen
- Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Hsun Tsai
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Yao-Lin Liu
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Che-Ning Yang
- School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Wen Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Ismail A, Ahid F, Moi WN, Kamaluddin NR, Esa E, Yusoff YM, Seman ZA, Mohammed MA, George E, Isa A, Zakaria Z. Genomic landscape of childhood acute lymphoblastic leukemia in Malaysia: insights from array-CGH. Mol Cytogenet 2025; 18:7. [PMID: 40155977 PMCID: PMC11951632 DOI: 10.1186/s13039-025-00709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is the most common childhood cancer, comprising approximately 25% of pediatric malignancies. Notably, chromosomal aberrations and genetic alterations play a central role in the pathogenesis of ALL, serving as critical diagnostic and prognostic markers. In this study, we use array-based comparative genomic hybridization (array-CGH) to explore the landscape of copy number variations (CNVs) and variants of uncertain significance (VUS) in 67 Malaysian childhood ALL patients with normal karyotype. RESULTS A total of 36 pathogenic CNVs (26 gains, 10 losses) were identified in 19 (28.4%) patients which harbor genes related to the development of ALL. The genes include the MLLT3 (9p21.3), ETV6 (12p13.2), RUNX1 (21q22.12), ERG (21q22.2) and DMD (Xp21.1). On the other hand, a total of 46 variants of uncertain significance (VUS) was observed in 34 (50.7%) patients. CONCLUSIONS Our study indicates that array-CGH is able to identify and characterize the CNVs responsible for the pathogenesis of childhood ALL. However, further studies are required to determine the pathogenic implications of VUS in the development of childhood ALL.
Collapse
Affiliation(s)
- Azli Ismail
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia
| | - Fadly Ahid
- Centre for Medical Laboratory Technology Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia.
| | - Wong Nyuk Moi
- Medical Laboratory Technology College, Ministry of Health Malaysia, Kuala Lumpur, 50588, Malaysia
- Faculty of Medical and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Nor Rizan Kamaluddin
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia
| | - Ezalia Esa
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia
| | - Yuslina Mat Yusoff
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia
| | - Zahidah Abu Seman
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia
| | - Muhammad Asyraff Mohammed
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia
| | - Elizabeth George
- Faculty of Medical and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Asmida Isa
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, 13200, Malaysia
| | - Zubaidah Zakaria
- Premier Integrated Labs, Pantai Hospital Ampang, Kuala Lumpur, 55100, Malaysia
| |
Collapse
|
5
|
Lestido T, Ryan-Smith K, Werner A, Pegram L. Extreme thrombocytosis negative for GATA1 mutation in an infant with trisomy 21. Pediatr Blood Cancer 2024; 71:e31352. [PMID: 39367584 DOI: 10.1002/pbc.31352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 10/06/2024]
Affiliation(s)
- Tatiana Lestido
- Department of Pediatrics, The Children's Hospital of The King's Daughters, Norfolk, Virginia, USA
| | - Kaitlin Ryan-Smith
- Department of Pediatrics, The Children's Hospital of The King's Daughters, Norfolk, Virginia, USA
| | - Alice Werner
- Department of Pediatrics, The Children's Hospital of The King's Daughters, Norfolk, Virginia, USA
| | - Linda Pegram
- Department of Pediatrics, The Children's Hospital of The King's Daughters, Norfolk, Virginia, USA
| |
Collapse
|
6
|
Azimzadeh M, Cheah PS, Ling KH. Brain insulin resistance in Down syndrome: Involvement of PI3K-Akt/mTOR axis in early-onset of Alzheimer's disease and its potential as a therapeutic target. Biochem Biophys Res Commun 2024; 733:150713. [PMID: 39307112 DOI: 10.1016/j.bbrc.2024.150713] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/06/2024]
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual impairment, characterised by an extra copy of chromosome 21. After the age of 40, DS individuals are highly susceptible to accelerated ageing and the development of early-onset Alzheimer-like neuropathology. In the context of DS, the brain presents a spectrum of neuropathological mechanisms and metabolic anomalies. These include heightened desensitisation of brain insulin and insulin-like growth factor-1 (IGF-1) reactions, compromised mitochondrial functionality, escalated oxidative stress, reduced autophagy, and the accumulation of amyloid beta and tau phosphorylation. These multifaceted factors intertwine to shape the intricate landscape of DS-related brain pathology. Altered brain insulin signalling is linked to Alzheimer's disease (AD). This disruption may stem from anomalies in the extracellular aspect (insulin receptor) or the intracellular facet, involving the inhibition of insulin receptor substrate 1 (IRS1). Both domains contribute to the intricate mechanism underlying this dysregulation. The PI3K-Akt/mammalian target of the rapamycin (mTOR) axis is a crucial intracellular element of the insulin signalling pathway that connects numerous physiological processes in the cell cycle. In age-related neurodegenerative disorders like AD, aberrant modulation of the PI3K-Akt signalling cascade is a key factor contributing to their onset. Aberrant and sustained hyperactivation of the PI3K/Akt-mTOR axis in the DS brain is implicated in early symptoms of AD development. Targeting the PI3K-Akt/mTOR pathway may help delay the onset of early-onset AD in individuals with DS, offering a potential way to slow disease progression and enhance their quality of life.
Collapse
Affiliation(s)
- Mansour Azimzadeh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Sunagozaka S, Tsutsumi A. Vocational identity in decision-making for terminating/continuation of pregnancy following non-invasive prenatal testing and hypothetical diagnosis among Japanese university students. PLoS One 2024; 19:e0309537. [PMID: 39213332 PMCID: PMC11364284 DOI: 10.1371/journal.pone.0309537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
The use of prenatal testing in Japan is expected to increase. However, there are ethical concerns regarding pregnancy termination upon the detection of fetal chromosomal abnormalities, such as Down syndrome. Furthermore, factors associated with decision-making following a positive result of Down syndrome after prenatal screening remain unclear. Therefore, we aimed to evaluate the association between decision-making among university students following a hypothetical positive result of Down syndrome in prenatal screening and their perception of their future career development defined as vocational identity. This cross-sectional study included 256 individuals (109 men, 143 women, and four who preferred not to answer). Self-anonymous semi-structured questionnaires were distributed to collect information regarding socio-demographic characteristics, vocational identity, and decision-making following a positive prenatal screening result of Down syndrome. Vocational identity was assessed using the Vocational Identity Measure. Women students were more likely to intend to continue the pregnancy (76.9%, p < 0.05); however, students without siblings (68.2%, p < 0.01) and men and women students with higher scores for vocational identities who were raised in an academically oriented family were more likely to intend to terminate the pregnancy (p < 0.05). Therefore, gender and vocational identity were associated with decision-making following a positive result of Down syndrome. Further qualitative and quantitative studies on factors associated with decision-making following a positive result of Down syndrome are necessary to eliminate the burden and social barrier, including gender division of labor and the effect of vocational career for people wishing to parent a child with Down syndrome.
Collapse
Affiliation(s)
- Shodai Sunagozaka
- Graduate School of Human and Socio-Environmental Studies, Kanazawa University, Kanazawa, Japan
| | - Atsuro Tsutsumi
- Institute of Transdisciplinary Sciences for Innovation, Kanazawa University, Kanazawa, Japan
- University of the Philippines Open University, Los Banos, the Republic of the Philippines
| |
Collapse
|
8
|
Mason NR, Cahill H, Diamond Y, McCleary K, Kotecha RS, Marshall GM, Mateos MK. Down syndrome-associated leukaemias: current evidence and challenges. Ther Adv Hematol 2024; 15:20406207241257901. [PMID: 39050114 PMCID: PMC11268035 DOI: 10.1177/20406207241257901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/13/2024] [Indexed: 07/27/2024] Open
Abstract
Children with Down syndrome (DS) are at increased risk of developing haematological malignancies, in particular acute megakaryoblastic leukaemia and acute lymphoblastic leukaemia. The microenvironment established by abnormal haematopoiesis driven by trisomy 21 is compounded by additional genetic and epigenetic changes that can drive leukaemogenesis in patients with DS. GATA-binding protein 1 (GATA1) somatic mutations are implicated in the development of transient abnormal myelopoiesis and the progression to myeloid leukaemia of DS (ML-DS) and provide a model of the multi-step process of leukaemogenesis in DS. This review summarises key genetic drivers for the development of leukaemia in patients with DS, the biology and treatment of ML-DS and DS-associated acute lymphoblastic leukaemia, late effects of treatments for DS-leukaemias and the focus for future targeted therapy.
Collapse
Affiliation(s)
- Nicola R. Mason
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Hilary Cahill
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Yonatan Diamond
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Karen McCleary
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Rishi S. Kotecha
- Department of Clinical Haematology, Oncology, Blood and Bone Marrow Transplantation, Perth Children’s Hospital, Perth, WA, Australia
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Glenn M. Marshall
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, Randwick, NSW, Australia School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Marion K. Mateos
- Kids Cancer Centre, Sydney Children’s Hospital, Level 1 South Wing, High Street, Randwick, NSW 2031, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
9
|
Miyauchi J. The hematopoietic microenvironment of the fetal liver and transient abnormal myelopoiesis associated with Down syndrome: A review. Crit Rev Oncol Hematol 2024; 199:104382. [PMID: 38723838 DOI: 10.1016/j.critrevonc.2024.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
Transient abnormal myelopoiesis (TAM) in neonates with Down syndrome is a distinct form of leukemia or preleukemia that mirrors the hematological features of acute megakaryoblastic leukemia. However, it typically resolves spontaneously in the early stages. TAM originates from fetal liver (FL) hematopoietic precursor cells and emerges due to somatic mutations in GATA1 in utero. In TAM, progenitor cells proliferate and differentiate into mature megakaryocytes and granulocytes. This process occurs both in vitro, aided by hematopoietic growth factors (HGFs) produced in the FL, and in vivo, particularly in specific anatomical sites like the FL and blood vessels. The FL's hematopoietic microenvironment plays a crucial role in TAM's pathogenesis and may contribute to its spontaneous regression. This review presents an overview of current knowledge regarding the unique features of TAM in relation to the FL hematopoietic microenvironment, focusing on the functions of HGFs and the pathological features of TAM.
Collapse
Affiliation(s)
- Jun Miyauchi
- Department of Diagnostic Pathology, Saitama City Hospital, Saitama, Saitama-ken, Japan.
| |
Collapse
|
10
|
Sessa R, Trombetti S, Bianco AL, Amendola G, Catapano R, Cesaro E, Petruzziello F, D'Armiento M, Maruotti GM, Menna G, Izzo P, Grosso M. miR-1202 acts as anti-oncomiR in myeloid leukaemia by down-modulating GATA-1 S expression. Open Biol 2024; 14:230319. [PMID: 38350611 PMCID: PMC10864098 DOI: 10.1098/rsob.230319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/21/2023] [Indexed: 02/15/2024] Open
Abstract
Transient abnormal myelopoiesis (TAM) is a Down syndrome-related pre-leukaemic condition characterized by somatic mutations in the haematopoietic transcription factor GATA-1 that result in exclusive production of its shorter isoform (GATA-1S). Given the common hallmark of altered miRNA expression profiles in haematological malignancies and the pro-leukaemic role of GATA-1S, we aimed to search for miRNAs potentially able to modulate the expression of GATA-1 isoforms. Starting from an in silico prediction of miRNA binding sites in the GATA-1 transcript, miR-1202 came into our sight as potential regulator of GATA-1 expression. Expression studies in K562 cells revealed that miR-1202 directly targets GATA-1, negatively regulates its expression, impairs GATA-1S production, reduces cell proliferation, and increases apoptosis sensitivity. Furthermore, data from TAM and myeloid leukaemia patients provided substantial support to our study by showing that miR-1202 down-modulation is accompanied by increased GATA-1 levels, with more marked effects on GATA-1S. These findings indicate that miR-1202 acts as an anti-oncomiR in myeloid cells and may impact leukaemogenesis at least in part by down-modulating GATA-1S levels.
Collapse
Affiliation(s)
- Raffaele Sessa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Silvia Trombetti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Alessandra Lo Bianco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giovanni Amendola
- Department of Pediatrics and Intensive Care Unit, Umberto I Hospital, Nocera Inferiore, Italy
| | - Rosa Catapano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Fara Petruzziello
- Department of Pediatric Hemato-Oncology, AORN Santobono-Pausilipon, Naples, Italy
| | - Maria D'Armiento
- Department of Public Health, Section of Pathology, University of Naples Federico II, Naples, Italy
| | - Giuseppe Maria Maruotti
- Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Giuseppe Menna
- Department of Pediatric Hemato-Oncology, AORN Santobono-Pausilipon, Naples, Italy
| | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate 'Franco Salvatore', Naples, Italy
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate 'Franco Salvatore', Naples, Italy
| |
Collapse
|
11
|
Takasaki K, Chou ST. GATA1 in Normal and Pathologic Megakaryopoiesis and Platelet Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:261-287. [PMID: 39017848 DOI: 10.1007/978-3-031-62731-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
GATA1 is a highly conserved hematopoietic transcription factor (TF), essential for normal erythropoiesis and megakaryopoiesis, that encodes a full-length, predominant isoform and an amino (N) terminus-truncated isoform GATA1s. It is consistently expressed throughout megakaryocyte development and interacts with its target genes either independently or in association with binding partners such as FOG1 (friend of GATA1). While the N-terminus and zinc finger have classically been demonstrated to be necessary for the normal regulation of platelet-specific genes, murine models, cell-line studies, and human case reports indicate that the carboxy-terminal activation domain and zinc finger also play key roles in precisely controlling megakaryocyte growth, proliferation, and maturation. Murine models have shown that disruptions to GATA1 increase the proliferation of immature megakaryocytes with abnormal architecture and impaired terminal differentiation into platelets. In humans, germline GATA1 mutations result in variable cytopenias, including macrothrombocytopenia with abnormal platelet aggregation and excessive bleeding tendencies, while acquired GATA1s mutations in individuals with trisomy 21 (T21) result in transient abnormal myelopoiesis (TAM) and myeloid leukemia of Down syndrome (ML-DS) arising from a megakaryocyte-erythroid progenitor (MEP). Taken together, GATA1 plays a key role in regulating megakaryocyte differentiation, maturation, and proliferative capacity. As sequencing and proteomic technologies expand, additional GATA1 mutations and regulatory mechanisms contributing to human diseases of megakaryocytes and platelets are likely to be revealed.
Collapse
Affiliation(s)
- Kaoru Takasaki
- Department of Pediatrics, Division of Hematology, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Department of Pediatrics, Division of Hematology, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Sit YT, Takasaki K, An HH, Xiao Y, Hurtz C, Gearhart PA, Zhang Z, Gadue P, French DL, Chou ST. Synergistic roles of DYRK1A and GATA1 in trisomy 21 megakaryopoiesis. JCI Insight 2023; 8:e172851. [PMID: 37906251 PMCID: PMC10895998 DOI: 10.1172/jci.insight.172851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Patients with Down syndrome (DS), or trisomy 21 (T21), are at increased risk of transient abnormal myelopoiesis (TAM) and acute megakaryoblastic leukemia (ML-DS). Both TAM and ML-DS require prenatal somatic mutations in GATA1, resulting in the truncated isoform GATA1s. The mechanism by which individual chromosome 21 (HSA21) genes synergize with GATA1s for leukemic transformation is challenging to study, in part due to limited human cell models with wild-type GATA1 (wtGATA1) or GATA1s. HSA21-encoded DYRK1A is overexpressed in ML-DS and may be a therapeutic target. To determine how DYRK1A influences hematopoiesis in concert with GATA1s, we used gene editing to disrupt all 3 alleles of DYRK1A in isogenic T21 induced pluripotent stem cells (iPSCs) with and without the GATA1s mutation. Unexpectedly, hematopoietic differentiation revealed that DYRK1A loss combined with GATA1s leads to increased megakaryocyte proliferation and decreased maturation. This proliferative phenotype was associated with upregulation of D-type cyclins and hyperphosphorylation of Rb to allow E2F release and derepression of its downstream targets. Notably, DYRK1A loss had no effect in T21 iPSCs or megakaryocytes with wtGATA1. These surprising results suggest that DYRK1A and GATA1 may synergistically restrain megakaryocyte proliferation in T21 and that DYRK1A inhibition may not be a therapeutic option for GATA1s-associated leukemias.
Collapse
Affiliation(s)
- Ying Ting Sit
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kaoru Takasaki
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hyun Hyung An
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yan Xiao
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christian Hurtz
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Peter A. Gearhart
- Deparment of Obstetrics and Gynecology, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Zhe Zhang
- Department of Biomedical Informatics and
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Deborah L. French
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stella T. Chou
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Verma A, Lupo PJ, Shah NN, Hitzler J, Rabin KR. Management of Down Syndrome-Associated Leukemias: A Review. JAMA Oncol 2023; 9:1283-1290. [PMID: 37440251 DOI: 10.1001/jamaoncol.2023.2163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Importance Down syndrome (DS), caused by an extra copy of material from chromosome 21, is one of the most common genetic conditions. The increased risk of acute leukemia in DS (DS-AL) has been recognized for decades, consisting of an approximately 150-fold higher risk of acute myeloid leukemia (AML) before age 4 years, and a 10- to 20-fold higher risk of acute lymphoblastic leukemia (ALL), compared with children without DS. Observations A recent National Institutes of Health-sponsored conference, ImpacT21, reviewed research and clinical trials in children, adolescents, and young adults (AYAs) with DS-AL and are presented herein, including presentation and treatment, clinical trial design, and ethical considerations for this unique population. Between 10% to 30% of infants with DS are diagnosed with transient abnormal myelopoiesis (TAM), which spontaneously regresses. After a latency period of up to 4 years, 20% to 30% develop myeloid leukemia associated with DS (ML-DS). Recent studies have characterized somatic mutations associated with progression from TAM to ML-DS, but predicting which patients will progress to ML-DS remains elusive. Clinical trials for DS-AL have aimed to reduce treatment-related mortality (TRM) and improve survival. Children with ML-DS have better outcomes compared with non-DS AML, but outcomes remain dismal in relapse. In contrast, patients with DS-ALL have inferior outcomes compared with those without DS, due to both higher TRM and relapse. Management of relapsed leukemia poses unique challenges owing to disease biology and increased vulnerability to toxic effects. Late effects in survivors of DS-AL are an important area in need of further study because they may demonstrate unique patterns in the setting of chronic medical conditions associated with DS. Conclusions and Relevance Optimal management of DS-AL requires specific molecular testing, meticulous supportive care, and tailored therapy to reduce TRM while optimizing survival. There is no standard approach to treatment of relapsed disease. Future work should include identification of biomarkers predictive of toxic effects; enhanced clinical and scientific collaborations; promotion of access to novel agents through innovative clinical trial design; and dedicated studies of late effects of treatment.
Collapse
Affiliation(s)
- Anupam Verma
- Pediatric Oncology Branch, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Philip J Lupo
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Johann Hitzler
- Division of Hematology Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Karen R Rabin
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
14
|
Sendker S, Awada A, Domagalla S, Sendker M, Orhan E, Hoffmeister LM, Antoniou E, Niktoreh N, Reinhardt D, von Neuhoff N, Schneider M. RUNX1 mutation has no prognostic significance in paediatric AML: a retrospective study of the AML-BFM study group. Leukemia 2023; 37:1435-1443. [PMID: 37188777 PMCID: PMC10317839 DOI: 10.1038/s41375-023-01919-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
In acute myeloid leukaemia (AML) RUNX1 mutation is characterised by certain clinicopathological features with poor prognosis and adverse risk by the European LeukemiaNet recommendation. Though initially considered as provisional category, the recent World Health Organisation (WHO) classification of 2022 removed RUNX1-mutated AML from the unique entity. However, the significance of RUNX1 mutation in paediatric AML remains unclear. We retrospectively analysed a German cohort of 488 paediatric patients with de novo AML, enroled in the AMLR12 or AMLR17 registry of the AML-BFM Study Group (Essen, Germany). A total of 23 paediatric AML patients (4.7%) harboured RUNX1 mutations, 18 of which (78%) had RUNX1 mutation at initial diagnosis. RUNX1 mutations were associated with older age, male gender, number of coexisting alterations and presence of FLT3-ITD but mutually exclusive of KRAS, KIT and NPM1 mutation. RUNX1 mutations did not prognostically impact overall or event-free survival. Response rates did not differ between patients with and without RUNX1 mutations. This comprehensive study, comprising the largest analysis of RUNX1 mutation in a paediatric cohort to date, reveals distinct but not unique clinicopathologic features, with no prognostic significance of RUNX1-mutated paediatric AML. These results broaden the perspective on the relevance of RUNX1 alterations in leukaemogenesis in AML.
Collapse
Affiliation(s)
- Stephanie Sendker
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Amani Awada
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Sophia Domagalla
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Michael Sendker
- University of Applied Sciences for Economics and Management (FOM), 20357, Hamburg, Germany
| | - Eser Orhan
- Centre for Research Acceleration in Paediatrics GmbH, 30175, Hannover, Germany
| | - Lina Marie Hoffmeister
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Evangelia Antoniou
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Naghmeh Niktoreh
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Dirk Reinhardt
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Nils von Neuhoff
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Markus Schneider
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
15
|
Costanzo F, Fucà E, Caciolo C, Ruà D, Smolley S, Weissberg D, Vicari S. Talkitt: toward a new instrument based on artificial intelligence for augmentative and alternative communication in children with down syndrome. Front Psychol 2023; 14:1176683. [PMID: 37346421 PMCID: PMC10279874 DOI: 10.3389/fpsyg.2023.1176683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction Individuals with Down syndrome (DS) often exhibit a severe speech impairment, with important consequences on language intelligibility. For these cases, the use of Augmentative Alternative Communication instruments, that increase an individual's communication abilities, becomes crucial. Talkitt is a mobile application created by Voiceitt Company, exploiting speech recognition technology and artificial intelligence models to translate in real-time unintelligible sounds into clear words, allowing individuals with language production impairment to verbally communicate in real-time. Methods The study evaluated the usability and satisfaction related to the Talkitt application use, as well as effects on adapted behavior and communication, of participants with DS. A final number of 23 individuals with DS, aged 5.54 to 28.9 years, participated in this study and completed 6 months of training. The application was trained to consistently recognize at least 20 different unintelligible words (e.g., nouns and/or short phrases)/person. Results Results revealed good usability and high levels of satisfaction related to the application use. Moreover, we registered improvement in linguistic abilities, particularly naming. Discussion These results paves the road for a potential role of Talkitt application as a supportive and rehabilitative tool for DS.
Collapse
Affiliation(s)
- Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Elisa Fucà
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Cristina Caciolo
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Deborah Ruà
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | | | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Life Science and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
16
|
Li J, Kalev‐Zylinska ML. Advances in molecular characterization of pediatric acute megakaryoblastic leukemia not associated with Down syndrome; impact on therapy development. Front Cell Dev Biol 2023; 11:1170622. [PMID: 37325571 PMCID: PMC10267407 DOI: 10.3389/fcell.2023.1170622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Acute megakaryoblastic leukemia (AMKL) is a rare subtype of acute myeloid leukemia (AML) in which leukemic blasts have megakaryocytic features. AMKL makes up 4%-15% of newly diagnosed pediatric AML, typically affecting young children (less than 2 years old). AMKL associated with Down syndrome (DS) shows GATA1 mutations and has a favorable prognosis. In contrast, AMKL in children without DS is often associated with recurrent and mutually exclusive chimeric fusion genes and has an unfavorable prognosis. This review mainly summarizes the unique features of pediatric non-DS AMKL and highlights the development of novel therapies for high-risk patients. Due to the rarity of pediatric AMKL, large-scale multi-center studies are needed to progress molecular characterization of this disease. Better disease models are also required to test leukemogenic mechanisms and emerging therapies.
Collapse
Affiliation(s)
- Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
| | - Maggie L. Kalev‐Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
17
|
Gialesaki S, Bräuer-Hartmann D, Issa H, Bhayadia R, Alejo-Valle O, Verboon L, Schmell AL, Laszig S, Regényi E, Schuschel K, Labuhn M, Ng M, Winkler R, Ihling C, Sinz A, Glaß M, Hüttelmaier S, Matzk S, Schmid L, Strüwe FJ, Kadel SK, Reinhardt D, Yaspo ML, Heckl D, Klusmann JH. RUNX1 isoform disequilibrium promotes the development of trisomy 21-associated myeloid leukemia. Blood 2023; 141:1105-1118. [PMID: 36493345 PMCID: PMC10023736 DOI: 10.1182/blood.2022017619] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Gain of chromosome 21 (Hsa21) is among the most frequent aneuploidies in leukemia. However, it remains unclear how partial or complete amplifications of Hsa21 promote leukemogenesis and why children with Down syndrome (DS) (ie, trisomy 21) are particularly at risk of leukemia development. Here, we propose that RUNX1 isoform disequilibrium with RUNX1A bias is key to DS-associated myeloid leukemia (ML-DS). Starting with Hsa21-focused CRISPR-CRISPR-associated protein 9 screens, we uncovered a strong and specific RUNX1 dependency in ML-DS cells. Expression of the RUNX1A isoform is elevated in patients with ML-DS, and mechanistic studies using murine ML-DS models and patient-derived xenografts revealed that excess RUNX1A synergizes with the pathognomonic Gata1s mutation during leukemogenesis by displacing RUNX1C from its endogenous binding sites and inducing oncogenic programs in complex with the MYC cofactor MAX. These effects were reversed by restoring the RUNX1A:RUNX1C equilibrium in patient-derived xenografts in vitro and in vivo. Moreover, pharmacological interference with MYC:MAX dimerization using MYCi361 exerted strong antileukemic effects. Thus, our study highlights the importance of alternative splicing in leukemogenesis, even on a background of aneuploidy, and paves the way for the development of specific and targeted therapies for ML-DS, as well as for other leukemias with Hsa21 aneuploidy or RUNX1 isoform disequilibrium.
Collapse
Affiliation(s)
- Sofia Gialesaki
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Daniela Bräuer-Hartmann
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Hasan Issa
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Raj Bhayadia
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Oriol Alejo-Valle
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Lonneke Verboon
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anna-Lena Schmell
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephanie Laszig
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Enikő Regényi
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Konstantin Schuschel
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maurice Labuhn
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Michelle Ng
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Robert Winkler
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sören Matzk
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lena Schmid
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Sofie-Katrin Kadel
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Dirk Reinhardt
- Pediatric Hematology and Oncology, Pediatrics III, University Hospital Essen, Essen, Germany
| | | | - Dirk Heckl
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Dirk Heckl, Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany;
| | - Jan-Henning Klusmann
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Correspondence: Jan-Henning Klusmann, Department of Pediatrics, Goethe University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany;
| |
Collapse
|
18
|
Roberts I. Leukemogenesis in infants and young children with trisomy 21. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:1-8. [PMID: 36485097 PMCID: PMC9820574 DOI: 10.1182/hematology.2022000395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Children with Down syndrome (DS) have a greater than 100-fold increased risk of developing acute myeloid leukemia (ML) and an approximately 30-fold increased risk of acute lymphoblastic leukemia (ALL) before their fifth birthday. ML-DS originates in utero and typically presents with a self-limiting, neonatal leukemic syndrome known as transient abnormal myelopoiesis (TAM) that is caused by cooperation between trisomy 21-associated abnormalities of fetal hematopoiesis and somatic N-terminal mutations in the transcription factor GATA1. Around 10% of neonates with DS have clinical signs of TAM, although the frequency of hematologically silent GATA1 mutations in DS neonates is much higher (~25%). While most cases of TAM/silent TAM resolve without treatment within 3 to 4 months, in 10% to 20% of cases transformation to full-blown leukemia occurs within the first 4 years of life when cells harboring GATA1 mutations persist and acquire secondary mutations, most often in cohesin genes. By contrast, DS-ALL, which is almost always B-lineage, presents after the first few months of life and is characterized by a high frequency of rearrangement of the CRLF2 gene (60%), often co-occurring with activating mutations in JAK2 or RAS genes. While treatment of ML-DS achieves long-term survival in approximately 90% of children, the outcome of DS-ALL is inferior to ALL in children without DS. Ongoing studies in primary cells and model systems indicate that the role of trisomy 21 in DS leukemogenesis is complex and cell context dependent but show promise in improving management and the treatment of relapse, in which the outcome of both ML-DS and DS-ALL remains poor.
Collapse
Affiliation(s)
- Irene Roberts
- Correspondence Irene Roberts, Department of Paediatrics, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom; e-mail: ,
| |
Collapse
|
19
|
Bruschi M, Vanzolini T, Sahu N, Balduini A, Magnani M, Fraternale A. Functionalized 3D scaffolds for engineering the hematopoietic niche. Front Bioeng Biotechnol 2022; 10:968086. [PMID: 36061428 PMCID: PMC9428512 DOI: 10.3389/fbioe.2022.968086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic stem cells (HSCs) reside in a subzone of the bone marrow (BM) defined as the hematopoietic niche where, via the interplay of differentiation and self-renewal, they can give rise to immune and blood cells. Artificial hematopoietic niches were firstly developed in 2D in vitro cultures but the limited expansion potential and stemness maintenance induced the optimization of these systems to avoid the total loss of the natural tissue complexity. The next steps were adopted by engineering different materials such as hydrogels, fibrous structures with natural or synthetic polymers, ceramics, etc. to produce a 3D substrate better resembling that of BM. Cytokines, soluble factors, adhesion molecules, extracellular matrix (ECM) components, and the secretome of other niche-resident cells play a fundamental role in controlling and regulating HSC commitment. To provide biochemical cues, co-cultures, and feeder-layers, as well as natural or synthetic molecules were utilized. This review gathers key elements employed for the functionalization of a 3D scaffold that demonstrated to promote HSC growth and differentiation ranging from 1) biophysical cues, i.e., material, topography, stiffness, oxygen tension, and fluid shear stress to 2) biochemical hints favored by the presence of ECM elements, feeder cell layers, and redox scavengers. Particular focus is given to the 3D systems to recreate megakaryocyte products, to be applied for blood cell production, whereas HSC clinical application in such 3D constructs was limited so far to BM diseases testing.
Collapse
Affiliation(s)
- Michela Bruschi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- *Correspondence: Michela Bruschi,
| | - Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Neety Sahu
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | |
Collapse
|
20
|
Li J, Kalev-Zylinska ML. Advances in molecular characterization of myeloid proliferations associated with Down syndrome. Front Genet 2022; 13:891214. [PMID: 36035173 PMCID: PMC9399805 DOI: 10.3389/fgene.2022.891214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid leukemia associated with Down syndrome (ML-DS) has a unique molecular landscape that differs from other subtypes of acute myeloid leukemia. ML-DS is often preceded by a myeloproliferative neoplastic condition called transient abnormal myelopoiesis (TAM) that disrupts megakaryocytic and erythroid differentiation. Over the last two decades, many genetic and epigenetic changes in TAM and ML-DS have been elucidated. These include overexpression of molecules and micro-RNAs located on chromosome 21, GATA1 mutations, and a range of other somatic mutations and chromosomal alterations. In this review, we summarize molecular changes reported in TAM and ML-DS and provide a comprehensive discussion of these findings. Recent advances in the development of CRISPR/Cas9-modified induced pluripotent stem cell-based disease models are also highlighted. However, despite significant progress in this area, we still do not fully understand the pathogenesis of ML-DS, and there are no targeted therapies. Initial diagnosis of ML-DS has a favorable prognosis, but refractory and relapsed disease can be difficult to treat; therapeutic options are limited in Down syndrome children by their stronger sensitivity to the toxic effects of chemotherapy. Because of the rarity of TAM and ML-DS, large-scale multi-center studies would be helpful to advance molecular characterization of these diseases at different stages of development and progression.
Collapse
Affiliation(s)
- Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
- *Correspondence: Jixia Li, ; Maggie L. Kalev-Zylinska,
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
- *Correspondence: Jixia Li, ; Maggie L. Kalev-Zylinska,
| |
Collapse
|
21
|
Chen L, Wang L, Wang Y, Hu H, Zhan Y, Zeng Z, Liu L. Global, Regional, and National Burden and Trends of Down Syndrome From 1990 to 2019. Front Genet 2022; 13:908482. [PMID: 35910218 PMCID: PMC9337874 DOI: 10.3389/fgene.2022.908482] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Down syndrome (DS) is the leading cause of genetically defined intellectual disability and congenital birth defects worldwide. A large population of people diagnosed with DS globally is posing an enormous socioeconomic burden. However, the global burden and trends of DS have not been reported. Methods: Based on the data from the Global Burden of Disease database in 2019, we analyzed the incidence, prevalence, disability-adjusted life years (DALYs), and death of DS from 1990 to 2019 according to sex, age, regions, and social-demographic index (SDI). Then, age-standardized rates (ASRs) and estimated annual percentage change (EAPC) of these aforementioned indexes were calculated to evaluate the temporal trend of DS. Finally, the association of SDI with DS epidemiological parameters was assessed. Results: In the past 30 years, the incident cases, age-standardized incident rate (ASIR), and age-standardized prevalent rate (ASPR) of DS first decreased slightly and subsequently increased globally. The number of prevalent cases increased steadily, while the number and age-standardized rate (ASRs) of DALYs and deaths decreased gradually from 1990 to 2019. In the meantime, disease burdens were different across various SDI regions. The prevalent cases and ASPR for both sexes were increasing in all SDI regions except for the high-middle SDI region. At the national level, Brunei Darussalam, Ireland, and Haiti were the top three countries with the highest ASIR in 2019. Georgia was in the top three with the highest increase in ASRs of four parameters, while Serbia was consistently ranked in the top three with fastest declining. Furthermore, we found that ASIR and ASPR were positively correlated with SDI, yet the age-standardized DALYs and age-standardized death rate (ASDR) were negatively correlated with SDI. Conclusion: In the past 30 years, the burden and trends of DS were heterogeneous across different regions and countries with different sociodemographic characteristics. Great improvements had been achieved in reducing DALYs and deaths globally. However, the increased number and ASRs of incident and prevalent cases in some regions, especially in low SDI regions, were contributing to numerous challenges to public health. The findings may provide valuable information to the development or implementation of more effective measures.
Collapse
Affiliation(s)
- Liyuan Chen
- Department of Obstetrics and Gynecology, Wuhan No 1 Hospital, Wuhan, China
| | - Lifei Wang
- Department of Obstetrics and Gynecology, Wuhan No 1 Hospital, Wuhan, China
| | - Yi Wang
- Second Clinical College, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haishan Hu
- Department of Reproductive Medicine, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Wuhan, China
| | - Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhilin Zeng
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lidan Liu
- Department of Obstetrics and Gynecology, Wuhan No 1 Hospital, Wuhan, China
- *Correspondence: Lidan Liu,
| |
Collapse
|
22
|
Grimm J, Bhayadia R, Gack L, Heckl D, Klusmann JH. Combining LSD1 and JAK-STAT inhibition targets Down syndrome-associated myeloid leukemia at its core. Leukemia 2022; 36:1926-1930. [PMID: 35610347 PMCID: PMC9252908 DOI: 10.1038/s41375-022-01603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Juliane Grimm
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Raj Bhayadia
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lucie Gack
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dirk Heckl
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jan-Henning Klusmann
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany. .,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany. .,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
23
|
Alejo-Valle O, Weigert K, Bhayadia R, Ng M, Issa H, Beyer C, Emmrich S, Schuschel K, Ihling C, Sinz A, Zimmermann M, Wickenhauser C, Flasinski M, Regenyi E, Labuhn M, Reinhardt D, Yaspo ML, Heckl D, Klusmann JH. The megakaryocytic transcription factor ARID3A suppresses leukemia pathogenesis. Blood 2022; 139:651-665. [PMID: 34570885 PMCID: PMC9632760 DOI: 10.1182/blood.2021012231] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
Given the plasticity of hematopoietic stem and progenitor cells, multiple routes of differentiation must be blocked in the the pathogenesis of acute myeloid leukemia, the molecular basis of which is incompletely understood. We report that posttranscriptional repression of the transcription factor ARID3A by miR-125b is a key event in the pathogenesis of acute megakaryoblastic leukemia (AMKL). AMKL is frequently associated with trisomy 21 and GATA1 mutations (GATA1s), and children with Down syndrome are at a high risk of developing the disease. The results of our study showed that chromosome 21-encoded miR-125b synergizes with Gata1s to drive leukemogenesis in this context. Leveraging forward and reverse genetics, we uncovered Arid3a as the main miR-125b target behind this synergy. We demonstrated that, during normal hematopoiesis, this transcription factor promotes megakaryocytic differentiation in concert with GATA1 and mediates TGFβ-induced apoptosis and cell cycle arrest in complex with SMAD2/3. Although Gata1s mutations perturb erythroid differentiation and induce hyperproliferation of megakaryocytic progenitors, intact ARID3A expression assures their megakaryocytic differentiation and growth restriction. Upon knockdown, these tumor suppressive functions are revoked, causing a blockade of dual megakaryocytic/erythroid differentiation and subsequently of AMKL. Inversely, restoring ARID3A expression relieves the arrest of megakaryocytic differentiation in AMKL patient-derived xenografts. This work illustrates how mutations in lineage-determining transcription factors and perturbation of posttranscriptional gene regulation can interact to block multiple routes of hematopoietic differentiation and cause leukemia. In AMKL, surmounting this differentiation blockade through restoration of the tumor suppressor ARID3A represents a promising strategy for treating this lethal pediatric disease.
Collapse
Affiliation(s)
- Oriol Alejo-Valle
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Karoline Weigert
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Raj Bhayadia
- Pediatric Hematology and Oncology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt (Main), Germany
| | - Michelle Ng
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Hasan Issa
- Pediatric Hematology and Oncology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt (Main), Germany
| | - Christoph Beyer
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Stephan Emmrich
- Department of Biology, University of Rochester, Rochester NY
| | - Konstantin Schuschel
- Pediatric Hematology and Oncology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt (Main), Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Martin Zimmermann
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Marius Flasinski
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Hospital Tauberbischofsheim, Tauberbischofsheim, Germany
| | - Eniko Regenyi
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maurice Labuhn
- Institute for Experimental Virology, Twincore, Center for Experimental and Clinical Infection Research, Hannover, Germany; and
| | - Dirk Reinhardt
- Pediatric Hematology and Oncology, Pediatrics III, University Hospital Essen, Essen, Germany
| | | | - Dirk Heckl
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jan-Henning Klusmann
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Pediatric Hematology and Oncology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt (Main), Germany
| |
Collapse
|
24
|
Boucher AC, Caldwell KJ, Crispino JD, Flerlage JE. Clinical and biological aspects of myeloid leukemia in Down syndrome. Leukemia 2021; 35:3352-3360. [PMID: 34518645 PMCID: PMC8639661 DOI: 10.1038/s41375-021-01414-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Children with Down syndrome are at an elevated risk of leukemia, especially myeloid leukemia (ML-DS). This malignancy is frequently preceded by transient abnormal myelopoiesis (TAM), which is self-limited expansion of fetal liver-derived megakaryocyte progenitors. An array of international studies has led to consensus in treating ML-DS with reduced-intensity chemotherapy, leading to excellent outcomes. In addition, studies performed in the past 20 years have revealed many of the genetic and epigenetic features of the tumors, including GATA1 mutations that are arguably associated with all cases of both TAM and ML-DS. Despite these advances in understanding the clinical and biological aspects of ML-DS, little is known about the mechanisms of relapse. Upon relapse, patients face a poor outcome, and there is no consensus on treatment. Future studies need to be focused on this challenging aspect of leukemia in children with DS.
Collapse
Affiliation(s)
- Austin C Boucher
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kenneth J Caldwell
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John D Crispino
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Jamie E Flerlage
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
25
|
Germline GATA1s generating mutations predispose to leukemia with acquired trisomy 21 and Down syndrome-like phenotype. Blood 2021; 139:3159-3165. [PMID: 34758059 DOI: 10.1182/blood.2021011463] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/20/2021] [Indexed: 11/20/2022] Open
Abstract
Individuals with Down syndrome are at increased risk of myeloid leukemia in early childhood associated with acquisition of GATA1 mutations that generate a short GATA1 isoform called GATA1s. Germline GATA1s generating mutations result in congenital anemia in males. We report on two unrelated families harboring germline GATA1s generating mutations in which several members developed acute megakaryoblastic leukemia in early childhood. All evaluable leukemias had acquired trisomy or tetrasomy 21. The leukemia characteristics overlapped those of myeloid leukemia of Down syndrome including age of onset of less than 4 years, unique immunophenotype, complex karyotype, gene expression pattern, and drug sensitivity. These findings demonstrate that the combination of trisomy 21 and GATA1s generating mutations results in a unique myeloid leukemia independent of whether the GATA1 mutation or trisomy 21 is the primary or secondary event and suggest that there is unique functional cooperatively between GATA1s and trisomy 21 in leukemogenesis. The family histories also indicate that germline GATA1s generating mutations should be included among those associated with familial myelodysplastic syndrome and leukemia predisposition.
Collapse
|
26
|
Exploring the Leukemogenic Potential of GATA-1 S, the Shorter Isoform of GATA-1: Novel Insights into Mechanisms Hampering Respiratory Chain Complex II Activity and Limiting Oxidative Phosphorylation Efficiency. Antioxidants (Basel) 2021; 10:antiox10101603. [PMID: 34679737 PMCID: PMC8533167 DOI: 10.3390/antiox10101603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/02/2022] Open
Abstract
GATA-1 is a key regulator of hematopoiesis. A balanced ratio of its two isoforms, GATA-1FL and GATA-1S, contributes to normal hematopoiesis, whereas aberrant expression of GATA-1S alters the differentiation/proliferation potential of hematopoietic precursors and represents a poor prognostic factor in myeloid leukemia. We previously reported that GATA-1S over-expression correlates with high levels of the succinate dehydrogenase subunit C (SDHC). Alternative splicing variants of the SDHC transcript are over-expressed in several tumors and act as potent dominant negative inhibitors of SDH activity. With this in mind, we investigated the levels of SDHC variants and the oxidative mitochondrial metabolism in myeloid leukemia K562 cells over-expressing GATA-1 isoforms. Over-expression of SDHC variants accompanied by decreased SDH complex II activity and oxidative phosphorylation (OXPHOS) efficiency was found associated only with GATA-1S. Given the tumor suppressor role of SDH and the effects of OXPHOS limitations in leukemogenesis, identification of a link between GATA-1S and impaired complex II activity unveils novel pro-leukemic mechanisms triggered by GATA-1S. Abnormal levels of GATA-1S and SDHC variants were also found in an acute myeloid leukemia patient, thus supporting in vitro results. A better understanding of these mechanisms can contribute to identify novel promising therapeutic targets in myeloid leukemia.
Collapse
|
27
|
Jann JC, Tothova Z. Cohesin mutations in myeloid malignancies. Blood 2021; 138:649-661. [PMID: 34157074 PMCID: PMC8394903 DOI: 10.1182/blood.2019004259] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
Cohesin is a multisubunit protein complex that forms a ring-like structure around DNA. It is essential for sister chromatid cohesion, chromatin organization, transcriptional regulation, and DNA damage repair and plays a major role in dynamically shaping the genome architecture and maintaining DNA integrity. The core complex subunits STAG2, RAD21, SMC1, and SMC3, as well as its modulators PDS5A/B, WAPL, and NIPBL, have been found to be recurrently mutated in hematologic and solid malignancies. These mutations are found across the full spectrum of myeloid neoplasia, including pediatric Down syndrome-associated acute megakaryoblastic leukemia, myelodysplastic syndromes, chronic myelomonocytic leukemia, and de novo and secondary acute myeloid leukemias. The mechanisms by which cohesin mutations act as drivers of clonal expansion and disease progression are still poorly understood. Recent studies have described the impact of cohesin alterations on self-renewal and differentiation of hematopoietic stem and progenitor cells, which are associated with changes in chromatin and epigenetic state directing lineage commitment, as well as genomic integrity. Herein, we review the role of the cohesin complex in healthy and malignant hematopoiesis. We discuss clinical implications of cohesin mutations in myeloid malignancies and discuss opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Johann-Christoph Jann
- Department of Hematology and Oncology, University of Heidelberg, Mannheim, Germany; and
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|