1
|
Loap P, Decroocq J, Birsen R, Johnson N, Bouscary D, Kirova Y. Exposure to the immune system during bridging radiotherapy for Car-T cells. Cancer Radiother 2025; 29:104595. [PMID: 40253845 DOI: 10.1016/j.canrad.2025.104595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 04/22/2025]
Abstract
PURPOSE The objective of this study was to quantify how much dose from bridging radiotherapy is being delivered to non-lymphoma immune cells. MATERIAL AND METHODS All patients who underwent bridging radiotherapy between January 2023 and April 2024 at the institut Curie (Paris, France) surrounding the infusion of chimeric antigen receptor (Car)-T cells, were identified. The effective dose to the immune cells was calculated for each of them. RESULTS Nine patients were included, with a mean follow-up time of 6months; one patient experienced a recurrence. No grade 2+ toxicity was reported. Median effective dose to the immune cells was 0.56Gy (range: 0.039-2.72Gy) and varied between patients. The main contribution came from the integral dose (0.43Gy, range: 0.039-1.42Gy). CONCLUSIONS The doses received by the immune system when undergoing bridging radiotherapy for Car-T cells can vary considerably from one patient to another, and the integral dose represents the primary part of this exposure of the immune system. Prospective solid data is needed in this context to evaluate the role of choice of radiotherapy techniques in bridging radiotherapy.
Collapse
Affiliation(s)
- Pierre Loap
- Departement of Radiation Oncology, institut Curie, Paris, France; Laboratoire d'imagerie translationnelle en oncologie (Lito), institut Curie, Orsay, France
| | | | - Rudy Birsen
- Department of Haematology, hôpital Cochin, Paris, France
| | | | | | - Youlia Kirova
- Departement of Radiation Oncology, institut Curie, Paris, France.
| |
Collapse
|
2
|
Shi H, Zheng P, Fu Z, Cao M, Yang F, Guo Y, Liu R, Ma L, Feng S, Tao X, Deng B, Lei Y, Dou Y, Zhang X, Ke X, Hu K. Whole brain radiotherapy combined with CART-cell therapy for relapsed/refractory central nervous system B-cell lymphoma. Ann Hematol 2025; 104:2495-2505. [PMID: 40278918 PMCID: PMC12052746 DOI: 10.1007/s00277-025-06378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Relapsed or refractory central nervous system B-cell lymphoma (r/r CNS-BL), including primary central nervous system lymphoma (PCNSL) and secondary central nervous system lymphoma (SCNSL), remains a significant therapeutic challenge with limited treatment options and poor prognosis. This study investigated the combination of whole-brain radiotherapy (WBRT) and chimeric antigen receptor T-cell (CAR-T) therapy in 27 r/r CNS-BL patients. Peripheral blood mononuclear cells were collected before radiotherapy to prepare CAR-T cells. Patients then received whole-brain radiotherapy (WBRT), with or without local boost, followed by CAR-T cell infusion at least one week after radiotherapy completion. Post-CAR-T therapy, the optimal objective response rate (ORR) increased to 88.9%, and the optimal CR rate reached 85.2%. With a median follow-up of 12 months, the median progression-free survival (PFS) and overall survival (OS) were not reached (NR), and the 1-year estimated PFS and OS rate were 61.3% and 56.6%, respectively. Cytokine release syndrome (CRS) occurred in 48.1% of patients. Immune effector cell-associated neurotoxicity syndrome (ICANS) was observed in 29.6% of patients, with only 3.7% on grade 4, all of whom recovered after treatment. This study demonstrates that the combination of WBRT and CAR-T therapy offers a promising therapeutic strategy for r/r CNS-BL patients, improving remission rates and providing a well-tolerated treatment option.
Collapse
Affiliation(s)
- Hui Shi
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, No. 4 Building, Kexueyuan Street, Changping District, Beijing City, 102200, China
- Department of Lymphoma and Myeloma Research Center, Beijing Gobroad Boren Hospital, Beijing, 100070, China
| | - Peihao Zheng
- Department of Lymphoma and Myeloma Research Center, Beijing Gobroad Boren Hospital, Beijing, 100070, China
| | - Zhonghua Fu
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, No. 4 Building, Kexueyuan Street, Changping District, Beijing City, 102200, China
| | - Miaomiao Cao
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, No. 4 Building, Kexueyuan Street, Changping District, Beijing City, 102200, China
| | - Fan Yang
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, No. 4 Building, Kexueyuan Street, Changping District, Beijing City, 102200, China
| | - Yuelu Guo
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, No. 4 Building, Kexueyuan Street, Changping District, Beijing City, 102200, China
| | - Rui Liu
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, No. 4 Building, Kexueyuan Street, Changping District, Beijing City, 102200, China
| | - Lixia Ma
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, No. 4 Building, Kexueyuan Street, Changping District, Beijing City, 102200, China
| | - Shaomei Feng
- Department of Lymphoma and Myeloma Research Center, Beijing Gobroad Boren Hospital, Beijing, 100070, China
| | - Xiuyan Tao
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, No. 4 Building, Kexueyuan Street, Changping District, Beijing City, 102200, China
- Department of Lymphoma and Myeloma Research Center, Beijing Gobroad Boren Hospital, Beijing, 100070, China
| | - Biping Deng
- Department of Lymphoma and Myeloma Research Center, Beijing Gobroad Boren Hospital, Beijing, 100070, China
| | - Yang Lei
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, No. 4 Building, Kexueyuan Street, Changping District, Beijing City, 102200, China
| | - Yimeng Dou
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, No. 4 Building, Kexueyuan Street, Changping District, Beijing City, 102200, China
| | - Xuenan Zhang
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, No. 4 Building, Kexueyuan Street, Changping District, Beijing City, 102200, China
| | - Xiaoyan Ke
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, No. 4 Building, Kexueyuan Street, Changping District, Beijing City, 102200, China.
- Department of Lymphoma and Myeloma Research Center, Beijing Gobroad Boren Hospital, Beijing, 100070, China.
| | - Kai Hu
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, No. 4 Building, Kexueyuan Street, Changping District, Beijing City, 102200, China.
- Department of Lymphoma and Myeloma Research Center, Beijing Gobroad Boren Hospital, Beijing, 100070, China.
| |
Collapse
|
3
|
Danish A, Della Pia A, Fogel L, Alkhatatneh H, Zhao C, Varughese T, Al Feghali KA, Pascual L, Sinclaire B, Marafelias M, Zenreich J, Kuo YH, Feldman TA, Zhang Y, Goy AH, Ip A, Rowley SD. Prevalence of non-Hodgkin lymphoma patients at high-risk of failure after CAR T-cell therapy eligible for bridging radiation therapy. Front Oncol 2024; 14:1425506. [PMID: 39228984 PMCID: PMC11369895 DOI: 10.3389/fonc.2024.1425506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Background and purpose The aim of this study was to determine the prevalence of patients with relapsed or refractory (R/R) non-Hodgkin lymphoma (NHL) meeting high-risk criteria for early relapse after CD19 CAR T-cell therapy (CART) who have disease encompassable in a standard radiation therapy (RT) plan (defined as <5 malignant lesions) and may benefit from bridging RT prior to CD19 CART. Materials and methods This is a single-center, retrospective study of patients with R/R NHL who received CD19 CART from 2018 to 2022. Eligible patients had pre-apheresis radiologic studies available. All patients were classified by number of lesions and history of high-risk disease criteria: bulky disease ≥10 cm, ≥1 extranodal (EN) sites, LDH ≥normal, or ≥1 lesion with SUVmax ≥10. Results A total of 81 patients with R/R NHL were evaluated. Based on our definition, 40 (49%) patients would have been eligible for bridging RT, including 38 patients who met high-risk criteria: 31 with ≥1 EN site, 19 had ≥1 lesion with SUVmax ≥10, 16 with bulky disease, and 3 with elevated LDH. At 3 months after CART, ORRs in high-risk patients with <5 lesions, ≥5 lesions, and no lesions on pre-apheresis studies were 76% (CR 69%, PR 7%), 70% (CR 60%, PR 10%), and 80% (CR 80%), respectively. Conclusion Approximately 47% (38/81) of patients were classified as at high risk of relapse after CART with disease encompassable in a standard radiation plan and eligible for bridging RT studies.
Collapse
Affiliation(s)
- Adnan Danish
- John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, NJ, United States
- Lymphoma Division, Hackensack University Medical Center, Hackensack, NJ, United States
| | - Alexandra Della Pia
- John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, NJ, United States
| | - Lindsay Fogel
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Hassan Alkhatatneh
- Department of Medicine, Englewood Hospital and Medical Center, Englewood, NJ, United States
| | - Charles Zhao
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Tony Varughese
- Lymphoma Division, Hackensack University Medical Center, Hackensack, NJ, United States
| | | | - Lauren Pascual
- John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, NJ, United States
| | - Brittany Sinclaire
- John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, NJ, United States
| | - Michael Marafelias
- John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, NJ, United States
| | - Joshua Zenreich
- John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, NJ, United States
| | - Yen-Hong Kuo
- Office of Research Administration, Hackensack Meridian Health Research Institute, Nutley, NJ, United States
| | - Tatyana A. Feldman
- John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, NJ, United States
- Lymphoma Division, Hackensack University Medical Center, Hackensack, NJ, United States
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Yi Zhang
- Center for Discovery and Innovation, Hackensack Meridian Health, Hackensack, NJ, United States
| | - Andre H. Goy
- John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, NJ, United States
- Lymphoma Division, Hackensack University Medical Center, Hackensack, NJ, United States
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Andrew Ip
- John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, NJ, United States
- Lymphoma Division, Hackensack University Medical Center, Hackensack, NJ, United States
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Scott D. Rowley
- John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, NJ, United States
- Lymphoma Division, Hackensack University Medical Center, Hackensack, NJ, United States
- Department of Oncology, Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
4
|
Zhou D, Zhu X, Xiao Y. CAR-T cell combination therapies in hematologic malignancies. Exp Hematol Oncol 2024; 13:69. [PMID: 39026380 PMCID: PMC11264744 DOI: 10.1186/s40164-024-00536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024] Open
Abstract
Chimeric antigen receptor-T cell therapy, a groundbreaking cancer treatment, has achieved remarkable success against hematologic malignancies. However, CAR-T monotherapy faces challenges in certain cases, including treatment tolerance and relapse rates. To overcome these challenges, researchers are investigating combining CAR-T cells with other treatments to enhance therapeutic efficacy. Therefore, this review aims to investigate the progress of research in combining CAR-T cells for hematologic malignancies. It covers the basic principles and clinical applications of CAR-T cell therapy, detailing combinations with chemotherapy, immune checkpoint inhibitors, targeted drugs, radiotherapy, hematopoietic stem cell transplantation, and other treatments. These combinations synergistically enhance the antitumor effects of CAR-T cells and comprehensively target tumors through different mechanisms, improving patient response and survival rates.
Collapse
Affiliation(s)
- Delian Zhou
- 1Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaojian Zhu
- 1Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Yi Xiao
- 1Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Zheng Z, Yang T, Li Y, Qu P, Shao Z, Wang Y, Chang W, Umar SM, Wang J, Ding N, Wang W. A future directions of renal cell carcinoma treatment: combination of immune checkpoint inhibition and carbon ion radiotherapy. Front Immunol 2024; 15:1428584. [PMID: 39091498 PMCID: PMC11291258 DOI: 10.3389/fimmu.2024.1428584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Renal cell carcinoma (RCC) is considered radio- and chemo-resistant. Immune checkpoint inhibitors (ICIs) have demonstrated significant clinical efficacy in advanced RCC. However, the overall response rate of RCC to monotherapy remains limited. Given its immunomodulatory effects, a combination of radiotherapy (RT) with immunotherapy is increasingly used for cancer treatment. Heavy ion radiotherapy, specifically the carbon ion radiotherapy (CIRT), represents an innovative approach to cancer treatment, offering superior physical and biological effectiveness compared to conventional photon radiotherapy and exhibiting obvious advantages in cancer treatment. The combination of CIRT and immunotherapy showed robust effectiveness in preclinical studies of various tumors, thus holds promise for overcoming radiation resistance of RCC and enhancing therapeutic outcomes. Here, we provide a comprehensive review on the biophysical effects of CIRT, the efficacy of combination treatment and the underlying mechanisms involved in, as well as its therapeutic potential specifically within RCC.
Collapse
Affiliation(s)
- Zhouhang Zheng
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Tianci Yang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yixuan Li
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Pei Qu
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiang Shao
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Chang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Shahzad Muhammad Umar
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Eigendorff F, Filimonova I, Scholl S, Sayer-Klink A, Rummler S, Kunert C, Pietschmann K, Wittig A, Hochhaus A, Schnetzke U. Effective bridging strategies prior to infusion with tisagenlecleucel results in high response rates and long-term remission in relapsed/refractory large B-cell lymphoma: findings from a German monocentric study. J Cancer Res Clin Oncol 2024; 150:224. [PMID: 38693452 PMCID: PMC11062962 DOI: 10.1007/s00432-024-05765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Incorporating chimeric antigen receptor (CAR)-T cell therapy into relapsed or refractory large B-cell lymphoma (rr LBCL) treatment algorithms has yielded remarkable response rates and durable remissions, yet a substantial portion of patients experience progression or relapse. Variations in outcomes across treatment centers may be attributed to different bridging strategies and remission statuses preceding CAR-T cell therapy. PATIENTS Twenty-nine consecutive adult patients receiving tisagenlecleucel (tisa-cel) for rr LBCL from December 2019 to February 2023 at Jena University Hospital were analyzed. RESULTS The median age was 63, with a median of 3 prior treatments. Twenty patients (69%) were refractory to any systemic therapy before CAR-T cell treatment. Following leukapheresis, 25 patients (86%) received bridging therapy with the majority undergoing chemotherapy (52%) or combined modality therapy (32%). Radiotherapy (RT) was part of the bridging strategy in 44%, with moderately hypofractionated involved site RT (30.0 Gy/2.5 Gy) being applied most frequently (64%). Post-CAR-T infusion, the objective response rate at 30 days was 83%, with 55% achieving complete response. Twelve-month progression-free (PFS) and overall survival (OS) were 60% and 74%, respectively, with a median follow up of 11.1 months for PFS and 17.9 months for OS. Factors significantly associated with PFS were chemotherapy sensitivity pre-leukapheresis and response to bridging. CONCLUSION The study underscores the importance of minimal tumor burden at CAR-T initiation, emphasizing the need for suitable bridging regimens. The findings advocate for clinical trials and further real-world analyses to optimize CAR-T cell therapy outcomes by identifying the most effective bridging strategies.
Collapse
MESH Headings
- Humans
- Male
- Middle Aged
- Female
- Aged
- Immunotherapy, Adoptive/methods
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Adult
- Remission Induction
- Neoplasm Recurrence, Local/therapy
- Neoplasm Recurrence, Local/pathology
- Germany
- Receptors, Antigen, T-Cell/therapeutic use
- Retrospective Studies
- Combined Modality Therapy
Collapse
Affiliation(s)
- Farina Eigendorff
- Klinik Für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Irina Filimonova
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Jena, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Sebastian Scholl
- Klinik Für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Anne Sayer-Klink
- Institut für Transfusionsmedizin, Universitätsklinikum Jena, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Silke Rummler
- Institut für Transfusionsmedizin, Universitätsklinikum Jena, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Christa Kunert
- Klinik Für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Klaus Pietschmann
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Jena, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Andrea Wittig
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Jena, Jena, Germany
- Klinik und Poliklinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Andreas Hochhaus
- Klinik Für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Ulf Schnetzke
- Klinik Für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany.
| |
Collapse
|
7
|
Adhikarla V, Awuah D, Caserta E, Minnix M, Kuznetsov M, Krishnan A, Wong JYC, Shively JE, Wang X, Pichiorri F, Rockne RC. Designing combination therapies for cancer treatment: application of a mathematical framework combining CAR T-cell immunotherapy and targeted radionuclide therapy. Front Immunol 2024; 15:1358478. [PMID: 38698840 PMCID: PMC11063284 DOI: 10.3389/fimmu.2024.1358478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/21/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction Cancer combination treatments involving immunotherapies with targeted radiation therapy are at the forefront of treating cancers. However, dosing and scheduling of these therapies pose a challenge. Mathematical models provide a unique way of optimizing these therapies. Methods Using a preclinical model of multiple myeloma as an example, we demonstrate the capability of a mathematical model to combine these therapies to achieve maximum response, defined as delay in tumor growth. Data from mice studies with targeted radionuclide therapy (TRT) and chimeric antigen receptor (CAR)-T cell monotherapies and combinations with different intervals between them was used to calibrate mathematical model parameters. The dependence of progression-free survival (PFS), overall survival (OS), and the time to minimum tumor burden on dosing and scheduling was evaluated. Different dosing and scheduling schemes were evaluated to maximize the PFS and optimize timings of TRT and CAR-T cell therapies. Results Therapy intervals that were too close or too far apart are shown to be detrimental to the therapeutic efficacy, as TRT too close to CAR-T cell therapy results in radiation related CAR-T cell killing while the therapies being too far apart result in tumor regrowth, negatively impacting tumor control and survival. We show that splitting a dose of TRT or CAR-T cells when administered in combination is advantageous only if the first therapy delivered can produce a significant benefit as a monotherapy. Discussion Mathematical models are crucial tools for optimizing the delivery of cancer combination therapy regimens with application along the lines of achieving cure, maximizing survival or minimizing toxicity.
Collapse
Affiliation(s)
- Vikram Adhikarla
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Dennis Awuah
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Enrico Caserta
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Megan Minnix
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Maxim Kuznetsov
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Amrita Krishnan
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Jefferey Y. C. Wong
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - John E. Shively
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Flavia Pichiorri
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Russell C. Rockne
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
8
|
Hamerschlak N, Gómez-Almaguer D, McLornan DP. Editorial: 50 years of BMT: risk stratification, donor matching and stem cell collection for transplantation. Front Oncol 2023; 13:1321334. [PMID: 38169637 PMCID: PMC10758429 DOI: 10.3389/fonc.2023.1321334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Nelson Hamerschlak
- Hospital Israelita Albert Einstein, Department of Bone Marrow Transplant, São Paulo, SP, Brazil
| | - David Gómez-Almaguer
- Servicio de Hematología, Hospital Universitario, Universidad Autánoma de Nuevo León, Monterrey, Mexico
| | - Donal P. McLornan
- Department of Haematology and Stem Cell Transplantation, University College London Hospitals NHS Trust, London, United Kingdom
| |
Collapse
|
9
|
Wei C, Lan X, Qiu M, Cui R, Fu Q, Shinge SAU, Muluh TA, Jiang O. Expanding the role of combined immunochemotherapy and immunoradiotherapy in the management of head and neck cancer (Review). Oncol Lett 2023; 26:372. [PMID: 37965160 PMCID: PMC10641411 DOI: 10.3892/ol.2023.13958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 11/16/2023] Open
Abstract
Immunotherapy has become one of the most promising approaches in tumor therapy, and there are numerous associated clinical trials in China. As an immunosuppressive tumor, head and neck squamous cell carcinoma (HNSCC) carries a high mutation burden, making immune checkpoint inhibitors promising candidates in this field due to their unique mechanism of action. The present review outlines a comprehensive multidisciplinary cancer treatment approach and elaborates on how combining immunochemotherapy and immunoradiotherapy guidelines could enhance clinical efficacy in patients with HNSCC. Furthermore, the present review explores the immunology of HNSCC, current immunotherapeutic strategies to enhance antitumor activity, ongoing clinical trials and the future direction of the current immune landscape in HNSCC. Advanced-stage HNSCC presents with a poor prognosis, low survival rates and minimal improvement in patient survival trends over time. Understanding the potential of immunotherapy and ways to combine it with surgery, chemotherapy and radiotherapy confers good prospects for the management of human papillomavirus (HPV)-positive HNSCC, as well as other HPV-positive malignancies. Understanding the immune system and its effect on HNSCC progression and metastasis will help to uncover novel biomarkers for the selection of patients and to enhance the efficacy of treatments. Further research on why current immune checkpoint inhibitors and targeted drugs are only effective for some patients in the clinic is needed; therefore, further research is required to improve the overall survival of affected patients.
Collapse
Affiliation(s)
- Chun Wei
- Department of Oncology, The Second People's Hospital of Neijiang City, Neijiang, Sichuan 641000, P.R. China
| | - Xiaojun Lan
- Department of Oncology, The Second People's Hospital of Neijiang City, Neijiang, Sichuan 641000, P.R. China
| | - Maona Qiu
- Department of Oncology, The Second People's Hospital of Neijiang City, Neijiang, Sichuan 641000, P.R. China
| | - Ran Cui
- Department of Oncology, The First People's Hospital of Neijiang City, Neijiang, Sichuan 641000, P.R. China
| | - Qiuxia Fu
- Department of General Medicine, The People's Hospital of Luzhou City, Luzhou, Sichuan 646000, P.R. China
| | - Shafiu A. Umar Shinge
- Department of Cardiothoracic Surgery, Sun Yat Sen Memorial Hospital, Sun Yat Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Ou Jiang
- Department of Oncology, The Second People's Hospital of Neijiang City, Neijiang, Sichuan 641000, P.R. China
| |
Collapse
|
10
|
Levis M, Ferrero S, Chiappella A, Bruno B, Ricardi U. Editorial: Implementation of novel drugs and modern radiotherapy in the treatment of lymphoma patients. Front Oncol 2023; 13:1273598. [PMID: 37664055 PMCID: PMC10470469 DOI: 10.3389/fonc.2023.1273598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Affiliation(s)
- Mario Levis
- Department of Oncology, University of Torino, Torino, Italy
| | - Simone Ferrero
- Department of Molecular Biotechnology and Health Sciences, Hematology Division, University of Torino, Torino, Italy
| | - Annalisa Chiappella
- Division of Hematology and Stem Cell Transplantation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Benedetto Bruno
- Department of Molecular Biotechnology and Health Sciences, Hematology Division, University of Torino, Torino, Italy
| | | |
Collapse
|
11
|
Zhong L, Li Y, Muluh TA, Wang Y. Combination of CAR‑T cell therapy and radiotherapy: Opportunities and challenges in solid tumors (Review). Oncol Lett 2023; 26:281. [PMID: 37274466 PMCID: PMC10236127 DOI: 10.3892/ol.2023.13867] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a new and breakthrough cancer immunotherapy. Although CAR-T cell therapy has made significant progress clinically in patients with refractory or drug-resistant hematological malignancies, there are numerous challenges in its application to solid tumor therapy, including antigen escape, severe toxic reactions, abnormal vascularization, tumor hypoxia, insufficient infiltration of CAR-T cells and immunosuppression. As a conventional mode of anti-tumor therapy, radiotherapy has shown promising effects in combination with CAR-T cell therapy by enhancing the specific immunity of endogenous target antigens, which promoted the infiltration and expansion of CAR-T cells and improved the hypoxic tumor microenvironment. This review focuses on the obstacles to the application of CAR-T technology in solid tumor therapy, the potential opportunities and challenges of combined radiotherapy and CAR-T cell therapy, and the review of recent literature to evaluate the best combination for the treatment of solid tumors.
Collapse
Affiliation(s)
- Liqiang Zhong
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
- Department of Oncology, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Yi Li
- Department of Oncology, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yongsheng Wang
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
12
|
Kornepati AVR, Rogers CM, Sung P, Curiel TJ. The complementarity of DDR, nucleic acids and anti-tumour immunity. Nature 2023; 619:475-486. [PMID: 37468584 DOI: 10.1038/s41586-023-06069-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/11/2023] [Indexed: 07/21/2023]
Abstract
Immune checkpoint blockade (ICB) immunotherapy is a first-line treatment for selected cancers, yet the mechanisms of its efficacy remain incompletely understood. Furthermore, only a minority of patients with cancer benefit from ICB, and there is a lack of fully informative treatment response biomarkers. Selectively exploiting defects in DNA damage repair is also a standard treatment for cancer, spurred by enhanced understanding of the DNA damage response (DDR). DDR and ICB are closely linked-faulty DDR produces immunogenic cancer neoantigens that can increase the efficacy of ICB therapy, and tumour mutational burden is a good but imperfect biomarker for the response to ICB. DDR studies in ICB efficacy initially focused on contributions to neoantigen burden. However, a growing body of evidence suggests that ICB efficacy is complicated by the immunogenic effects of nucleic acids generated from exogenous DNA damage or endogenous processes such as DNA replication. Chemotherapy, radiation, or selective DDR inhibitors (such as PARP inhibitors) can generate aberrant nucleic acids to induce tumour immunogenicity independently of neoantigens. Independent of their functions in immunity, targets of immunotherapy such as cyclic GMP-AMP synthase (cGAS) or PD-L1 can crosstalk with DDR or the DNA repair machinery to influence the response to DNA-damaging agents. Here we review the rapidly evolving, multifaceted interfaces between DDR, nucleic acid immunogenicity and immunotherapy efficacy, focusing on ICB. Understanding these interrelated processes could explain ICB treatment failures and reveal novel exploitable therapeutic vulnerabilities in cancers. We conclude by addressing major unanswered questions and new research directions.
Collapse
Affiliation(s)
- Anand V R Kornepati
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA
| | - Cody M Rogers
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
| | - Patrick Sung
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
- University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX, USA
| | - Tyler J Curiel
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA.
- University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health, San Antonio, TX, USA.
- Dartmouth Health, Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
13
|
Adu-Berchie K, Brockman JM, Liu Y, To TW, Zhang DKY, Najibi AJ, Binenbaum Y, Stafford A, Dimitrakakis N, Sobral MC, Dellacherie MO, Mooney DJ. Adoptive T cell transfer and host antigen-presenting cell recruitment with cryogel scaffolds promotes long-term protection against solid tumors. Nat Commun 2023; 14:3546. [PMID: 37322053 PMCID: PMC10272124 DOI: 10.1038/s41467-023-39330-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Although adoptive T cell therapy provides the T cell pool needed for immediate tumor debulking, the infused T cells generally have a narrow repertoire for antigen recognition and limited ability for long-term protection. Here, we present a hydrogel that locally delivers adoptively transferred T cells to the tumor site while recruiting and activating host antigen-presenting cells with GMCSF or FLT3L and CpG, respectively. T cells alone loaded into these localized cell depots provided significantly better control of subcutaneous B16-F10 tumors than T cells delivered through direct peritumoral injection or intravenous infusion. T cell delivery combined with biomaterial-driven accumulation and activation of host immune cells prolonged the activation of the delivered T cells, minimized host T cell exhaustion, and enabled long-term tumor control. These findings highlight how this integrated approach provide both immediate tumor debulking and long-term protection against solid tumors, including against tumor antigen escape.
Collapse
Affiliation(s)
- Kwasi Adu-Berchie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- The Wyss Institute for Biologically Inspired Engineering Harvard University, Boston, MA, USA
| | - Joshua M Brockman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- The Wyss Institute for Biologically Inspired Engineering Harvard University, Boston, MA, USA
| | - Yutong Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- The Wyss Institute for Biologically Inspired Engineering Harvard University, Boston, MA, USA
| | - Tania W To
- The Wyss Institute for Biologically Inspired Engineering Harvard University, Boston, MA, USA
| | - David K Y Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- The Wyss Institute for Biologically Inspired Engineering Harvard University, Boston, MA, USA
| | - Alexander J Najibi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- The Wyss Institute for Biologically Inspired Engineering Harvard University, Boston, MA, USA
| | - Yoav Binenbaum
- The Wyss Institute for Biologically Inspired Engineering Harvard University, Boston, MA, USA
| | - Alexander Stafford
- The Wyss Institute for Biologically Inspired Engineering Harvard University, Boston, MA, USA
| | - Nikolaos Dimitrakakis
- The Wyss Institute for Biologically Inspired Engineering Harvard University, Boston, MA, USA
| | - Miguel C Sobral
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- The Wyss Institute for Biologically Inspired Engineering Harvard University, Boston, MA, USA
| | - Maxence O Dellacherie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- The Wyss Institute for Biologically Inspired Engineering Harvard University, Boston, MA, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- The Wyss Institute for Biologically Inspired Engineering Harvard University, Boston, MA, USA.
| |
Collapse
|
14
|
Hovhannisyan L, Riether C, Aebersold DM, Medová M, Zimmer Y. CAR T cell-based immunotherapy and radiation therapy: potential, promises and risks. Mol Cancer 2023; 22:82. [PMID: 37173782 PMCID: PMC10176707 DOI: 10.1186/s12943-023-01775-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
CAR T cell-based therapies have revolutionized the treatment of hematological malignancies such as leukemia and lymphoma within the last years. In contrast to the success in hematological cancers, the treatment of solid tumors with CAR T cells is still a major challenge in the field and attempts to overcome these hurdles have not been successful yet. Radiation therapy is used for management of various malignancies for decades and its therapeutic role ranges from local therapy to a priming agent in cancer immunotherapy. Combinations of radiation with immune checkpoint inhibitors have already proven successful in clinical trials. Therefore, a combination of radiation therapy may have the potential to overcome the current limitations of CAR T cell therapy in solid tumor entities. So far, only limited research was conducted in the area of CAR T cells and radiation. In this review we will discuss the potential and risks of such a combination in the treatment of cancer patients.
Collapse
Affiliation(s)
- Lusine Hovhannisyan
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, 3010, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, Bern, 3010, Switzerland
| | - Daniel M Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland
| | - Yitzhak Zimmer
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland.
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland.
| |
Collapse
|
15
|
Nagler A, Perriello VM, Falini L, Falini B. How I treat refractory/relapsed diffuse large B-cell lymphomas with CD19-directed chimeric antigen receptor T cells. Br J Haematol 2023; 201:396-410. [PMID: 36916189 DOI: 10.1111/bjh.18724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 03/15/2023]
Abstract
Chimeric antigen receptor (CAR) T cells targeting CD19 represent a promising salvage immunotherapy for relapsed/refractory diffuse large B-cell lymphoma (R/R DLBCL), offering ~40% of long-term responses. In everyday clinical practice, haematologists involved in CAR T cell treatment of patients with R/R DLBCL have to deal with diagnostically complex cases and difficult therapeutic choices. The availability of novel immunotherapeutic agents for R/R DLBCL and recent advances in understanding CAR T-cell failure mechanisms demand a rational approach to identify the best choice for bridging therapy and managing post-CAR T-cell therapy relapses. Moreover, positron emission tomography/computerised tomography may result in false-positive interpretation, highlighting the importance of post-treatment biopsy. In this review, we discuss all above issues, presenting four instructive cases, with the aim to provide criteria and new perspectives for CAR T-cell treatment of DLBCL.
Collapse
Affiliation(s)
- Arnon Nagler
- Division of Hematology, Sheba Medical Center, Tel Hashomer, Israel
| | - Vincenzo Maria Perriello
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Lorenza Falini
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
16
|
Bernstock JD, Hoffman SE, Kappel AD, Valdes PA, Essayed WI, Klinger NV, Kang KD, Totsch SK, Olsen HE, Schlappi CW, Filipski K, Gessler FA, Baird L, Filbin MG, Hashizume R, Becher OJ, Friedman GK. Immunotherapy approaches for the treatment of diffuse midline gliomas. Oncoimmunology 2022; 11:2124058. [PMID: 36185807 PMCID: PMC9519005 DOI: 10.1080/2162402x.2022.2124058] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022] Open
Abstract
Diffuse midline gliomas (DMG) are a highly aggressive and universally fatal subgroup of pediatric tumors responsible for the majority of childhood brain tumor deaths. Median overall survival is less than 12 months with a 90% mortality rate at 2 years from diagnosis. Research into the underlying tumor biology and numerous clinical trials have done little to change the invariably poor prognosis. Continued development of novel, efficacious therapeutic options for DMGs remains a critically important area of active investigation. Given that DMGs are not amenable to surgical resection, have only limited response to radiation, and are refractory to traditional chemotherapy, immunotherapy has emerged as a promising alternative treatment modality. This review summarizes the various immunotherapy-based treatments for DMG as well as their specific limitations. We explore the use of cell-based therapies, oncolytic virotherapy or immunovirotherapy, immune checkpoint inhibition, and immunomodulatory vaccination strategies, and highlight the recent clinical success of anti-GD2 CAR-T therapy in diffuse intrinsic pontine glioma (DIPG) patients. Finally, we address the challenges faced in translating preclinical and early phase clinical trial data into effective standardized treatment for DMG patients.
Collapse
Affiliation(s)
- Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Samantha E. Hoffman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children’s Hospital Cancer Center, Boston, MA, USA
| | - Ari D. Kappel
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Pablo A. Valdes
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Walid Ibn Essayed
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Neil V. Klinger
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kyung-Don Kang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stacie K. Totsch
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hannah E. Olsen
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles W. Schlappi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children’s Hospital Cancer Center, Boston, MA, USA
| | - Katharina Filipski
- Neurological Institute (Edinger Institute), University Hospital, Frankfurt Am Main, Germany
- German Cancer Consortium (DKTK), Germany and German Cancer Research Center (DFKZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- University Cancer Center (UCT), Frankfurt, Germany
| | - Florian A. Gessler
- Department of Neurosurgery, University Medicine Rostock, Rostock, Germany
| | - Lissa Baird
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mariella G. Filbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children’s Hospital Cancer Center, Boston, MA, USA
| | - Rintaro Hashizume
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Oren J. Becher
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, the Mount Sinai Hospital, NY, NY, USA
| | - Gregory K. Friedman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Recent Advances and Challenges in Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14163972. [PMID: 36010965 PMCID: PMC9406446 DOI: 10.3390/cancers14163972] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Immunotherapy helps a person’s immune system to target tumor cells. Recent advances in cancer immunotherapy, including immune checkpoint inhibition, chimeric antigen receptor T-cell therapy and cancer vaccination, have changed the landscape of cancer treatment. These approaches have had profound success in certain cancer types but still fail in the majority of cases. This review will cover both successes and current challenges in cancer immunotherapy, as well as recent advances in the field of basic tumor immunology that will allow us to overcome resistance to existing treatments. Abstract Cancer immunotherapy has revolutionized the field of oncology in recent years. Harnessing the immune system to treat cancer has led to a large growth in the number of novel immunotherapeutic strategies, including immune checkpoint inhibition, chimeric antigen receptor T-cell therapy and cancer vaccination. In this review, we will discuss the current landscape of immuno-oncology research, with a focus on elements that influence immunotherapeutic outcomes. We will also highlight recent advances in basic aspects of tumor immunology, in particular, the role of the immunosuppressive cells within the tumor microenvironment in regulating antitumor immunity. Lastly, we will discuss how the understanding of basic tumor immunology can lead to the development of new immunotherapeutic strategies.
Collapse
|
18
|
Mazzarella L, Enblad G, Olweus J, Malmberg KJ, Jerkeman M. Advances in immune therapies in hematological malignancies. J Intern Med 2022; 292:205-220. [PMID: 34624160 DOI: 10.1111/joim.13395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Immunotherapy in cancer takes advantage of the exquisite specificity, potency, and flexibility of the immune system to eliminate alien tumor cells. It involves strategies to activate the entire immune defense, by unlocking mechanisms developed by tumor cells to escape from surrounding immune cells, as well as engineered antibody and cellular therapies. What is important to note is that these are therapeutics with curative potential. The earliest example of immune therapy is allogeneic stem cell transplantation, introduced in 1957, which is still an important modality in hematology, most notably in myeloid malignancies. In this review, we discuss developmental trends of immunotherapy in hematological malignancies, focusing on some of the strategies that we believe will have the most impact on future clinical practice in this field. In particular, we delineate novel developments for therapies that have already been introduced into the clinic, such as immune checkpoint inhibition and chimeric antigen receptor T-cell therapies. Finally, we discuss the therapeutic potential of emerging strategies based on T-cell receptors and adoptive transfer of allogeneic natural killer cells.
Collapse
Affiliation(s)
- Luca Mazzarella
- Department of Experimental Oncology, European Institute of Oncology, Milano, Italy
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala University, Sweden
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mats Jerkeman
- Department of Oncology, Skane University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Gill S, Nowak AK, Bowyer S, Endersby R, Ebert MA, Cook A. Clinical evidence for synergy between immunotherapy and radiotherapy (SITAR). J Med Imaging Radiat Oncol 2022; 66:881-895. [PMID: 35699321 PMCID: PMC9543060 DOI: 10.1111/1754-9485.13441] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022]
Abstract
Previous preclinical and clinical trials have shown promising antitumour activity and toxicity profile when employing the 'Synergy between Immunotherapy and Radiotherapy' (SITAR) strategy. Approximately, one in seven radiation therapy studies currently recruiting is investigating SITAR. This article reviews the range of cancers known to respond to immunotherapy and publications analysing SITAR. It sets the background for work that needs to be done in future clinical trials. It also reviews the potential toxicities of immunotherapy and discusses areas where caution is required when combining treatments.
Collapse
Affiliation(s)
- Suki Gill
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia
| | - Anna K Nowak
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia.,Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - Samantha Bowyer
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia
| | - Raelene Endersby
- University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Martin A Ebert
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia
| | - Alistair Cook
- University of Western Australia, Crawley, Western Australia, Australia.,Institute for Respiratory Health, Nedlands, Western Australia, Australia
| |
Collapse
|
20
|
Mulvey A, Muggeo-Bertin E, Berthold DR, Herrera FG. Overcoming Immune Resistance With Radiation Therapy in Prostate Cancer. Front Immunol 2022; 13:859785. [PMID: 35603186 PMCID: PMC9115849 DOI: 10.3389/fimmu.2022.859785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/31/2022] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer is the second most common cancer in men and represents a significant healthcare burden worldwide. Therapeutic options in the metastatic castration-resistant setting remain limited, despite advances in androgen deprivation therapy, precision medicine and targeted therapies. In this review, we summarize the role of immunotherapy in prostate cancer and offer perspectives on opportunities for future development, based on current knowledge of the immunosuppressive tumor microenvironment. Furthermore, we discuss the potential for synergistic therapeutic strategies with modern radiotherapy, through modulation of the tumor microenvironment. Emerging clinical and pre-clinical data suggest that radiation can convert immune desert tumors into an inflamed immunological hub, potentially sensitive to immunotherapy.
Collapse
Affiliation(s)
- Arthur Mulvey
- Department of Oncology, Medical Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Department of Oncology, Immuno-Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Emilien Muggeo-Bertin
- Department of Oncology, Radiation Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Dominik R Berthold
- Department of Oncology, Medical Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Fernanda G Herrera
- Department of Oncology, Immuno-Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Department of Oncology, Radiation Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Ludwig Institute for Cancer Research - Lausanne Branch, Lausanne, Switzerland
| |
Collapse
|
21
|
Jia Q, Wang A, Yuan Y, Zhu B, Long H. Heterogeneity of the tumor immune microenvironment and its clinical relevance. Exp Hematol Oncol 2022; 11:24. [PMID: 35461288 PMCID: PMC9034473 DOI: 10.1186/s40164-022-00277-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/10/2022] [Indexed: 02/08/2023] Open
Abstract
During the course of tumorigenesis and subsequent metastasis, malignant cells gradually diversify and become more heterogeneous. Consequently, the tumor mass might be infiltrated by diverse immune-related components, including the cytokine/chemokine environment, cytotoxic activity, or immunosuppressive elements. This immunological heterogeneity is universally presented spatially or varies temporally along with tumor evolution or therapeutic intervention across almost all solid tumors. The heterogeneity of anti-tumor immunity shows a profound association with the progression of disease and responsiveness to treatment, particularly in the realm of immunotherapy. Therefore, an accurate understanding of tumor immunological heterogeneity is essential for the development of effective therapies. Facilitated by multi-regional and -omics sequencing, single cell sequencing, and longitudinal liquid biopsy approaches, recent studies have demonstrated the potential to investigate the complexity of immunological heterogeneity of the tumors and its clinical relevance in immunotherapy. Here, we aimed to review the mechanism underlying the heterogeneity of the immune microenvironment. We also explored how clinical assessments of tumor heterogeneity might facilitate the development of more effective personalized therapies.
Collapse
Affiliation(s)
- Qingzhu Jia
- Institute of Cancer, Xinqiao Hospital, Army Military Medical University, Xinqiao Main Street, Chongqing, 400037, China.,Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Aoyun Wang
- Institute of Cancer, Xinqiao Hospital, Army Military Medical University, Xinqiao Main Street, Chongqing, 400037, China.,Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yixiao Yuan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Army Military Medical University, Xinqiao Main Street, Chongqing, 400037, China. .,Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Army Military Medical University, Xinqiao Main Street, Chongqing, 400037, China. .,Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
22
|
Miao L, Zhang J, Zhang Z, Wang S, Tang F, Teng M, Li Y. A Bibliometric and Knowledge-Map Analysis of CAR-T Cells From 2009 to 2021. Front Immunol 2022; 13:840956. [PMID: 35371087 PMCID: PMC8971369 DOI: 10.3389/fimmu.2022.840956] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
ObjectivesA bibliometric and knowledge-map analysis is used to explore hotspots’ evolution and development trends in the CAR-T cell field. By looking for research hotspots and new topics, we can provide new clues and ideas for researchers in this field.MethodsThe articles and reviews regarding CAR-T cells were retrieved and obtained from the Web of Science Core Collection (WOSCC) on October 28th, 2021. CtieSpace [version 5.8.R3 (64-bit)] and VOSviewer (version 1.6.17) were used to conduct the bibliometric and knowledge-map analysis.Results660 authors from 488 institutions in 104 countries/regions published 6,867 papers in 1,212 academic journals. The United States was absolutely in the leading position in this research field. The institution that contributed the most publications was the University of Pennsylvania. Carl H June published the most articles, while Shannon L Maude had the most co-citations. However, there was little cooperation between countries. After 2012, cooperation among various institutions was also small. The journals that published the most CAR-T cell-related papers were Frontiers in immunology and Cancers. Nevertheless, Blood and The New England Journal of Medicine were the most commonly co-cited journals. The most influential research hotspots were the research of CAR-T cells in hematological malignancies, the related research of cytokine release syndrome (CRS), CD19, and the anti-tumor activity and efficacy of CAR-T cells. The latest hotspots and topics included the study of CAR-T cells in solid tumors, universal CAR-T cells, CAR-NK cells, CD22, and anakinra (the IL-1 receptor antagonist). The research of CAR-T cells in solid tumors was a rapidly developing hot field. Emerging topics in this field mainly included the study of CAR-T cells in glioblastoma (related targets: IL13Rα2, EGFRvIII, and HER2), neuroblastoma (related target: GD2), sarcoma (related target: HER2), and pancreatic cancer (related target: mesothelin), especially glioblastoma.ConclusionAs an anti-tumor therapy with great potential and clinical application prospects, CAR-T cell therapy is still in a stage of rapid development. The related field of CAR-T cells will remain a research hotspot in the future.
Collapse
Affiliation(s)
- Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Juan Zhang
- Department of Hematology, Fifth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Song Wang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Futian Tang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Muzhou Teng
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
- Lanzhou University, Lanzhou, China
- *Correspondence: Yumin Li, ; Muzhou Teng,
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
- Lanzhou University, Lanzhou, China
- *Correspondence: Yumin Li, ; Muzhou Teng,
| |
Collapse
|