1
|
Saadh MJ, Hamid JA, Malathi H, Kazmi SW, Omar TM, Sharma A, Kumar MR, Aggarwal T, Sead FF. SNHG family lncRNAs: Key players in the breast cancer progression and immune cell's modulation. Exp Cell Res 2025; 447:114531. [PMID: 40118265 DOI: 10.1016/j.yexcr.2025.114531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
Breast cancer, a highly prevalent form of cancer worldwide, has observed a steady increase in its prevalence over the past few decades. This rise can be attributed to the complex nature of the disease, characterized by its heterogeneity, ability to metastasize, and resistance to various treatment. In the field of cancer research, long non-coding RNAs (lncRNAs) are of special interest, which play an important role in the development and progression of various tumors, including breast cancer. LncRNAs affect the tumor microenvironment by attracting diverse immunosuppressive factors and controlling the differentiation of immune cells, often referred to as myeloid and lymphoid cells, which contributes to immune escape of tumor cells. Among the lncRNA families, the small nucleolar RNA host gene (SNHG) family has been found to be dysregulated in breast cancer. These SNHGs have been implicated in crucial cellular processes such as cell proliferation, invasion, migration, resistance to therapies, apoptosis, as well as immune cell regulation and differentiation. Consequently, they have great potential as diagnostic and prognostic biomarkers as well as potential therapeutic targets for breast cancer. In this comprehensive review, we aim to summarize the recent advances in the study of SNHGs in breast cancer pathogenesis and their role in regulating the activity of immune cells in the tumor microenvironment through affecting SNHGs/miRNA/mRNA pathways, with the aim of providing new insights into the treatment of breast cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Nineveh, Iraq
| | - Ashish Sharma
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Tushar Aggarwal
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Fadhil Feez Sead
- Department of Dentistry, College of Dentistry, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
2
|
Zhou S, Cheng W, Liu Y, Gao H, Yu L, Zeng Y. MiR-125b-5p alleviates pulmonary fibrosis by inhibiting TGFβ1-mediated epithelial-mesenchymal transition via targeting BAK1. Respir Res 2024; 25:382. [PMID: 39427175 PMCID: PMC11491022 DOI: 10.1186/s12931-024-03011-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
This study explores the role and potential mechanisms of microRNA-125b-5p (miR-125b-5p) in pulmonary fibrosis (PF). PF is a typical outcome of many chronic lung diseases, with poor prognosis and the lack of appropriate medical treatment because PF's molecular mechanisms remain poorly understood. In this study, using in vitro and in vivo analyses, we find that miR-125b-5p is likely a potent regulator of lung fibrosis. The findings reveal that, on the one hand, miR-125b-5p not only specifically decreases in the epithelial-mesenchymal transition (EMT) of lung epithelial cells, but also shows a downregulation trend in the lung tissues of mice with PF. On the other hand, overexpression of miR-125b-5p on the cellular and animal levels downregulates EMT and fibrotic phenotypes, respectively. To clarify the molecular mechanism of the "therapeutic" effect of miR-125b-5p, we use the target prediction tool combined with a dual luciferase assay and complete a rescue experiment by constructing the overexpression vector of the target gene Bcl-2 homologous antagonist/ killer (BAK1), thus confirming that miR-125b-5p can effectively inhibit EMT and fibrosis process by targeting BAK1 gene. MiR-125b-5p inhibits the EMT in lung epithelial cells by negatively regulating BAK1, while overexpression of miR-125b-5p can alleviate lung fibrosis. The findings suggest that MiR-125b-5p/BAK1 can serve as a potential treatment target for PF.
Collapse
Affiliation(s)
- Shuang Zhou
- The Second Clinical Medical School of Fujian Medical University, Quanzhou, Fujian Province, China
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Wenzhao Cheng
- Fujian Provincial Key Laboratory of Lung Stem Cells, Stem Cell Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yifei Liu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Hongzhi Gao
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Liying Yu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| | - Yiming Zeng
- Fujian Provincial Key Laboratory of Lung Stem Cells, Stem Cell Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, China.
| |
Collapse
|
3
|
Suri C, Swarnkar S, Bhaskar LVKS, Verma HK. Non-Coding RNA as a Biomarker in Lung Cancer. Noncoding RNA 2024; 10:50. [PMID: 39452836 PMCID: PMC11514784 DOI: 10.3390/ncrna10050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Lung cancer remains one of the most prevalent and deadly cancers globally, with high mortality rates largely due to late-stage diagnosis, aggressive progression, and frequent recurrence. Despite advancements in diagnostic techniques and therapeutic interventions, the overall prognosis for lung cancer patients continues to be dismal. METHOD Emerging research has identified non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs, and circular RNAs, as critical regulators of gene expression, significantly influencing cancer biology. These ncRNAs play pivotal roles in various aspects of lung cancer pathogenesis, including tumor initiation, progression, metastasis, and resistance to therapy. RESULTS We provide a comprehensive analysis of the current understanding of ncRNAs in lung cancer, emphasizing their potential as biomarkers for early diagnosis, prognostication, and the prediction of the therapeutic response. We explore the biological functions of ncRNAs, their involvement in key oncogenic pathways, and the molecular mechanisms by which they modulate gene expression and cellular processes in lung cancer. Furthermore, this review highlights recent advances in ncRNA-based diagnostic tools and therapeutic strategies, such as miRNA mimics and inhibitors, lncRNA-targeted therapies, and circRNA-modulating approaches, offering promising avenues for personalized medicine. CONCLUSION Finally, we discuss the challenges and future directions in ncRNA research, including the need for large-scale validation studies and the development of efficient delivery systems for ncRNA-based therapies. This review underscores the potential of ncRNAs to revolutionize lung cancer management by providing novel diagnostic and therapeutic options that could improve patient outcomes.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Shashikant Swarnkar
- Department of Biochemistry, C.C.M. Medical College, Bhilai 490020, Chhattisgarh, India;
| | - LVKS Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, Chhattisgarh, India;
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of lungs Health and Immunity, Comprehensive Pnemology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
- Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
4
|
Qattan A, Al-Tweigeri T, Suleman K, Alkhayal W, Tulbah A. Advanced Insights into Competitive Endogenous RNAs (ceRNAs) Regulated Pathogenic Mechanisms in Metastatic Triple-Negative Breast Cancer (mTNBC). Cancers (Basel) 2024; 16:3057. [PMID: 39272915 PMCID: PMC11394539 DOI: 10.3390/cancers16173057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Triple-negative breast cancer is aggressive and challenging to treat because of a lack of targets and heterogeneity among tumors. A paramount factor in the mortality from breast cancer is metastasis, which is driven by genetic and phenotypic alterations that drive epithelial-mesenchymal transition, stemness, survival, migration and invasion. Many genetic and epigenetic mechanisms have been identified in triple-negative breast cancer that drive these metastatic phenotypes; however, this knowledge has not yet led to the development of effective drugs for metastatic triple-negative breast cancer (mTNBC). One that may not have received enough attention in the literature is post-translational regulation of broad sets of cancer-related genes through inhibitory microRNAs and the complex competitive endogenous RNA (ceRNA) regulatory networks they are influenced by. This field of study and the resulting knowledge regarding alterations in these networks is coming of age, enabling translation into clinical benefit for patients. Herein, we review metastatic triple-negative breast cancer (mTNBC), the role of ceRNA network regulation in metastasis (and therefore clinical outcomes), potential approaches for therapeutic exploitation of these alterations, knowledge gaps and future directions in the field.
Collapse
Affiliation(s)
- Amal Qattan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Taher Al-Tweigeri
- Department of Medical Oncology, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Kausar Suleman
- Department of Medical Oncology, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Wafa Alkhayal
- Department of Surgery, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Asma Tulbah
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
5
|
Katsaraki K, Kontos CK, Ardavanis-Loukeris G, Tzovaras AA, Sideris DC, Scorilas A. Exploring the time-dependent regulatory potential of microRNAs in breast cancer cells treated with proteasome inhibitors. Clin Transl Oncol 2024; 26:1256-1267. [PMID: 38038871 PMCID: PMC11026233 DOI: 10.1007/s12094-023-03349-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE Breast cancer (BrCa) is a predominant type of cancer with a disparate molecular nature. MicroRNAs (miRNAs) have emerged as promising key players in the regulation of pathological processes in BrCa. Proteasome inhibitors (PIs) emerged as promising anticancer agents for several human malignancies, including BrCa, inhibiting the function of the proteasome. Aiming to shed light on the miRNA regulatory effect in BrCa after treatment with PIs, we used two PIs, namely bortezomib and carfilzomib. MATERIALS AND METHODS Four BrCa cell lines of distinct molecular subtypes were treated with these PIs. Cell viability and IC50 concentrations were determined. Total RNA was extracted, polyadenylated, and reversely transcribed. Next, the levels of specific miRNAs with a significant role in BrCa were determined using relative quantification, and their regulatory effect was assessed. RESULTS High heterogeneity was discovered in the levels of miRNAs in the four cell lines, after treatment. The miRNA levels fluctuate with distinct patterns, in 24, 48, or 72 hours. Interestingly, miR-1-3p, miR-421-3p, and miR-765-3p appear as key molecules, as they were found deregulated, in almost all combinations of cell lines and PIs. In the SK-BR-3 cell line, the majority of the miRNAs were significantly downregulated in treated compared to untreated cells, with miR-21-5p being the only one upregulated. Finally, various significant biological processes, molecular functions, and pathways were predicted to be affected. CONCLUSIONS The diversity of pathways predicted to be affected by the diversity in miRNA expression after treatment with PIs paves the way for the recognition of new regulatory axes in BrCa.
Collapse
Affiliation(s)
- Katerina Katsaraki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece.
| | - Gerasimos Ardavanis-Loukeris
- First Department of Medical Oncology, "Saint Savvas" General Anticancer Hospital of Athens, 11522, Athens, Greece
| | - Alexandros A Tzovaras
- First Department of Medical Oncology, "Saint Savvas" General Anticancer Hospital of Athens, 11522, Athens, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| |
Collapse
|
6
|
Qattan A. Genomic Alterations Affecting Competitive Endogenous RNAs (ceRNAs) and Regulatory Networks (ceRNETs) with Clinical Implications in Triple-Negative Breast Cancer (TNBC). Int J Mol Sci 2024; 25:2624. [PMID: 38473871 DOI: 10.3390/ijms25052624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The concept of competitive endogenous RNA regulation has brought on a change in the way we think about transcriptional regulation by miRNA-mRNA interactions. Rather than the relatively simple idea of miRNAs negatively regulating mRNA transcripts, mRNAs and other non-coding RNAs can regulate miRNAs and, therefore, broad networks of gene products through competitive interactions. While this concept is not new, its significant roles in and implications on cancer have just recently come to light. The field is now ripe for the extrapolation of technologies with a substantial clinical impact on cancer. With the majority of the genome consisting of non-coding regions encoding regulatory RNAs, genomic alterations in cancer have considerable effects on these networks that have been previously unappreciated. Triple-negative breast cancer (TNBC) is characterized by high mutational burden, genomic instability and heterogeneity, making this aggressive breast cancer subtype particularly relevant to these changes. In the past few years, much has been learned about the roles of competitive endogenous RNA network regulation in tumorigenesis, disease progression and drug response in triple-negative breast cancer. In this review, we present a comprehensive view of the new knowledge and future perspectives on competitive endogenous RNA networks affected by genomic alterations in triple-negative breast cancer. An overview of the competitive endogenous RNA (ceRNA) hypothesis and its bearing on cellular function and disease is provided, followed by a thorough review of the literature surrounding key competitive endogenous RNAs in triple-negative breast cancer, the genomic alterations affecting them, key disease-relevant molecular and functional pathways regulated by them and the clinical implications and significance of their dysregulation. New knowledge of the roles of these regulatory mechanisms and the current acceleration of research in the field promises to generate insights into the diagnosis, classification and treatment of triple-negative breast cancer through the elucidation of new molecular mechanisms, therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Amal Qattan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
7
|
Hu J, Chen K, Hong F, Gao G, Dai X, Yin H. METTL3 facilitates stemness properties and tumorigenicity of cancer stem cells in hepatocellular carcinoma through the SOCS3/JAK2/STAT3 signaling pathway. Cancer Gene Ther 2024; 31:228-236. [PMID: 38030810 DOI: 10.1038/s41417-023-00697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
Liver cancer stem cells (LCSCs) contribute to tumor recurrence and cancer cell proliferation in patients with hepatocellular carcinoma (HCC). METTL3-catalyzed m6A modification is relevant to the cancer stem cell (CSC) phenotype, including LCSCs. LCSCs were isolated from MHCC-97H and HepG2 cells through flow cytometry. UALCAN data were used to analyze the expression of METTL3 in liver hepatocellular carcinoma (LIHC) tissues. Loss- and gain-of-function experiments were utilized to assess the biological effects of METTL3 and SOCS3 on the proliferation and stemness phenotypes in vitro and in vivo. The mechanisms underlying the impact of METTL3 were explored using qPCR, MeRIP-qPCR, dual-luciferase reporter, and western blot assays. METTL3 was significantly upregulated in LIHC tissues according to the UALCAN database. METTL3 was highly expressed in LIHC and was significantly correlated with individual cancer stage, tumor grade and lymph node metastasis. Patients with low METTL3 expression had a longer overall survival time based on the data from UALCAN. In addition, the level of METTL3 was enhanced in LCSCs and decreased in non-LCSCs compared to HCC cells. Moreover, overexpression of METTL3 stimulated the proliferation and stemness of LCSCs in vitro and in vivo, while loss of METTL3 impeded it. Bioinformatics analysis combined with validation experiments determined that m6A was modified by METTL3-targeting SOCS3 mRNA. METTL3 had side effects regarding the stability of SOCS3 mRNA. SOCS3 overexpression impaired and SOCS3 depletion facilitated the development of LCSCs via the JAK2/STAT3 pathway. Furthermore, METTL3 depletion suppressed proliferation and stemness in LCSCs, which was restored by SOCS3 knockdown or colivelin treatment. We discovered that METTL3 facilitated the stemness and tumorigenicity of LCSCs by modifying SOCS3 mRNA with m6A.
Collapse
Affiliation(s)
- Jingjing Hu
- Department of Ultrasonography, Ningbo No. 2 Hospital, 315010, Ningbo, Zhejiang Province, P. R. China
| | - Ke Chen
- Ningbo City College of Vocational Technology, 315100, Ningbo, Zhejiang Province, P. R. China
| | - Fangfang Hong
- Department of Ultrasonography, Ningbo No. 2 Hospital, 315010, Ningbo, Zhejiang Province, P. R. China
| | - Guosheng Gao
- Clinical Laboratory, Ningbo No. 2 Hospital, 315010, Ningbo, Zhejiang Province, P. R. China
| | - Xiaoyu Dai
- Department of Anorectal Surgery, Ningbo No. 2 Hospital, 315010, Ningbo, Zhejiang Province, P. R. China
| | - Hua Yin
- Department of Ultrasonography, Ningbo No. 2 Hospital, 315010, Ningbo, Zhejiang Province, P. R. China.
| |
Collapse
|
8
|
Khan K, Irfan M, Sattar AA, Faiz MB, Rahman AU, Athar H, Calina D, Sharifi-Rad J, Cho WC. LncRNA SNHG6 role in clinicopathological parameters in cancers. Eur J Med Res 2023; 28:363. [PMID: 37735423 PMCID: PMC10515066 DOI: 10.1186/s40001-023-01358-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
RNA sequencing has revealed that a substantial portion of the human genome undergoes transcription, yet a minimal fraction of these transcripts translates into proteins. LncRNAs, RNA molecules less than 200 nt in length, once deemed as transcriptional noise, have now emerged as crucial regulators of numerous cellular processes. This review focuses on the lncRNA SNHG6, aiming to elucidate its biogenesis, the pivotal roles it plays, and its mechanisms in facilitating the hallmarks of cancer. A comprehensive literature review and analysis were undertaken to delve into the biogenesis of SNHG6, its roles in cellular processes, and the mechanisms through which it contributes to the hallmarks of cancer. SNHG6 is a notable lncRNA, observed to be overexpressed in various cancer types; its perturbation has been linked to tumor progression, emphasizing its significance in oncogenesis. This lncRNA contributes to a range of cellular aberrations, influencing transcriptional, post-transcriptional, and epigenetic processes of mRNA, ultimately driving cancerous transformations. LncRNA SNHG6 serves as a potential biomarker and therapeutic target due to its association with tumorigenesis. Understanding its mechanism and role in cancer can pave the way for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Muhammad Irfan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Areej Abdul Sattar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Manal Bint Faiz
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Anees ur Rahman
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Hafsa Athar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
9
|
Yuan L, Xiao Z, Lu R. Hypoxanthine guanine phosphoribosyltransferase 1, a target of miR-125b-5p, promotes cell proliferation and invasion in head and neck squamous cell carcinoma. Heliyon 2023; 9:e20174. [PMID: 37810145 PMCID: PMC10559962 DOI: 10.1016/j.heliyon.2023.e20174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The mechanism of hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1) upregulation and its function in head and neck squamous cell carcinoma (HNSCC) remains obscure. Herein, the expression and function of HPRT1 and the mechanism underlying its upregulation in HNSCC were explored. Firstly, the expression of HPRT1 and its prognostic values were simultaneously validated using bioinformatic analysis and quantitative real-time PCR (qRT-PCR), and immunohistochemistry staining with local HNSCC samples. The effects of HPRT1 knockdown on proliferation and invasion of HNSCC cells were detected using cell counting kit-8 (CCK-8), plate clone formation, Transwell invasion, nude mouse xenograft model assays. Moreover, the miRNA targeting HPRT1 was validated using dual-luciferase report assay, qRT-PCR and Western blot analysis. The functions of miRNA targeting HPRT1 and its dependence on HPRT1 were further investigated in HNSCC. The results indicated that HPRT1 was highly expressed in HNSCC tissues and cells, which positively correlated with advanced tumor progression and predicted poor prognosis in patients with HNSCC. HPRT1 knockdown markedly inhibited proliferation and invasion of HNSCC cells both in vitro and in vivo. MiR-125b-5p, which was downregulated and positively correlated with a favorable outcome for patients, directly targeted and downregulated HPRT1 expression, and subsequently suppressed cell proliferation and invasion in HNSCC. Collectively, the present study demonstrates that HPRT1 upregulation, at least partially caused by miR-125b-5p downregulation, could promote the malignant progression of HNSCC, highlighting the potential application of the miR-125b-5p/HPRT1 axis as a novel indicator and target in the diagnosis and treatment of HNSCC.
Collapse
Affiliation(s)
- Li Yuan
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiqiang Xiao
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruohuang Lu
- Department of Stomatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Yang Y, Chen Y, Liu J, Zhang B, Yang L, Xue J, Zhang Z, Qin L, Bian R. MiR-125b-5p/STAT3 Axis Regulates Drug Resistance in Osteosarcoma Cells by Acting on ABC Transporters. Stem Cells Int 2023; 2023:9997676. [PMID: 37159751 PMCID: PMC10163973 DOI: 10.1155/2023/9997676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
Background The poor prognosis of the highly malignant tumor osteosarcoma stems from its drug resistance and therefore exploring its resistance mechanisms will help us identify more effective treatment options. However, the effects of miR-125b-5p on drug resistance in osteosarcoma cells are still unclear. Methods To study the effects of miR-125b-5p on drug resistance in osteosarcoma cells. Osteosarcoma-resistant miR-125b-5p was obtained from the databases GeneCards and g:Profiler. CCK8, western blot, and transwell were applied for the detection of the miR-125b-5p effects on proliferation, migration, invasion, apoptosis, and drug resistance in osteosarcoma. Bioinformatics is aimed at demonstrating the targeting factor miR-125b-5p, performing protein interaction enrichment analysis by Metascape, and finally validating by binding sites. Results Upregulation of miR-125b-5p restrains proliferation, migration, and invasion of osteosarcoma and promotes apoptosis. In addition, miR-125b-5p can restore drug sensitivity in drug-resistant osteosarcoma. miR-125-5p restrains the signal transducer and inhibits the transcription 3 (STAT3) expression activator via targeting its 3'-UTR. STAT3 affects drug-resistant osteosarcoma to regulate the ABC transporter. Conclusion miR-125b-5p/STAT3 axis mediates the drug resistance of osteosarcoma by acting on ABC transporter.
Collapse
Affiliation(s)
- Yang Yang
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province 226001, China
| | - Yueyuan Chen
- Department of Oncology, Second People's Hospital of Nantong, Nantong City, 226001 Jiangsu Province, China
| | - Jiajia Liu
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province 226001, China
| | - Bo Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province 226001, China
| | - Linlin Yang
- Department of Oncology, Sheyang People's Hospital, Yancheng City, Jiangsu Province 224300, China
| | - Jianhua Xue
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province 226001, China
| | - Zexu Zhang
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province 226001, China
| | - Lili Qin
- Department of Endoscopic Center, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province 226001, China
| | - Rongpeng Bian
- Department of Orthopedic Surgery, The Fourth Affiliated Hospital of Nantong University, Yancheng City, Jiangsu Province 224000, China
- Department of Orthopedic Surgery, The First People's Hospital of Yancheng, Yancheng City, Jiangsu Province 224000, China
| |
Collapse
|
11
|
Liu Y, Cheng X, Xi P, Zhang Z, Sun T, Gong B. Bioinformatic analysis highlights SNHG6 as a putative prognostic biomarker for kidney renal papillary cell carcinoma. BMC Urol 2023; 23:54. [PMID: 37004005 PMCID: PMC10067223 DOI: 10.1186/s12894-023-01218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
PURPOSE Kidney renal papillary cell carcinoma (KIRP) is a highly heterogeneous malignancy and current systemic therapeutic strategies are difficult to achieve a satisfactory outcome for advanced disease. Meanwhile, there is a lack of effective biomarkers to predict the prognosis of KIRP. METHODS Using TCGA, GTEx, UALCAN, TIMER, TIMER 2.0 and STRING databases, we analyzed the relationship of SNHG6 with KIRP subtypes, tumor-infiltrating immune cells and potential target mRNAs. Based on TCGA data, ROC curves, Kaplan-Meier survival analysis and COX regression analysis were performed to evaluate the diagnostic and prognostic value of SNHG6 in KIRP. Nomogram was used to predict 3- and 5-year disease-specific survival in KIRP patients. In addition, with the help of Genetic ontology and Gene set enrichment analysis, the biological processes and signalling pathways that SNHG6 may be involved in KIRP were initially explored. RESULTS In patients with KIRP, SNHG6 was significantly upregulated and associated with a more aggressive subtype (lymph node involvement, pathological stage IV, CIMP phenotype) and poor prognosis. The ROC curve showed good diagnostic efficacy (AUC value: 0.828) and the C-index of the Nomogram for predicting DSS at 3 and 5 years was 0.920 (0.898-0.941). In the immune microenvironment of KIRP, SNHG6 expression levels were negatively correlated with macrophage abundance and positively correlated with cancer-associated fibroblasts. Furthermore, SNHG6 may promote KIRP progression by regulating the expression of molecules such as AURKB, NDC80, UBE2C, NUF2, PTTG1, CENPH, SPC25, CDCA3, CENPM, BIRC5, TROAP, EZH2. Last, GSEA suggests that SNHG6 may be involved in the regulation of the PPAR signalling pathway and the SLIT/ROBO signalling pathway. CONCLUSIONS Our analysis suggests that a high SNHG6 expression status in KIRP is associated with a poorer prognosis for patients, and also elucidates some potential mechanisms contributing to this poorer outcome. This may provide new insights into the treatment and management of KIRP in the foreseeable future.
Collapse
Affiliation(s)
- Yifu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, China
| | - Xiaofeng Cheng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, China
| | - Ping Xi
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, China
| | - Zhicheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, China
| | - Binbin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
- Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
12
|
Wu Z, Wei W, Fan H, Gu Y, Li L, Wang H. Integrated Analysis of Competitive Endogenous RNA Networks in Acute Ischemic Stroke. Front Genet 2022; 13:833545. [PMID: 35401659 PMCID: PMC8990852 DOI: 10.3389/fgene.2022.833545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/25/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Acute ischemic stroke (AIS) is a severe neurological disease with complex pathophysiology, resulting in the disability and death. The goal of this study is to explore the underlying molecular mechanisms of AIS and search for new potential biomarkers and therapeutic targets. Methods: Integrative analysis of mRNA and miRNA profiles downloaded from Gene Expression Omnibus (GEO) was performed. We explored differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMirs) after AIS. Target mRNAs of DEMirs and target miRNAs of DEGs were predicted with target prediction tools, and the intersections between DEGs and target genes were determined. Subsequently, Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses, Gene set enrichment analysis (GSEA), Gene set variation analysis (GSVA), competitive endogenous RNA (ceRNA) (lncRNA-miRNA-mRNA) network, protein–protein interaction (PPI) network, and gene transcription factors (TFs) network analyses were performed to identify hub genes and associated pathways. Furthermore, we obtained AIS samples with evaluation of immune cell infiltration and used CIBERSORT to determine the relationship between the expression of hub genes and infiltrating immune cells. Finally, we used the Genomics of Drug Sensitivity in Cancer (GDSC) database to predict the effect of the identified targets on drug sensitivity. Result: We identified 293 DEGs and 26 DEMirs associated with AIS. DEGs were found to be mainly enriched in inflammation and immune-related signaling pathways through enrichment analysis. The ceRNA network included nine lncRNAs, 13 miRNAs, and 21 mRNAs. We used the criterion AUC >0.8, to screen a 3-gene signature (FBL, RPS3, and RPS15) and the aberrantly expressed miRNAs (hsa-miR-125a-5p, hsa-miR-125b-5p, hsa-miR-148b-3p, and hsa-miR-143-3p) in AIS, which were verified by a method of quantitative PCR (qPCR) in HT22 cells. T cells CD8, B cells naïve, and activated NK cells had statistical increased in number compared with the acute cerebral infarction group. By predicting the IC50 of the patient to the drug, AZD0530, Z.LLNle.CHO and NSC-87877 with significant differences between the groups were screened out. AIS demonstrated heterogeneity in immune infiltrates that correlated with the occurrence and development of diseases. Conclusion: These findings may contribute to a better understanding of the molecular mechanisms of AIS and provide the basis for the development of novel treatment targets in AIS.
Collapse
Affiliation(s)
- Zongkai Wu
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Wanyi Wei
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Hongzhen Fan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Yongsheng Gu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Litao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Hebo Wang
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
- *Correspondence: Hebo Wang, , https://orcid.org/0000-0002-0598-5772
| |
Collapse
|
13
|
WITHDRAWN: LINC01606 promotes nephroblastoma by suppressing miR-644b-3p that targets AK4. Biochem Biophys Res Commun 2022. [DOI: 10.1016/j.bbrc.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Qin S, Ning M, Liu Q, Ding X, Wang Y, Liu Q. Knockdown of long non-coding RNA CDKN2B-AS1 suppresses the progression of breast cancer by miR-122-5p/STK39 axis. Bioengineered 2021; 12:5125-5137. [PMID: 34374638 PMCID: PMC8806778 DOI: 10.1080/21655979.2021.1962685] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
The lncRNAs have been made certain to take part in the development of most cancers in multiple ways. Here, our purpose is to making observation of the biological role and function of lncRNA CDKN2B-AS1 in human breast cancer. Twenty-eight pairs of breast cancer tissue and adjacent normal tissue from breast cancer patients were used to investigate the expression of CDKN2B-AS1 by qRT-PCR. And a lentivirus-shRNA guided CDKN2B-AS1 were to reduce its expression. The function of CDKN2B-AS1 was analyzed using a series of in vitro assays. Meanwhile, the xenograft model was used to further explicate the role of CDKN2B-AS1 in breast cancer. As for the results, there is a relative rich expression of CDKN2B-AS1 in breast cancer tissues compared with the corresponding adjacent normal tissues. Compared with the human breast epithelial cell line, the abundant expression of CDKN2B-AS1 in breast cancer cells were revealed as well. Then, knockdown CDKN2B-AS1 inhibited the malignant biological behaviors of MCF7 and T47D cells. In mechanism, CDKN2B-AS1 sponged the miR-122-5p to regulate STK39 expression. Furthermore, the inhibition effect with sh-CDKN2B-AS1 on breast cancer cells was alleviated by miR-122-5p inhibitor. Last, an in vivo model also confirmed that knockdown CDKN2B-AS1 retarded the growth of breast cancer. Our data concluded that knockdown of CDKN2B-AS1 suppresses the progression of breast cancer by miR-122-5p/STK39 axis.
Collapse
Affiliation(s)
- Shaojie Qin
- The Third Departments of Tumor Surgery, General Hospital of Ningxia Medical University, Yinchuan City, Ningxia, China
| | - Mingliang Ning
- The Third Departments of Tumor Surgery, General Hospital of Ningxia Medical University, Yinchuan City, Ningxia, China
| | - Qingyuan Liu
- The Third Departments of Tumor Surgery, General Hospital of Ningxia Medical University, Yinchuan City, Ningxia, China
| | - Xiaoyun Ding
- The Third Departments of Tumor Surgery, General Hospital of Ningxia Medical University, Yinchuan City, Ningxia, China
| | - Yanbai Wang
- Cerebrospinal Fluid Laboratory; General Hospital of Ningxia Medical University, Yinchuan City, Ningxia, China
| | - Qilun Liu
- The Third Departments of Tumor Surgery, General Hospital of Ningxia Medical University, Yinchuan City, Ningxia, China
| |
Collapse
|
15
|
Shaath H, Elango R, Alajez NM. Molecular Classification of Breast Cancer Utilizing Long Non-Coding RNA (lncRNA) Transcriptomes Identifies Novel Diagnostic lncRNA Panel for Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13215350. [PMID: 34771513 PMCID: PMC8582428 DOI: 10.3390/cancers13215350] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Breast cancer is the most commonly diagnosed cancer in women today and accounts for thousands of cancer-related deaths each year. While some breast cancer subtypes can be easily diagnosed and targeted for therapy, triple-negative breast cancer, which lacks receptor expression, is the most challenging to diagnose and treat. In this study, we use multiple RNA sequencing data to look specifically at long non-coding RNA (lncRNA) expression portraits at the transcript level and to identify lncRNA-based biomarkers associated with each breast cancer subtype. Receiver operating characteristic (ROC) analysis was used to validate their diagnostic potential, which was validated in two independent cohorts. Several lncRNA transcripts were found to be enriched in TNBC across all validation cohorts. Binary regression analysis identified a four lncRNA transcript signature with the highest diagnostic power for TNBC as potential novel biomarkers for diagnostic and therapeutic intervention. Interestingly, several of the identified lncRNAs were shown to have prognostic potential in TNBC. Abstract Breast cancer remains the world’s most prevalent cancer, responsible for around 685,000 deaths globally despite international research efforts and advances in clinical management. While estrogen receptor positive (ER+), progesterone receptor positive (PR+), and human epidermal growth factor receptor positive (HER2+) subtypes are easily classified and can be targeted, there remains no direct diagnostic test for triple-negative breast cancer (TNBC), except for the lack of receptors expression. The identification of long non-coding RNAs (lncRNAs) and the roles they play in cancer progression has recently proven to be beneficial. In the current study, we utilize RNA sequencing data to identify lncRNA-based biomarkers associated with TNBC, ER+ subtypes, and normal breast tissue. The Marker Finder algorithm identified the lncRNA transcript panel most associated with each molecular subtype and the receiver operating characteristic (ROC) analysis was used to validate the diagnostic potential (area under the curve (AUC) of ≥8.0 and p value < 0.0001). Focusing on TNBC, findings from the discovery cohort were validated in an additional two cohorts, identifying 13 common lncRNA transcripts enriched in TNBC. Binary regression analysis identified a four lncRNA transcript signature (ENST00000425820.1, ENST00000448208.5, ENST00000521666.1, and ENST00000650510.1) with the highest diagnostic power for TNBC. The ENST00000671612.1 lncRNA transcript correlated with worse refractory free survival (RFS). Our data provides a step towards finding a novel diagnostic lncRNA-based panel for TNBC with potential therapeutic implications.
Collapse
Affiliation(s)
- Hibah Shaath
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar;
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar;
| | - Ramesh Elango
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar;
| | - Nehad M. Alajez
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar;
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar;
- Correspondence: ; Tel.: +974-4454-7252; Fax: +974-4454-0281
| |
Collapse
|