1
|
Zhang X, Xiao Y, Li A, Wang Y, Xu J, Chen K, Zheng H, Wu M, Xue C. Bibliometric analysis and visualization of research trends in radiation dermatitis in the past twenty years. Radiat Oncol 2025; 20:54. [PMID: 40234910 PMCID: PMC12001518 DOI: 10.1186/s13014-025-02629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
OBJECTIVES This study aims to explore the most influential countries/regions, institutions, journals, authors, keywords, and trends in the study of the mechanism and treatments of radiation dermatitis (RD) from 2003 to 2023 using bibliometric analysis. METHODS The literature associated with RD was retrieved from the Web of Science Core Collection, only articles and reviews in English were included. Individual articles were reviewed to identify the authorship, published journal, journal impact factor, institution and country of origin, and year of publication. RESULTS A total of 6,453 authors from 1,605 institutions in 64 countries/regions published 1,062 RD-related literature. The United States was the most productive country. The Unicancer in France was the institution that published the majority of articles on RD. Edward Chow was the most productive author and Supportive Care in Cancer contributed the most articles. Advanced head and neck cancer is the most common cause of RD. The mechanism research mainly focused on nitric oxide, oxidative stress, and apoptosis in recent years, and Mepitel film, Mepilex Lite, and PBMT were the main preventive and therapeutic measures for RD. CONCLUSION Our bibliometric studies provide a thorough overview of RD and valuable insights and ideas for scholars in this discipline.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Yuai Xiao
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Ang Li
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Yuchong Wang
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Jianguo Xu
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Kexin Chen
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Haoyuan Zheng
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Minliang Wu
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| | - Chunyu Xue
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
2
|
Liu C, Wei J, Wang X, Zhao Q, Lv J, Tan Z, Xin Y, Jiang X. Radiation-induced skin reactions: oxidative damage mechanism and antioxidant protection. Front Cell Dev Biol 2024; 12:1480571. [PMID: 39450273 PMCID: PMC11500330 DOI: 10.3389/fcell.2024.1480571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
According to official statistics, cancer remains the main reason of death and over 50% of patients with cancer receive radiotherapy. However, adverse consequences after radiation exposure like radiation-induced skin reactions (RISR) have negative or even fatal impact on patients' quality of life (QoL). In this review we summarize the mechanisms and managements of RISRs, a process that involve a variety of extracellular and intracellular signals, among which oxidative stress (OS) are now commonly believed to be the initial part of the occurrence of all types of RISRs. As for the management of RISRs, traditional treatments have been widely used but without satisfying outcomes while some promising therapeutic strategies related to OS still need further researches. In the context we discuss how OS leads to the happening of RISRs of different types, hoping it can shed some light on the exploration of new countermeasures.
Collapse
Affiliation(s)
- Chuchu Liu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jinlong Wei
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Xuanzhong Wang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Qin Zhao
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jincai Lv
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Zining Tan
- Key Laboratory of Pathobiology, Ministry of Education and College of Basic Medical Science, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education and College of Basic Medical Science, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| |
Collapse
|
3
|
Zhou L, Zhu J, Liu Y, Zhou P, Gu Y. Mechanisms of radiation-induced tissue damage and response. MedComm (Beijing) 2024; 5:e725. [PMID: 39309694 PMCID: PMC11413508 DOI: 10.1002/mco2.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Radiation-induced tissue injury (RITI) is the most common complication in clinical tumor radiotherapy. Due to the heterogeneity in the response of different tissues to radiation (IR), radiotherapy will cause different types and degrees of RITI, which greatly limits the clinical application of radiotherapy. Efforts are continuously ongoing to elucidate the molecular mechanism of RITI and develop corresponding prevention and treatment drugs for RITI. Single-cell sequencing (Sc-seq) has emerged as a powerful tool in uncovering the molecular mechanisms of RITI and for identifying potential prevention targets by enhancing our understanding of the complex intercellular relationships, facilitating the identification of novel cell phenotypes, and allowing for the assessment of cell heterogeneity and spatiotemporal developmental trajectories. Based on a comprehensive review of the molecular mechanisms of RITI, we analyzed the molecular mechanisms and regulatory networks of different types of RITI in combination with Sc-seq and summarized the targeted intervention pathways and therapeutic drugs for RITI. Deciphering the diverse mechanisms underlying RITI can shed light on its pathogenesis and unveil new therapeutic avenues to potentially facilitate the repair or regeneration of currently irreversible RITI. Furthermore, we discuss how personalized therapeutic strategies based on Sc-seq offer clinical promise in mitigating RITI.
Collapse
Affiliation(s)
- Lin Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Jiaojiao Zhu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yuhao Liu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yongqing Gu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunanChina
- College of Life SciencesHebei UniversityBaodingChina
| |
Collapse
|
4
|
Guo J, Zhang X, Mao R, Li H, Hao Y, Zhang J, Wang W, Zhang Y, Liu J. Multifunctional Glycopeptide-Based Hydrogel via Dual-Modulation for the Prevention and Repair of Radiation-Induced Skin Injury. ACS Biomater Sci Eng 2024; 10:5168-5180. [PMID: 39016069 DOI: 10.1021/acsbiomaterials.4c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The radiation-induced skin injury (RISI) remains a great challenge for clinical wound management and care after radiotherapy, as patients will suffer from the acute radiation injury and long-term chronic inflammatory damage during the treatment. The excessive ROS in the early acute stage and prolonged inflammatory response in the late healing process always hinder therapeutic efficiency. Herein, we developed an extracellular matrix (ECM)-mimetic multifunctional glycopeptide hydrogel (oCP@As) to promote and accelerate RISI repair via a dual-modulation strategy in different healing stages. The oCP@As hydrogel not only can form an ECM-like nanofiber structure through the Schiff base reaction but also exhibits ROS scavenging and DNA double-strand break repair abilities, which can effectively reduce the acute radiation damage. Meanwhile, the introduction of oxidized chondroitin sulfate, which is the ECM polysaccharide-like component, enables regulation of the inflammatory response by adsorption of inflammatory factors, accelerating the repair of chronic inflammatory injury. The animal experiments demonstrated that oCP@As can significantly weaken RISI symptoms, promote epidermal tissue regeneration and angiogenesis, and reduce pro-inflammatory cytokine expression. Therefore, this multifunctional glycopeptide hydrogel dressing can effectively attenuate RISI symptoms and promote RISI healing, showing great potential for clinical applications in radiotherapy protection and repair.
Collapse
Affiliation(s)
- Jiajun Guo
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiaoguang Zhang
- Tianjin Center for Medical Devices Evaluation and Inspection, Tianjin 300384, P. R. China
| | - Ruiqi Mao
- Tianjin Center for Medical Devices Evaluation and Inspection, Tianjin 300384, P. R. China
| | - Hui Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Yusen Hao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jiamin Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Wei Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, P. R. China
| | - Yumin Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| |
Collapse
|
5
|
Drishya S, Dhanisha SS, Raghukumar P, Guruvayoorappan C. Amomum subulatum fruits protect against radiation-induced esophagitis by regulating antioxidant status and inflammatory responses. Food Res Int 2023; 174:113582. [PMID: 37986451 DOI: 10.1016/j.foodres.2023.113582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Radiation esophagitis (RE) is an inimical event that requires proper management while carrying out radiotherapy for thoracic cancers. The present study investigates the protective effect of dry fruits of the culinary and folkloric spice Amomum subulatum against experimental thoracic radiation-induced esophagitis. C57BL/6 mice were subjected to 25 Gy whole thorax irradiation and administered with 250 mg/kg body weight of methanolic extract of A. subulatum dry fruits (MEAS) orally for four consecutive weeks. Changes in tissue antioxidant activities, oxidative stress parameters, expression of antioxidant, inflammation, and fibrosis-related genes were observed. Administration of MEAS boosted antioxidant status, thereby reducing radiation-induced oxidative stress in the esophagus. PCR (polymerase chain reaction) results showed decreased expression of apoptosis, inflammation, and fibrosis-associated genes as well as increased expression of vital cytoprotective and antioxidant genes in MEAS-treated mice, manifesting its protective effect against radiation-induced oxidative stress, inflammatory responses, and fibrosis in the esophagus. Further, histopathology, immunohistochemistry (Cyclooxygenase-2), and Masson's Trichrome staining ascertained the protective effect of MEAS in alleviating radiation-induced esophageal injury. The synergistic effect of bioactive phytochemicals in MEAS with potent antioxidant and anti-inflammatory efficacies might have contributed to its mitigating effect against RE. Taken together, our results ascertained the radioprotective potential of MEAS, suggesting its possible nutraceutical application as a radiation countermeasure.
Collapse
Affiliation(s)
- Sudarsanan Drishya
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus (Research Centre, University of Kerala), Thiruvananthapuram 695011, Kerala, India
| | - Suresh Sulekha Dhanisha
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus (Research Centre, University of Kerala), Thiruvananthapuram 695011, Kerala, India; Current affiliation: Department of Surgery, University of Alabama, Birmingham
| | - Paramu Raghukumar
- Division of Radiation Physics, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Chandrasekharan Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus (Research Centre, University of Kerala), Thiruvananthapuram 695011, Kerala, India.
| |
Collapse
|
6
|
Xu J, Zhu J, Zhao Q, Xue J, Qin S. Erb-(IL10)2 ameliorates radiation-induced skin injury through eliminate oxygen free radicals. PRECISION RADIATION ONCOLOGY 2023; 7:92-100. [PMID: 40337270 PMCID: PMC11935052 DOI: 10.1002/pro6.1193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/08/2023] [Indexed: 05/09/2025] Open
Abstract
Objective Radiation-induced skin injury (RISI) remains a serious concern during radiotherapy. IL-10 is considered as an immune suppressive cytokine by inhibiting the secretion of the proinflammatory cytokines in cells. The aim of this study was to evaluate the protective role of Erb (IL10) 2 against ionizing radiation. Methods We fused Interleukin 10 (IL-10) dimer onto an anti-epidermal growth factor receptor antibody Cetuximab (Erbitux) to form a new bispecific protein Erb-(IL10)2. The protective effect and biological activity of Erb-(IL10)2 was measured in model of RISI. Results Under the condition of 20 Gy irradiation, surviving cells in the IR group decreased significantly compared with the non-IR group (p = 0.0021). The survival rates of HaCaT (p = 0.0038) and WS1 (p = 0.0003) cells were significantly increased after IL-10 treatment. The apoptosis rates of HaCaT (p = 0.0048) and WS1 (p = 0.0074) cells in the IL-10 group were significantly lower compared to the NC group. Under 20 Gy irradiation conditions, IL-10 fusion protein reduced the level of reactive oxygen in HaCaT (p = 0.0046) and WS1 (p<0.0001) cells compared to the control group. Relatively normal granular mitochondrial morphology was observed in the IL-10 group after 20 Gy X-ray irradiation compared with the NC group. Ater 35 Gy electron radiation, the levels of reactive oxygen species in the skin tissue of C57/B6 mice injected with IL-10 fusion protein were significantly lower than those in the PBS group (p = 0.001). Compared with the PBS group and the other IL-10 groups, the group treated with 0.2 mg/kg IL-10 showed a significant decrease in MDA level (p = 0.0024). Compared with the PBS group, the thickness of the stratum corneum in groups treated with 0.05, 0.1 and 0.2 mg/kg IL-10 decreased, and the skin appendages were well-preserved. In the group treated with 0.2 mg/kg IL-10, the skin tissue structure was still relatively intact, and the masson staining area was smaller than that of the PBS group. Conclusion IL-10 plays a role in inhibiting radioactive fibrosis in radioactive skin injury. IL-10 has a protective effect on skin cell damage after ionizing radiation irradiation both in vitro and in vivo. Moreover, IL-10 plays a role in inhibiting radioactive fibrosis in radioactive skin injury.
Collapse
Affiliation(s)
- Jiahe Xu
- Department of Radiation OncologyFirst Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jiaxing Zhu
- Department of Radiation OncologyFirst Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Qi Zhao
- Department of Radiation OncologyFirst Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jiao Xue
- Department of Radiation OncologyFirst Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Songbing Qin
- Department of Radiation OncologyFirst Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
7
|
Yu AC, Wang MA, Chen L, Long C, Guo Y, Sheng XH, Wang XG, Xing K, Xiao LF, Ni HM, Li JT, Qi XL. Effects of dietary pretreated Chinese herbal medicine supplementation on production performance, egg quality, uterine histopathological changes, and antioxidant capacity in late-phase laying hens. Front Physiol 2023; 14:1110301. [PMID: 36744028 PMCID: PMC9895833 DOI: 10.3389/fphys.2023.1110301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Aims: The study aimed to evaluate the effects of pretreated Chinese herbal medicine (PCHM) on egg quality, production performance, histopathological changes in the uterus, antiox idant capacity, and antioxidant gene expression in late-phase layers. Methods: Jinghong No.1 layers (n = 360, 68 weeks old) were assigned randomly to one of f our dietary interventions. Each treatment was replicated six times. Repeat 15 chickens per g roup. All birds were fed a diet composed of a corn-soybean meal-based diet supplemented with 0, 0.2, 0.4, or 0.8% PCHM for 6 weeks. Results: Dietary PCHM supplementation had no significant effects on laying rate, feed con sumption, yolk color, and shape index. With increasing PCHM level the Haugh unit linearly increased (P < 0.05). Supplementation of 0.8% PCHM increased egg weight, compared with the control (P < 0.05). PCHM can effectively alleviated the pathological changes caused by aging in the uterus including hemorrhage, and many inflammatory cell infiltrations. Supplementation of 0.4% PCHM increased glutathione peroxidase (GSHPx) in liver, magnum, and plasm considerably, compared with the control (P < 0.05). Supplementation of PCHM decr ease in the liver, magnum, and uterus on malondialdehyde (MDA) content, compared with the control (P < 0.05). Compared with the control group, mRNA expressions of glutathione peroxidase 1 (GPX1), peroxidase 4 (GPX4), catalase (CAT), and nuclear factor E2-related factor 2 (Nrf2) in the magnum, liver, and uterus were dramatically rose in the 0.4% PCHM supplementation group (P < 0.05). In summary, dietary supplementation after PCHM increased egg weight and quality in late-phase laying hens. Conclusion: Dietary PCHM increased the antioxidative capacity of late-phase laying hens, which could be associated with increased mRNA expression of antioxidant enzymes and Nrf2. These findings provide potential for using PCHM to increase the production performance in late-phase laying hens.
Collapse
Affiliation(s)
- Ao-Chuan Yu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Min-An Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Li Chen
- Food Science and Engineering College, Beijing University of Agriculture, Beijing, China
| | - Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xi-Hui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiang-Guo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Long-Fei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - He-Min Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jian-Tao Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,*Correspondence: Jian-Tao Li, ; Xiao-Long Qi,
| | - Xiao-Long Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China,*Correspondence: Jian-Tao Li, ; Xiao-Long Qi,
| |
Collapse
|
8
|
Putt KS, Du Y, Fu H, Zhang ZY. High-throughput screening strategies for space-based radiation countermeasure discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:88-104. [PMID: 36336374 DOI: 10.1016/j.lssr.2022.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
As humanity begins to venture further into space, approaches to better protect astronauts from the hazards found in space need to be developed. One particular hazard of concern is the complex radiation that is ever present in deep space. Currently, it is unlikely enough spacecraft shielding could be launched that would provide adequate protection to astronauts during long-duration missions such as a journey to Mars and back. In an effort to identify other means of protection, prophylactic radioprotective drugs have been proposed as a potential means to reduce the biological damage caused by this radiation. Unfortunately, few radioprotectors have been approved by the FDA for usage and for those that have been developed, they protect normal cells/tissues from acute, high levels of radiation exposure such as that from oncology radiation treatments. To date, essentially no radioprotectors have been developed that specifically counteract the effects of chronic low-dose rate space radiation. This review highlights how high-throughput screening (HTS) methodologies could be implemented to identify such a radioprotective agent. Several potential target, pathway, and phenotypic assays are discussed along with potential challenges towards screening for radioprotectors. Utilizing HTS strategies such as the ones proposed here have the potential to identify new chemical scaffolds that can be developed into efficacious radioprotectors that are specifically designed to protect astronauts during deep space journeys. The overarching goal of this review is to elicit broader interest in applying drug discovery techniques, specifically HTS towards the identification of radiation countermeasures designed to be efficacious towards the biological insults likely to be encountered by astronauts on long duration voyages.
Collapse
Affiliation(s)
- Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN 47907 USA.
| |
Collapse
|
9
|
Zhang CY, Hu XC, Zhang GZ, Liu MQ, Chen HW, Kang XW. Role of Nrf2 and HO-1 in intervertebral disc degeneration. Connect Tissue Res 2022; 63:559-576. [PMID: 35736364 DOI: 10.1080/03008207.2022.2089565] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common age-related disease with clinical manifestations of lumbar and leg pain and limited mobility. The pathogenesis of IDD is mainly mediated by the death of intervertebral disc (IVD) cells and the imbalance of extracellular matrix (ECM) synthesis and degradation. Oxidative stress and inflammatory reactions are the important factors causing this pathological change. Therefore, the regulation of reactive oxygen species and production of inflammatory factors may be an effective strategy to delay the progression of IDD. In recent years, nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream regulated protein heme oxygenase-1 (HO-1) have received special attention due to their antioxidant, anti-inflammatory and anti-apoptotic protective effects. Recent studies have elucidated the important role of these two proteins in the treatment of IDD disease. However, Nrf2 and HO-1 have not been systematically reported in IDD-related diseases. Therefore, this review describes the biological characteristics of Nrf2 and HO-1, the relationship between Nrf2- and HO-1-regulated oxidative stress and the inflammatory response and IDD, and the progress in research on some extracts targeting Nrf2 and HO-1 to improve IDD. Understanding the role and mechanism of Nrf2 and HO-1 in IDD may provide novel ideas for the clinical treatment and development of Nrf2- and HO-1-targeted drugs.
Collapse
Affiliation(s)
- Cang-Yu Zhang
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Xu-Chang Hu
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Guang-Zhi Zhang
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Ming-Qiang Liu
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Hai-Wei Chen
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Xue-Wen Kang
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| |
Collapse
|
10
|
Chu X, Zhong L, Dan W, Wang X, Zhang Z, Liu Z, Lu Y, Shao X, Zhou Z, Chen S, Liu B. DNMT3A R882H mutation drives daunorubicin resistance in acute myeloid leukemia via regulating NRF2/NQO1 pathway. Cell Commun Signal 2022; 20:168. [PMID: 36303144 PMCID: PMC9615155 DOI: 10.1186/s12964-022-00978-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methyltransferase 3A (DNMT3A) often mutate on arginine 882 (DNMT3AR882) in acute myeloid leukemia (AML). AML patients with DNMT3A R882 mutation are usually resistant to daunorubicin treatment; however, the associated mechanism is still unclear. Therefore, it is urgent to investigate daunorubicin resistance in AML patients with DNMT3A R882 mutant. METHOD AML cell lines with DNMT3A-wild type (DNMT3A-WT), and DNMT3A-Arg882His (DNMT3A-R882H) mutation were constructed to investigate the role of DNMT3A R882H mutation on cell proliferation, apoptosis and cells' sensitivity to Danunorubin. Bioinformatics was used to analyze the role of nuclear factor-E2-related factor (NRF2) in AML patients with DNMT3A R882 mutation. The regulatory mechanism of DNMT3A R882H mutation on NRF2 was studied by Bisulfite Sequencing and CO-IP. NRF2 inhibitor Brusatol (Bru) was used to explore the role of NRF2 in AML cells carried DNMT3A R882H mutation. RESULTS AML cells with a DNMT3A R882H mutation showed high proliferative and anti-apoptotic activities. In addition, mutant cells were less sensitive to daunorubicin and had a higher NRF2 expression compared with those in WT cells. Furthermore, the NRF2/NQO1 pathway was activated in mutant cells in response to daunorubicin treatment. DNMT3A R882H mutation regulated the expression of NRF2 via influencing protein stability rather than decreasing methylation of NRF2 promoter. Also, NRF2/NQO1 pathway inhibition improved mutant cells' sensitivity to daunorubicin significantly. CONCLUSION Our findings identified NRF2 as an important player in the regulation of cell apoptosis through which helps mediate chemoresistance to daunorubicin in AML cells with DNMT3A R882H mutation. Targeting NRF2 might be a novel therapeutic approach to treat AML patients with a DNMT3A R882H mutation. Video abstract.
Collapse
Affiliation(s)
- Xuan Chu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wenran Dan
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Xiao Wang
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Zhonghui Zhang
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Zhenyan Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Yang Lu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Xin Shao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Ziwei Zhou
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Shuyu Chen
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Beizhong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China. .,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|