1
|
Sleem R, Salah A, Alziz AA, Daif AA, Megeed AAA, Khalil H. Inhibition of hepatitis C virus replication in HepG2 cells via modulation of the Raf-1 and interferon-alpha signaling pathways by thymoquinone. Arch Virol 2025; 170:120. [PMID: 40317342 DOI: 10.1007/s00705-025-06294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/17/2025] [Indexed: 05/07/2025]
Abstract
Hepatitis C virus (HCV) infection is a significant global health concern, as both acute and chronic hepatitis caused by HCV can lead to liver cancer and long-term liver damage. Thymoquinone (TQ), the active compound found in the remarkable herb Nigella sativa, has various anti-inflammatory and antiproliferative effects. In this study, we investigated the effect of TQ on the interferon-alpha (IFN-α) pathway and its ability to prevent HCV replication in the HepG2 cell line. Our findings showed no significant alterations in cell viability or lactate dehydrogenase (LDH) production in TQ-treated cells, while significant alteration in both factors was detected in cells treated with Sovaldi, the most commonly used drug for treatment of HCV infection. Interestingly, the level of the HCV NS5A protein was significantly reduced in infected cells treated with either TQ or Sovaldi in a dose-dependent manner. The expression of phosphorylated Raf-1 (phospho-Raf-1) and phospho-Mek-1 in infected cells was inhibited by TQ treatment, and the potential interaction between TQ and Ref-1 was confirmed by a molecular docking simulation. Unlike autophagy-related 12 (Atg12), the expression of LC3B in infected cells was also inhibited in a dose-dependent manner by TQ treatment. Conversely, the levels of interleukin-27 (IL-27) and interferon-alpha (IFN-α) in infected cells were significantly increased in a time- and dose-dependent manner by TQ treatment. These data suggest that TQ exerts antiviral effects in HepG2 cells by disrupting HCV replication through targeting of the Raf-1 signaling pathway and promoting the overproduction of IL-27 and IFN-α in infected cells.
Collapse
Affiliation(s)
- Rasha Sleem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, El-Sadat City, Menoufia Governate, Egypt
| | - Ahmed Salah
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, El-Sadat City, Menoufia Governate, Egypt
| | - Amal Abd Alziz
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, El-Sadat City, Menoufia Governate, Egypt
| | - Ahmed A Daif
- Molecular Diagnostic Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, El-Sadat City, Menoufia Governate, Egypt
| | - Ahmed A Abdel Megeed
- Clinical Pathology, International Medical Center, El Shorouk City, Cario Governate, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, El-Sadat City, Menoufia Governate, Egypt.
| |
Collapse
|
2
|
Bery DE, El-Masry SA, Guirgis AA, Zain AM, Khalil H. Epigallocatechin-3-gallate inhibits replication of influenza A virus via restoring the host methylated genes following infection. Int Microbiol 2025:10.1007/s10123-025-00655-6. [PMID: 40232535 DOI: 10.1007/s10123-025-00655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/16/2025]
Abstract
Influenza is a highly infectious disease caused by several types of viruses, including the influenza A virus (IAV), influenza B virus, and rarely, the influenza C virus. Epigallocatechin gallate (EGCG), a natural compound found in green tea, has shown promising effects in inhibiting viral infections. In this study, we investigated the methylation changes that occur following IAV infection, specifically focusing on the down-regulation of ten-eleven translocation 1 (TET1) and TET2 gene expression at both RNA and protein levels. We found that the methylation process triggered by IAV infection leads to the down-regulation of TET1 and TET2. Importantly, treatment with the methylation inhibitor epigallocatechin-3-gallate (EGCG) can prevent IAV infection by disrupting the DNA methylation changes induced by the virus in A549 cells. Our results demonstrate that EGCG treatment significantly alters DNA methylation patterns in human lung epithelial cells (A549) after IAV infection. The treatment appears to down-regulate the expression of DNA methylation co-factors, such as DNMT1 and methionine synthase (MS), which are significantly reduced following IAV infection at 24 h post-infection. Additionally, EGCG treatment led to a marked increase in the gene expression of TET1 and TET2, enzymes responsible for DNA demethylation. We also observed a significant decrease in the production of pro-inflammatory cytokines, specifically interleukin-6 (IL-6) and interferon beta (IFN-β), in infected A549 cells treated with EGCG compared to untreated or control cells. The concentration of IFN-β was notably lower in the EGCG-treated infected cells, in contrast to control cells where IFN-β levels increased significantly up to 200 pm/mL at 12 h post-infection. Similarly, IL-6 levels were significantly reduced in EGCG-treated cells. Overall, this study provides evidence that EGCG, a methylation inhibitor, can modulate DNA methylation pathways in IAV-infected cells by targeting DNMT1 and MS, leading to the inhibition of IAV replication. These findings suggest that EGCG could be a promising therapeutic agent for preventing or reducing IAV infection.
Collapse
Affiliation(s)
- Dina El Bery
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Samir A El-Masry
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Adel A Guirgis
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ahmed M Zain
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.
| |
Collapse
|
3
|
Abdelsattar S, Al-Amodi HS, Kamel HF, Al-Eidan AA, Mahfouz MM, El khashab K, Elshamy AM, Basiouny MS, Khalil MA, Elawdan KA, Elsaka S, Mohamed SE, Khalil H. Effective Targeting of Glutamine Synthetase with Amino Acid Analogs as a Novel Therapeutic Approach in Breast Cancer. Int J Mol Sci 2024; 26:78. [PMID: 39795937 PMCID: PMC11720649 DOI: 10.3390/ijms26010078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Cancer cells undergo metabolic rewiring to support rapid proliferation and survival in challenging environments. Glutamine is a preferred resource for cancer metabolism, as it provides both carbon and nitrogen for cellular biogenesis. Recent studies suggest the potential anticancer activity of amino acid analogs. Some of these analogs disrupt cellular nucleotide synthesis, thereby inhibiting the formation of DNA and RNA in cancer cells. In the present study, we investigated the anticancer properties of Acivicin and Azaserine in the breast cancer MCF-7 cell line, comparing their effects to those on the non-tumorigenic MCF-10 epithelial cell line in vitro. Interestingly, at lower concentrations, both Acivicin and Azaserine showed potent inhibition of MCF-7 cell proliferation, as assessed by the MTT assay, without detectable toxicity to normal cells. In contrast, Sorafenib (Nexavar), a commonly used drug for solid tumors, showed harmful effects on normal cells, as indicated by increased lactate dehydrogenase (LDH) production in treated cells. Furthermore, unlike Sorafenib, treatment with Acivicin and Azaserine significantly affected apoptotic signaling in treated cells, indicating the role of both amino acid analogs in activating programmed cell death (PCD), as assessed by the Annexin-V assay, DAPI staining, and the relative expression of tumor suppressor genes PTEN and P53. ELISA analysis of MCF-7 cells revealed that both Acivicin and Azaserine treatments promoted the production of anti-inflammatory cytokines, including IL-4 and IL-10, while significantly reducing the production of tumor necrosis factor alpha (TNF-α). Mechanistically, both Acivicin and Azaserine treatment led to a significant reduction in the expression of glutamine synthetase (GS) at both the RNA and protein levels, resulting in a decrease in intracellular glutamine concentrations over time. Additionally, both treatments showed comparable effects on Raf-1 gene expression and protein phosphorylation when compared with Sorafenib, a Raf-1 inhibitor. Moreover, docking studies confirmed the strong binding affinity between Acivicin, Azaserine, and glutamine synthetase, as evidenced by their docking scores and binding interactions with the enzyme crystal. Collectively, these findings provide evidence for the anticancer activity of the two amino acid analogs Acivicin and Azaserine as antagonists of glutamine synthetase, offering novel insights into potential therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Shimaa Abdelsattar
- Clinical Biochemistry and Molecular Diagnostics Department, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Hiba S. Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (H.S.A.-A.); (H.F.K.)
| | - Hala F. Kamel
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (H.S.A.-A.); (H.F.K.)
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Ahood A. Al-Eidan
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
| | - Marwa M. Mahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Kareem El khashab
- Medical Laboratory Department, High Technology Institute of Applied Health Science, Badr Academy for Science and Technology, Badr City 11829, Egypt;
| | - Amany M. Elshamy
- Medical Laboratory Science Department, School of Allied Health Sciences, Badr University in Cairo, Badr City 11829, Egypt
| | | | - Mohamed A. Khalil
- Clinical Pathology Department, National Cancer Institute, Cairo University, Giza 12613, Egypt;
| | - Khaled A. Elawdan
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt; (K.A.E.); (S.E.); (S.E.M.)
| | - Shorouk Elsaka
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt; (K.A.E.); (S.E.); (S.E.M.)
| | - Salwa E. Mohamed
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt; (K.A.E.); (S.E.); (S.E.M.)
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt; (K.A.E.); (S.E.); (S.E.M.)
| |
Collapse
|
4
|
Shoaib H, Negm A, Abd El-Azim AO, Elawdan KA, Abd-ElRazik M, Refaai R, Helmy I, Elshamy AM, Khalil H. Ameliorative effects of Turbinaria ornata extract on hepatocellular carcinoma induced by diethylnitrosamine in-vivo. J Mol Histol 2024; 55:1225-1238. [PMID: 39352545 DOI: 10.1007/s10735-024-10263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/05/2024] [Indexed: 11/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths and the fifth most common cancer worldwide. Brown algae appeared to be a rich source of efficient and safe agents against many life-threatening diseases like cancer. Thus, the scope of this study was to investigate the therapeutic effects of Turbinaria ornata against experimentally induced HCC in a rat model. Accordingly, forty male albino rats were divided into four groups. HCC was induced by intraperitoneal injection with diethylnitrosamine (DENA) followed by carbon tetrachloride (CCL4). After four weeks of DENA + CCL4 injection and two weeks of treatment with Turbinaria ornata, rats were sacrificed to collect hepatic tissue and blood samples for histopathological observations and various biochemical markers such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), alpha-fetoprotein (AFP), urea, creatinine, albumin (ALB), and alkaline phosphatase (ALP). Rats that were injected for four weeks with DENA + CCL4 showed a significant increase in AFP levels, transforming growth factor-beta (TGF-β) and tumor necrosis factor-alpha (TNF-α), as well as a high percentage of malignant changes in hepatic tissues. The extension of malignant changes in the rat liver tissues was markedly reduced using Turbinaria ornata, as the treatment displayed liver patterns similar to that of the normal control rats. Furthermore, rats with HCC fed with Turbinaria ornata extract for two weeks showed decreasing levels of TGF-β and TNF-α. These findings demonstrate that Turbinaria ornata supplement can prevent HCC development in hepatic rats; however, the exact mechanism requires further investigation.
Collapse
Affiliation(s)
- Hamada Shoaib
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amr Negm
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Amira O Abd El-Azim
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Khaled A Elawdan
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mohamed Abd-ElRazik
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Rofaida Refaai
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ibrahim Helmy
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Amany M Elshamy
- Medical Laboratory Science Department, Hight Technology Institute of Applied Health Science, Badr Academy for Science and Technology, Badr City, Cario, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.
| |
Collapse
|
5
|
Fayed AM, N HS, Samy W, Bassiouny K, Abd-El-Aziz AA, AlKhafaf DMR, Shareef HK, AbdElRahman M, Aldhalmi AK, Obaida DS, Khalil H, Abd Elbadee A. Anticancer Properties of Garlic and Ginger Extract in Colon Cancer Cell Line. Asian Pac J Cancer Prev 2024; 25:3895-3905. [PMID: 39611913 PMCID: PMC11996100 DOI: 10.31557/apjcp.2024.25.11.3895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024] Open
Abstract
Colon cancer typically affects older adults, though it can happen at any age. Colon cancer, also known as Caco-2, is caused by multiple epigenetic alterations and involves unregulated proliferation, differentiation, and invasion of neighboring tissues. Colon cancer patients have had surgery, radiation, hormone therapy, and chemotherapy. This study investigates a new experimental method using inexpensive and environmentally friendly Egyptian plant extracts. DMSO-dissolved ginger, garlic, cinnamon, and chamomile were employed in this investigation. HPLC and GC-MS were used to analyze plant extracts. These extracts were tested for colon cancer efficacy using various methods. These methods included Caco-2 cells, MTT test, Annexin V-FITC flow cytometry, qRT-PCR, and ELISA. Garlic and ginger were found to be cytotoxic to Caco-2 cells. Compared to cinnamon and chamomile extracts, garlic and ginger have boosted LDH synthesis significantly. Garlic and ginger also altered autophagy genes (Bectin1, Atg5, PTEN) and Caspase-3 expression pathways on proapoptotic signaling. Garlic and ginger increased cleaved PTEN and caspase-3 and decreased Atg5 and Bectin1. Ginger and garlic caused extrinsic apoptosis and prevented Atg5 and Bectin1 phosphorylation. The average IL-8 and IL-6 levels increased significantly after 24 hours, according to ELISA. In conclusion, garlic and ginger extracts modify pro-inflammatory cytokines. Alternative herbal remedies like garlic and ginger may be effective and safe colon cancer treatments.
Collapse
Affiliation(s)
- Aysam M. Fayed
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt.
- Medical Laboratory Techniques Department, College of Health and Medical Technique, Al-Mustaqbal University, Babylon, Iraq.
| | - Habeeb. S. N
- Medical Laboratory Techniques Department, College of Health and Medical Technique, Al-Mustaqbal University, Babylon, Iraq.
| | - Walaa Samy
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt.
| | - Khalid Bassiouny
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt.
| | - Amal A. Abd-El-Aziz
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt.
| | - Dina M. R. AlKhafaf
- Medical Laboratory Techniques Department, College of Health and Medical Technique, Al-Mustaqbal University, Babylon, Iraq.
- College of Education / University of Al-Qadisiyah, Iraq.
| | - Hasanain Khaleel Shareef
- University of Babylon, College of Science for Women, Biology Department, Iraq.
- Department of Medical Biotechnology , College of Science , Al-Mustaqbal University, Babylon, Iraq.
| | - Mohamed AbdElRahman
- College of Pharmacy, Al-Mustaqbal University, Babylon,51001, Iraq.
- Clinical Pharmacy Department, Badr University Hospital, Faculty of Medicine, Helwan University, Egypt.
| | | | - Dalya S. Obaida
- Medical Laboratory Techniques Department, College of Health and Medical Technique, Al-Mustaqbal University, Babylon, Iraq.
| | - Hany Khalil
- Animal Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt.
| | - Ahmed Abd Elbadee
- Animal Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt.
| |
Collapse
|
6
|
Said W, Khattab AA, Aly Hamed S, Abo-Elmaaty SA, Khalil H. Identification of Bioactive and Anticancer Properties of Bidens Pilosa in-vitro Evidence. Asian Pac J Cancer Prev 2024; 25:3551-3558. [PMID: 39471021 PMCID: PMC11711352 DOI: 10.31557/apjcp.2024.25.10.3551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/09/2024] [Indexed: 11/01/2024] Open
Abstract
OBJECTIVES Bidens pilosa and Trianthema portulacastrum are noteworthy weeds with a series of bioactive flavonoid constituents, hence, they can be utilized as potential health supplements and readily available sources of natural antioxidants, as well as effective constituents in medicinal applications. The current study aims to assess the anti-proliferative activity of B. pilosa and T. portulacastrum extracts using the HepG2 cell line. Methods The prepared extracts were evaluated for their cytotoxic influence and their potential CC50 in HepG2 cell lines and normal hepatocytes using the MTT assay. Using quantitative real-time polymerase chain reaction (qRT-PCR), the relative gene expression of Raf-1, MEK-1, LC3B, and Atg12 was quantified in treated cells to detect the expression levels of cell proliferation factors and autophagy-related genes. The quantification analysis of the released interleukin-1beta (IL-1β) and interleukin-1alpha (IL-1α) was also done using an ELISA assay. RESULTS The activities of B. pilosa extract showed an anti-proliferative influence on HepG2 cell lines upon treatment as compared to normal cells. It was assessed for cytotoxicity using molecular studies against both Raf-1 and MEK-1 as proposed anticancer mechanisms and showed promising inhibitory activity against Raf-1 and MEK-1 gene expression. Likewise, the reduction of autophagy-related genes, Atg12 and LC3B, in HepG2 cells pre-treated with B. pilosa extract, further confirmed its influence in the induction of programmed cell death (PCD). The ELISA assay revealed a substantial elevation of the pro-inflammatory cytokines IL-1α and IL-1β upon treatment. CONCLUSION This study found that B. pilosa extract, without any detectable cytotoxic effects, had potential inhibitory activities against both Raf-1 and MEK-1 gene expression, and a significant reduction in autophagic machinery upon treatment. .
Collapse
Affiliation(s)
- Walid Said
- Botany and Microbiology Department, Faculty of Science, Benha University, Egypt.
| | - Abeer Ahmed Khattab
- Botany and Microbiology Department, Faculty of Science, Benha University, Egypt.
| | - Saadia Aly Hamed
- Botany and Microbiology Department, Faculty of Science, Benha University, Egypt.
| | | | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt.
| |
Collapse
|
7
|
Dabous E, Alalem M, Awad AM, Elawdan KA, Tabl AM, Elsaka S, Said W, Guirgis AA, Khalil H. Regulation of KLRC and Ceacam gene expression by miR-141 supports cell proliferation and metastasis in cervical cancer cells. BMC Cancer 2024; 24:1091. [PMID: 39227808 PMCID: PMC11370040 DOI: 10.1186/s12885-024-12794-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are single RNA molecules that act as global regulators of gene expression in mammalian cells and thus constitute attractive targets in treating cancer. Here we aimed to investigate the possible involvement of miRNA-141 (miR-141) in cervical cancer and to identify its potential targets in cervical cancer cell lines. METHODS The level of miR-141 in HeLa and C-33A cells has been assessed using the quantitative real-time PCR (qRT-PCR). A new miR-141 construct has been performed in a CMV promoter vector tagged with GFP. Using microarray analysis, we identified the potentially regulated genes by miR-141 in transfected HeLa cells. The protein profile of killer-like receptor C1 (KLRC1), KLRC3, carcinoembryonic antigen-related cell adhesion molecule 3 (CAM3), and CAM6 was investigated in HeLa cells transfected with either an inhibitor, antagonist miR-141, or miR-141 overexpression vector using immunoblotting and flow cytometry assay. Finally, ELISA assay has been used to monitor the produced cytokines from transfected HeLa cells. RESULTS The expression of miR-141 significantly increased in HeLa and C-33A cells compared to the normal cervical HCK1T cell line. Transfection of HeLa cells with an inhibitor, antagonist miR-141, showed a potent effect on cancer cell viability, unlike the transfection of miR-141 overexpression vector. The microarray data of HeLa cells overexpressed miR-141 provided a hundred of downregulated genes, including KLRC1, KLRC3, CAM3, and CAM6. KLRC1 and KLRC3 expression profiles markedly depleted in HeLa cells transfected with miR-141 overexpression accompanied by decreasing interleukin 8 (IL-8), indicating the role of miR-141 in avoiding programmed cells death in HeLa cells. Likewise, CAM3 and CAM6 expression reduced markedly in miR-141 transduced cells accompanied by an increasing level of transforming growth factor beta (TGF-β), indicating the impact of miR-141 in cancer cell migration. The IntaRNA program and miRWalk were used to check the direct interaction and potential binding sites between miR-141 and identified genes. Based on this, the seeding regions of each potential target was cloned upstream of the luciferase reporter gene in the pGL3 control vector. Interestingly, the luciferase activities of constructed vectors were significantly decreased in HeLa cells pre-transfected with miR-141 overexpression vector, while increasing enormously in cells pre-transfected with miR-141 specific inhibitor. CONCLUSION Together, these data uncover an efficient miR-141-based mechanism that supports cervical cancer progression and identifies miR-141 as a credible therapeutic target.
Collapse
Affiliation(s)
- Emad Dabous
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, P.O Box 79, Sadat City, Egypt
| | - Mai Alalem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, P.O Box 79, Sadat City, Egypt
| | - Ahmed M Awad
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, P.O Box 79, Sadat City, Egypt
| | - Khaled A Elawdan
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, P.O Box 79, Sadat City, Egypt
| | - Ahmed M Tabl
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, P.O Box 79, Sadat City, Egypt
| | - Shorouk Elsaka
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, P.O Box 79, Sadat City, Egypt
| | - Walid Said
- Microbiology and Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Adel A Guirgis
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, P.O Box 79, Sadat City, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, P.O Box 79, Sadat City, Egypt.
| |
Collapse
|
8
|
Awad AM, Dabous E, Alalem M, Alalem N, Nasr ME, Elawdan KA, Nasr GM, Said W, El Khashab K, Basiouny MS, Guirgis AA, Khalil H. MicroRNA-141-regulated KLK10 and TNFSF-15 gene expression in hepatoblastoma cells as a novel mechanism in liver carcinogenesis. Sci Rep 2024; 14:13492. [PMID: 38866875 PMCID: PMC11169620 DOI: 10.1038/s41598-024-63223-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Liver cancer is one of the most pivotal global health problems, leading hepatocellular carcinoma (HCC) with a significant increase in cases worldwide. The role of non-coding-RNA in cancer proliferation and carcinogenesis has attracted much attention in the last decade; however, microRNAs (miRNAs), as non-coding RNA, are considered master mediators in various cancer progressions. Yet the role of miR-141 as a modulator for specific cellular processes in liver cancer cell proliferation is still unclear. This study identified the role of miR-141 and its potential functions in liver carcinogenesis. The level of miR-141 in HepG2 and HuH7 cells was assessed using quantitative real-time PCR (qRT-PCR) and compared with its expression in normal hepatocytes. A new miR-141 construct has been performed in a CMV promoter vector tagged with GFP. Using microarray analysis, we identified the potentially regulated genes by miR-141 in transfected HepG2 cells. The protein profile of the kallikrein-related peptidase 10 (KLK10) and tumor necrosis factor TNFSF-15 was investigated in HepG2 cells transfected with either an inhibitor, antagonist miR-141, or miR-141 overexpression vector using immunoblotting and flow cytometry assay. Finally, ELISA assay has been used to monitor the produced inflammatory cytokines from transfected HepG2 cells. Our findings showed that the expression of miR-141 significantly increased in HepG2 and HuH7 cells compared to the normal hepatocytes. Transfection of HepG2 cells with an inhibitor, antagonist miR-141, showed a significant reduction of HepG2 cell viability, unlike the transfection of miR-141 overexpression vector. The microarray data of HepG2 cells overexpressed miR-141 provided a hundred downregulated genes, including KLK10 and TNFSF-15. Furthermore, the expression profile of KLK10 and TNFSF-15 markedly depleted in HepG2 cells transfected with miR-141 overexpression accompanied by a decreasing level of interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α), indicating the role of miR-141 in HepG2 cell proliferation and programmed cell death. Interestingly, the experimental rats with liver cancer induced by Diethylnitrosamine injection further confirmed the upregulation of miR-141 level, IL-10, and TNF-α and the disturbance in KLK10 and TNFSF-15 gene expression compared with their expression in normal rats. The in-silico online tools, IntaRNA and miRWalk were used to confirm the direct interaction and potential binding sites between miR-141 and identified genes. Thus, the seeding regions of potential targeted sequences was cloned upstream of luciferase reporter gene in pGL3 control vector. Interestingly, the luciferase activities of constructed vectors were significantly decreased in HepG2 cells pre-transfected with miR-141 overexpression vector, while increasing in cells pre-transfected with miR-141 specific inhibitor. In summary, these data suggest the crucial role of miR-141 in liver cancer development via targeting KLK10 and TNFSF-15 and provide miR-141 as an attractive candidate in liver cancer treatment and protection.
Collapse
Affiliation(s)
- Ahmed M Awad
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Emad Dabous
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mai Alalem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Nedaa Alalem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mahmoud E Nasr
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Khaled A Elawdan
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ghada M Nasr
- Molecular Diagnostics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Walid Said
- Microbiology and Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Kareem El Khashab
- Medical Laboratory Department, High Technology Institute of Applied Health Science, Badr Academy for Science and Technology, Badr City, Egypt
| | - Mohamed S Basiouny
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Adel A Guirgis
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt.
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.
| |
Collapse
|
9
|
Tadros EK, Guirgis AA, Elimam H, Habib DF, Hanna H, Khalil H. Supplying rats with halfa-bar and liquorice extracts ameliorate doxorubicin-induced nephrotic syndrome. Nat Prod Res 2024:1-7. [PMID: 38795163 DOI: 10.1080/14786419.2024.2359552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/18/2024] [Indexed: 05/27/2024]
Abstract
In the current work, we aimed to evaluate the protective effects of liquorice and halfa-bar extract against doxorubicin (DOX)-induced nephritic syndrome (NS) in rats. Twenty albino male rats were intraperitoneally injected with 50 mg/kg of DOX. The injected rats were supplied daily with 400 mg/kg of liquorice, halfa-bar extract, or their combination for 2 weeks. Our findings confirmed the induction of NS in rats indicated by alteration in Bowman's space, damaged in glomerular capsules, and tubules. Moreover, the levels of produced tumour necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8) were increased, accompanied by decreasing levels of IL-4 and IL-10. Supplement NS-rats with liquorice and halfa-bar extracts restored the glomerular and tubules damage and adjusted the level of produced TNF-α and IL-8. Interestingly, both extracts can stimulate the expression profile of small proline-rich protein 2 F (sprr2f) and metalloproteinase-10 (MMP-10), which are responsible for repairing and regeneration mechanisms of renal syndromes.
Collapse
Affiliation(s)
- Emil K Tadros
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Adel A Guirgis
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Dawoud F Habib
- Department of Medical Biochemistry, National Research Center, Dokki, Egypt
| | - Hanan Hanna
- Department of Clinical Pathology, Faculty of Medicine, Delta University for Science and Technology, Dakahlia, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
10
|
Fawzy RM, Abdel-Aziz AA, Bassiouny K, Fayed AM. Phytocompounds-based therapeutic approach: Investigating curcumin and green tea extracts on MCF-7 breast cancer cell line. J Genet Eng Biotechnol 2024; 22:100339. [PMID: 38494270 PMCID: PMC10980874 DOI: 10.1016/j.jgeb.2023.100339] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND Breast cancer (BC) has transcended lung cancer as the most common cancer in the world. Due to the disease's aggressiveness, rapid growth, and heterogeneity, it is crucial to investigate different therapeutic approaches for treatment. According to the World Health Organization (WHO), Plant-based therapeutics continue to be utilized as safe/non-toxic complementary or alternative treatments for cancer, even in developed countries, regardless of how cutting-edge conventional therapies are. Despite their low bioavailability, curcumin (CUR) and green tea (GT) represent safer therapeutic options. Due to their potent molecular-modulating properties on various cancer-related molecules and signaling pathways, they are considered gold-standard therapeutic agents and have been incorporated into the development of one or more therapeutic strategies of BC treatment. METHODS We investigated the modulatory role of CUR and GT extracts on significant multi molecular targets in MCF-7 BC cell line to assess their potential as BC multi-targeting agents. We analyzed the phytocompounds in GT leaves using High-performance liquid chromatography (HPLC) and Gas chromatography-mass spectrometry (GC-MS) techniques. The mRNA expression levels of Raf-1, Telomerase, Tumor necrosis factor alpha (TNF-α) and Interleukin-8 (IL-8) genes in MCF-7 cells were quantified using quantitative real-time PCR (qRT-PCR). The cytotoxicity of the extracts was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the released Lactate dehydrogenase (LDH), a valuable marker for identifying the programmed necrosis (necroptosis). Additionally, the concentrations of the necroptosis-related proinflammatory cytokines (TNF-α and IL-8) were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS In contrast to the GT, the results showed the anticancer and cytotoxic properties of CUR against MCF-7 cells, with a relatively higher level of released LDH. The CUR extract downregulated the oncogenic Raf-1, suppressed the Telomerase and upregulated the TNF-α and IL-8 genes. Results from the ELISA showed a notable increase in IL-8 and TNF-α cytokines levels after CUR treatment, which culminated after 72 h. CONCLUSIONS Among both extracts, only CUR effectively modulated the understudy molecular targets, achieving multi-targeting anticancer activity against MCF-7 cells. Moreover, the applied dosage significantly increased levels of the proinflammatory cytokines, which represent a component of the cytokines-targeting-based therapeutic strategy. However, further investigations are recommended to validate this therapeutic approach.
Collapse
Affiliation(s)
- Radwa M Fawzy
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.
| | - Amal A Abdel-Aziz
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Khalid Bassiouny
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Aysam M Fayed
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
11
|
Raj AK, Lokhande KB, Prasad TK, Nandangiri R, Choudhary S, Pal JK, Sharma NK. Intracellular Ellagic Acid Derived from Goat Urine DMSO Fraction (GUDF) Predicted as an Inhibitor of c-Raf Kinase. Curr Mol Med 2024; 24:264-279. [PMID: 36642883 DOI: 10.2174/1566524023666230113141032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Dietary chemicals and their gut-metabolized products are explored for their anti-proliferative and pro-cell death effects. Dietary and metabolized chemicals are different from ruminants such as goats over humans. METHODS Loss of cell viability and induction of death due to goat urine DMSO fraction (GUDF) derived chemicals were assessed by routine in vitro assays upon MCF-7 breast cancer cells. Intracellular metabolite profiling of MCF-7 cells treated with goat urine DMSO fraction (GUDF) was performed using an in-house designed vertical tube gel electrophoresis (VTGE) assisted methodology, followed by LC-HRMS. Next, identified intracellular dietary chemicals such as ellagic acid were evaluated for their inhibitory effects against transducers of the c-Raf signaling pathway employing molecular docking and molecular dynamics (MD) simulation. RESULTS GUDF treatment upon MCF-7 cells displayed significant loss of cell viability and induction of cell death. A set of dietary and metabolized chemicals in the intracellular compartment of MCF-7 cells, such as ellagic acid, 2-hydroxymyristic acid, artelinic acid, 10-amino-decanoic acid, nervonic acid, 2,4-dimethyl-2-eicosenoic acid, 2,3,4'- Trihydroxy,4-Methoxybenzophenone and 9-amino-nonanoic acid were identified. Among intracellular dietary chemicals, ellagic acid displayed a strong inhibitory affinity (-8.7 kcal/mol) against c-Raf kinase. The inhibitory potential of ellagic acid was found to be significantly comparable with a known c-Raf kinase inhibitor sorafenib with overlapping inhibitory site residues (ARG450, GLU425, TRP423, VA403). CONCLUSION Intracellular dietary-derived chemicals such as ellagic acid are suggested for the induction of cell death in MCF-7 cells. Ellagic acid is predicted as an inhibitor of c-Raf kinase and could be explored as an anti-cancer drug.
Collapse
Affiliation(s)
- Ajay Kumar Raj
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, 411033, India
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, 411033, India
| | - Tanay Kondapally Prasad
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, 411033, India
| | - Rasika Nandangiri
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, 411033, India
| | - Sumitra Choudhary
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, 411033, India
| | - Jayanta Kumar Pal
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, 411033, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, 411033, India
| |
Collapse
|
12
|
Salah A, Sleem R, Abd-Elaziz A, Khalil H. Regulation of NF-κB Expression by Thymoquinone; A Role in Regulating Pro-Inflammatory Cytokines and Programmed Cell Death in Hepatic Cancer Cells. Asian Pac J Cancer Prev 2023; 24:3739-3748. [PMID: 38019231 PMCID: PMC10772774 DOI: 10.31557/apjcp.2023.24.11.3739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND The miracle herb Nigella sativa (N. sativa) is a member of the Ranunculaceae family that possesses many properties, such as antioxidant, anticancer, analgesic, antibacterial, and anti-inflammatory. Thymoquinone (TQ) is the primary ingredient that makes up N. sativa, which is responsible for its many properties. So, our research focused on the biological role of TQ and its anticancer activities. METHODS A wide range of TQ concentrations (50µg/µl, 25µg/ µl, and 12.5µg µl) was prepared and evaluated for their potential regulatory role in cell lines of hepatocellular carcinoma (HepG2 cell line) compared with normal hepatocytes cells, untreated and DMSO-treated cells. RESULTS The more significant level of LDH obtained after TQ treatment compared to untreated cells provides evidence of the cytotoxic effects of TQ on HepG2 cells. Notably, the normal hepatocyte cells subjected to the same concentrations of TQ showed neglected influence in cell viability rate, indicating the selective regulatory role of TQ in cancer cell proliferation. Interestingly, as a critical mediator of malignancy transformation, the nuclear factor-kappa B expression level (NF-κB) significantly decreased in a time and dose-dependent manner of TQ treatment. Furthermore, we investigated whether TQ regulates the expression of deleted liver cancer 1 (DLC1) and Caspase 3 (Casp3). Notably, the treatment with TQ showed increased expression levels of DLC1 and Casp3 upon treatment. TQ extract sufficiently mediated the secretion of the released pro-inflammatory cytokines from treated cells. This regulation of released cytokines by TQ may affect the activation of NF-κB in treated cells. CONCLUSION These results indicate that TQ mediates the activation of Casp3, DLC1, and NF-κB, providing a new function of TQ in treating hepatocellular carcinoma (HCC).
Collapse
|
13
|
Alalem M, Dabous E, Awad AM, Alalem N, Guirgis AA, El-Masry S, Khalil H. Influenza a virus regulates interferon signaling and its associated genes; MxA and STAT3 by cellular miR-141 to ensure viral replication. Virol J 2023; 20:183. [PMID: 37596622 PMCID: PMC10439583 DOI: 10.1186/s12985-023-02146-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023] Open
Abstract
The antiviral response against influenza A virus (IAV) infection includes the induction of the interferon (IFN) signaling pathway, including activation of the STATs protein family. Subsequently, antiviral myxovirus resistance (MxA) protein and other interferon-stimulated genes control virus replication; however, the molecular interaction of viral-mediated IFN signaling needs more investigation. Host microRNAs (miRNAs) are small non-coding molecules that posttranscriptionally regulate gene expression. Here, we sought to investigate the possible involvement of miR-141 in IAV-mediated IFN signaling. Accordingly, the microarray analysis of A549 cells transfected with precursor miR-141 (pre-miR-141) was used to capture the potentially regulated genes in response to miR-141 overexpression independent of IAV infection. The downregulation of targeted genes by miR-141, in addition to viral gene expression, was investigated by quantitative real-time PCR, western blot analysis, and flow cytometric assay. Our findings showed a significant upregulation of miR-141 in infected A549 cells with different strains of IAV. Notably, IAV replication was firmly interrupted in cells transfected with the miR-141 inhibitor. While its replication significantly increased in cells transfected with pre-miR-141 confirming the crucial role of miRNA-141 in supporting virus replication. Interestingly, the microarray data of miR-141 transduced A549 cells showed many downregulated genes, including MxA, STAT3, IFI27, and LAMP3. The expression profile of MxA and STAT3 was significantly depleted in infected cells transfected with the pre-miR-141, while their expression was restored in infected cells transfected with the miR-141 inhibitor. Unlike interleukin 6 (IL-6), the production of IFN-β markedly decreased in infected cells that transfected with pre-miR-141, while it significantly elevated in infected cells transfected with miR-141 inhibitor. These data provide evidence for the crucial role of miR-141 in regulating the antiviral gene expression induced by IFN and IL-6 signaling during IAV infection to ensure virus replication.
Collapse
Affiliation(s)
- Mai Alalem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt
| | - Emad Dabous
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt
| | - Ahmed M Awad
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt
| | - Nedaa Alalem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt
| | - Adel A Guirgis
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt
| | - Samir El-Masry
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt.
| |
Collapse
|
14
|
Guirgis SA, El-Halfawy KA, Alalem M, Khalil H. Legionellapneumophila induces methylomic changes in ten-eleven translocation to ensure bacterial reproduction in human lung epithelial cells. J Med Microbiol 2023; 72. [PMID: 36927577 DOI: 10.1099/jmm.0.001676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Introduction. Legionella pneumophila is a Gram-negative flagellated bacteria that can infect human lungs and cause a severe form of pneumonia named Legionnaires' disease.Hypothesis. We hypothesize that L. pneumophila infection induces methylomic changes in methylcytosine dioxygenases, ten-eleven translocation (TET) genes, and controls DNA methylation following infection.Aim. In the current research, we sought to further investigate DNA methylation changes in human lung epithelial cells upon L. pneumophila infection and determine how methylation inhibitor agents disturb L. pneumophila reproduction.Methodology. A549 cell line was used in L. pneumophila infection and inhibitors' treatment, including 5-azacytidine (5-AZA) and (-)-epigallocatechin-3-O-gallate (EGCG).Results. Interestingly, DNA methylation analysis of infected A549 using sodium bisulfite PCR and the methylation-sensitive HpaII enzyme showed potential methylation activity within the promoter regions of ten-eleven translocation (TET) genes located on CpG/397-8 and CpG/385-6 of TET1 and TET3, respectively. Such methylation changes in TET effectors decreased their expression profile following infection, indicated by quantitative real-time PCR (RT-qPCR), immunoblotting and flow cytometry. Furthermore, pre-treatment of A549 cells with 5-AZA or EGCG significantly decreased the bacterial reproduction characterized by the expression of L. pneumophila 16S ribosomal RNA and the c.f.u. ml-1 of bacterial particles. Moreover, both methylation inhibitors showed potent inhibition of methionine synthase (MS) expression, which was further confirmed by the docking analysis of inhibitor ligands and crystal structure of MS protein.Conclusion. These data provide evidence for the methylomic changes in the promoter region of TET1 and TET3 by L. pneumophila infection in the A549 cell line and suggest the anti-bacterial properties of 5-AZA and EGCG, as methylation inhibitors, are due to targeting the epigenetic effector methionine synthase.
Collapse
Affiliation(s)
- Sherry A Guirgis
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Khalil A El-Halfawy
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Mai Alalem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| |
Collapse
|
15
|
Li X, Qin H, Anwar A, Zhang X, Yu F, Tan Z, Tang Z. Molecular mechanism analysis of m6A modification-related lncRNA-miRNA-mRNA network in regulating autophagy in acute pancreatitis. Islets 2022; 14:184-199. [PMID: 36218109 PMCID: PMC9559333 DOI: 10.1080/19382014.2022.2132099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
This study aims to explore the molecular mechanism of N6-methyladenosine (m6A) modification-related long noncoding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) network in regulating autophagy and affecting the occurrence and development of acute pancreatitis (AP). RNA-seq datasets related to AP were obtained from Gene Expression Omnibus (GEO) database and merged after batch effect removal. lncRNAs significantly related to m6A in AP, namely candidate lncRNA, were screened by correlation analysis and differential expression analysis. In addition, candidate autophagy genes were screened through the multiple databases. Furthermore, the key pathways for autophagy to play a role in AP were determined by functional enrichment analysis. Finally, we predicted the miRNAs binding to genes and lncRNAs through TargetScan, miRDB and DIANA TOOLS databases and constructed two types of lncRNA-miRNA-mRNA regulatory networks mediated by upregulated and downregulated lncRNAs in AP. Nine lncRNAs related to m6A were differentially expressed in AP, and 21 candidate autophagy genes were obtained. Phosphoinositide 3-kinase (PI3K)-Akt signaling pathway and Forkhead box O (FoxO) signaling pathway might be the key pathways for autophagy to play a role in AP. Finally, we constructed a lncRNA-miRNA-mRNA regulatory network. An upregulated lncRNA competitively binds to 13 miRNAs to regulate 6 autophagy genes, and a lncRNA-miRNA-mRNA regulatory network in which 2 downregulated lncRNAs competitively bind to 7 miRNAs to regulate 2 autophagy genes. m6A modification-related lncRNA Pvt1, lncRNA Meg3 and lncRNA AW112010 may mediate the lncRNA-miRNA-mRNA network, thereby regulating autophagy to affect the development of AP.
Collapse
Affiliation(s)
- Xiang Li
- Critical Care Unit, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
- Emergency Department (one), Hunan Provincial People’s Hospital, Changsha, Hunan, P.R. China
| | - Hong Qin
- Xiangya School of Public Health, Central South University, Changsha, P.R. China
| | - Ali Anwar
- Xiangya School of Public Health, Central South University, Changsha, P.R. China
- Food and Nutrition Society Gilgit Baltistan, Pakistan
| | - Xingwen Zhang
- Emergency Department (three), Hunan Provincial People’s Hospital, Changsha, Hunan, P.R. China
| | - Fang Yu
- Emergency Department (one), Hunan Provincial People’s Hospital, Changsha, Hunan, P.R. China
| | - Zheng Tan
- Emergency Department (one), Hunan Provincial People’s Hospital, Changsha, Hunan, P.R. China
| | - Zhanhong Tang
- Critical Care Unit, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
- CONTACT Zhanhong Tang Critical Care Unit, the First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning530021, Guangxi, P.R. China
| |
Collapse
|
16
|
Liang F, Zhang K, Ma W, Zhan H, Sun Q, Xie L, Zhao Z. Impaired autophagy and mitochondrial dynamics are involved in Sorafenib-induced cardiomyocyte apoptosis. Toxicology 2022; 481:153348. [DOI: 10.1016/j.tox.2022.153348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 02/04/2023]
|
17
|
Elawdan KA, Farouk S, Aref S, Shoaib H, El-Razik MA, Abbas NH, Younis M, Alshambky AA, Khalil H. Association of vitamin B12/ferritin deficiency in cancer patients with methylomic changes at promotors of TET methylcytosine dioxygenases. Biomark Med 2022; 16:959-970. [PMID: 36052661 DOI: 10.2217/bmm-2022-0158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To investigate potential DNA methylation in methylcytosine dioxygenases and correlation of TET genes with vitamin B12/ferritin levels in cancer patients. Materials & methods: 200 blood samples were obtained from both cancer patients and healthy individuals. Results: The expression of DNMT1, DNMT3a and DNMT3b was increased in patients with low vitamin B12 and ferritin levels, while the expression of MTR, TET1 and TET3 significantly decreased. DNA methylation analysis in patients with deficient vitamin B12/ferritin levels showed methylomic changes within the location 318/CG and 385/CG in the promoter region of TET1 and TET3, respectively. Conclusion: Vitamin B12/ferritin deficiency contributes to DNA methylation progress in cancer patients.
Collapse
Affiliation(s)
- Khaled A Elawdan
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Sabah Farouk
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Salah Aref
- Department of Clinical Pathology, Faculty of medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Hamada Shoaib
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Mohamed A El-Razik
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Nasser H Abbas
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Mohamed Younis
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Abeer A Alshambky
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt.,Biochemistry Department, Animal Health Research Institute, Cairo, 33374856, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
18
|
Potential Anticancer Activity of the Furanocoumarin Derivative Xanthotoxin Isolated from Ammi majus L. Fruits: In Vitro and In Silico Studies. Molecules 2022; 27:molecules27030943. [PMID: 35164207 PMCID: PMC8839012 DOI: 10.3390/molecules27030943] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Ammi majus L., an indigenous plant in Egypt, is widely used in traditional medicine due to its various pharmacological properties. We aimed to evaluate the anticancer properties of Ammi majus fruit methanol extract (AME) against liver cancer and to elucidate the active compound(s) and their mechanisms of action. Three fractions from AME (Hexane, CH2Cl2, and EtOAc) were tested for their anticancer activities against HepG2 cell line in vitro (cytotoxicity assay, cell cycle analysis, annexin V-FITC apoptosis assay, and autophagy efflux assay) and in silico (molecular docking). Among the AME fractions, CH2Cl2 fraction revealed the most potent cytotoxic activity. The structures of compounds isolated from the CH2Cl2 fraction were elucidated using 1H- and 13C-NMR and found that Compound 1 (xanthotoxin) has the strongest cytotoxic activity against HepG2 cells (IC50 6.9 ± 1.07 µg/mL). Treating HepG2 cells with 6.9 µg/mL of xanthotoxin induced significant changes in the DNA-cell cycle (increases in apoptotic pre-G1 and G2/M phases and a decrease in the S-phase). Xanthotoxin induced significant increase in Annexin-V-positive HepG2 cells both at the early and late stages of apoptosis, as well as a significant decrease in autophagic flux in cancer compared with control cells. In silico analysis of xanthotoxin against the DNA-relaxing enzyme topoisomease II (PDB code: 3QX3) revealed strong interaction with the key amino acid Asp479 in a similar fashion to that of the co-crystallized inhibitor (etoposide), implying that xanthotoxin has a potential of a broad-spectrum anticancer activity. Our results indicate that xanthotoxin exhibits anticancer effects with good biocompatibility toward normal human cells. Further studies are needed to optimize its antitumor efficacy, toxicity, solubility, and pharmacokinetics.
Collapse
|