1
|
Ruiz‐Malagón AJ, Rodríguez‐Sojo MJ, Redondo E, Rodríguez‐Cabezas ME, Gálvez J, Rodríguez‐Nogales A. Systematic review: The gut microbiota as a link between colorectal cancer and obesity. Obes Rev 2025; 26:e13872. [PMID: 39614602 PMCID: PMC11884970 DOI: 10.1111/obr.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Microbiome modulation is one of the novel strategies in medicine with the greatest future to improve the health of individuals and reduce the risk of different conditions, including metabolic, immune, inflammatory, and degenerative diseases, as well as cancer. Regarding the latter, many studies have reported the role of the gut microbiome in carcinogenesis, formation and progression of colorectal cancer (CRC), as well as its response to different systemic therapies. Likewise, obesity, one of the most important risk factors for CRC, is also well known for its association with gut dysbiosis. Moreover, obesity and CRC display, apart from microbial dysbiosis, chronic inflammation, which participates in their pathogenesis. Although human and murine studies demonstrate the significant impact of the microbiome in regulating energy metabolism and CRC development, little is understood about the contribution of the microbiome to the development of obesity-associated CRC. Therefore, this systematic review explores the evidence for microbiome changes associated with these conditions and hypothesizes that this may contribute to the pathogenesis of obesity-related CRC. Two databases were searched, and different studies on the relationship among obesity, intestinal microbiota and CRC in clinical and preclinical models were selected. Data extraction was carried out by two reviewers independently, and 101 studies were finally considered. Findings indicate the existence of a risk association between obesity and CRC derived from metabolic, immune, and microbial disorders.
Collapse
Affiliation(s)
- Antonio Jesús Ruiz‐Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
- Instituto de Investigación Biomédica de Málaga (IBIMA)MalgaSpain
| | - María Jesús Rodríguez‐Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| | - Eduardo Redondo
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
- Servicio de DigestivoHospital Universitario Virgen de las NievesGranadaSpain
| | - María Elena Rodríguez‐Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| | - Alba Rodríguez‐Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| |
Collapse
|
2
|
Zhang Z, Bao C, Li Z, He C, Jin W, Li C, Chen Y. Integrated omics analysis reveals the alteration of gut microbiota and fecal metabolites in Cervus elaphus kansuensis. Appl Microbiol Biotechnol 2024; 108:125. [PMID: 38229330 PMCID: PMC10789680 DOI: 10.1007/s00253-023-12841-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 01/18/2024]
Abstract
The gut microbiota is the largest and most complex microecosystem in animals. It is influenced by the host's dietary habits and living environment, and its composition and diversity play irreplaceable roles in animal nutrient metabolism, immunity, and adaptation to the environment. Although the gut microbiota of red deer has been studied, the composition and function of the gut microbiota in Gansu red deer (Cervus elaphus kansuensis), an endemic subspecies of red deer in China, has not been reported. In this study, the composition and diversity of the gut microbiome and fecal metabolomics of C. elaphus kansuensis were identified and compared for the first time by using 16S rDNA sequencing, metagenomic sequencing, and LC-MS/MS. There were significant differences in gut microbiota structure and diversity between wild and farmed C. elaphus kansuensis. The 16S rDNA sequencing results showed that the genus UCRD-005 was dominant in both captive red deer (CRD) and wild red deer (WRD). Metagenomic sequencing showed similar results to those of 16S rDNA sequencing for gut microbiota in CRD and WRD at the phylum and genus levels. 16S rDNA and metagenomics sequencing data suggested that Bacteroides and Bacillus might serve as marker genera for CRD and WRD, respectively. Fecal metabolomics results showed that 520 metabolites with significant differences were detected between CRD and WRD and most differential metabolites were involved in lipid metabolism. The results suggested that large differences in gut microbiota composition and fecal metabolites between CRD and WRD, indicating that different dietary habits and living environments over time have led to the development of stable gut microbiome characteristics for CRD and WRD to meet their respective survival and reproduction needs. KEY POINTS: • Environment and food affected the gut microbiota and fecal metabolites in red deer • Genera Bacteroides and Bacillus may play important roles in CRD and WRD, respectively • Flavonoids and ascorbic acid in fecal metabolites may influence health of red deer.
Collapse
Affiliation(s)
- Zhenxiang Zhang
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Changhong Bao
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Zhaonan Li
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Caixia He
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Wenjie Jin
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Changzhong Li
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China.
| | - Yanxia Chen
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China.
| |
Collapse
|
3
|
Gökçek-Saraç Ç, Çetin E, Ateş K, Özen Ş, Karakurt S. Different duration of exposure to a pulsed magnetic field can cause changes in mRNA expression of apoptotic genes in oleic acid-treated neuroblastoma cells. Int J Radiat Biol 2024; 100:1471-1480. [PMID: 39088733 DOI: 10.1080/09553002.2024.2386968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/20/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
PURPOSE Neuroblastoma, a prevalent childhood tumor, poses significant challenges in therapeutic interventions, especially for high-risk cases. This study aims to fill a crucial gap in our understanding of neuroblastoma treatment by investigating the potential molecular impacts of short- and long-term pulsed magnetic field exposure on the neuronal apoptosis mechanism in an in vitro model of neuroblastoma treated with oleic acid (OA). MATERIALS AND METHODS Cells were cultured and divided into six following experimental groups: (I) Nontreated group (NT); (II) OA-treated group (OA); (III) Group treated with OA after being exposed to the pulsed magnetic field for 15-min (15 min PEMF + OA); (IV) Group treated with OA after being exposed to the pulsed magnetic field for 12 h (12 h PEMF + OA); (V) Group exposed to the pulsed magnetic field for 15 min (15 min PEMF); and (VI) Group exposed to the pulsed magnetic field for 12 h (12 h PEMF). Cell viability, rates of apoptosis, and mRNA levels of key apoptotic genes (TP53, Bcl2, Bax, and Caspase-3) were assessed. RESULTS Significant reductions in cell viability were observed, particularly in the group treated with OA following long-term pulsed magnetic field exposure. Flow cytometry revealed elevated apoptosis rates, notably in the early stages of apoptosis. qRT-PCR analysis demonstrated increased expression of cleaved Caspase-3, Bax/Bcl2 ratio, and TP53 in cells treated with OA following long-term pulsed magnetic field exposure, signifying enhanced apoptotic pathways. CONCLUSIONS The findings indicate that long-term pulsed magnetic field exposure and OA treatment exhibit potential synergistic effects leading to the induction of apoptosis in SH-SY5Y cells. We have concluded that stimulations of pulsed magnetic field have the potential to serve as an adjuvant therapy for oleic acid-based treatment of neuroblastoma.
Collapse
Affiliation(s)
- Çiğdem Gökçek-Saraç
- Department of Biomedical Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Ebru Çetin
- Department of Biomedical Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Kayhan Ateş
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Şükrü Özen
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Serdar Karakurt
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya, Turkey
| |
Collapse
|
4
|
Lin C, Tian Q, Guo S, Xie D, Cai Y, Wang Z, Chu H, Qiu S, Tang S, Zhang A. Metabolomics for Clinical Biomarker Discovery and Therapeutic Target Identification. Molecules 2024; 29:2198. [PMID: 38792060 PMCID: PMC11124072 DOI: 10.3390/molecules29102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
As links between genotype and phenotype, small-molecule metabolites are attractive biomarkers for disease diagnosis, prognosis, classification, drug screening and treatment, insight into understanding disease pathology and identifying potential targets. Metabolomics technology is crucial for discovering targets of small-molecule metabolites involved in disease phenotype. Mass spectrometry-based metabolomics has implemented in applications in various fields including target discovery, explanation of disease mechanisms and compound screening. It is used to analyze the physiological or pathological states of the organism by investigating the changes in endogenous small-molecule metabolites and associated metabolism from complex metabolic pathways in biological samples. The present review provides a critical update of high-throughput functional metabolomics techniques and diverse applications, and recommends the use of mass spectrometry-based metabolomics for discovering small-molecule metabolite signatures that provide valuable insights into metabolic targets. We also recommend using mass spectrometry-based metabolomics as a powerful tool for identifying and understanding metabolic patterns, metabolic targets and for efficacy evaluation of herbal medicine.
Collapse
Affiliation(s)
- Chunsheng Lin
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
| | - Qianqian Tian
- Faculty of Social Sciences, The University of Hong Kong, Hong Kong 999077, China;
| | - Sifan Guo
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Dandan Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Ying Cai
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Zhibo Wang
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Hang Chu
- Department of Biomedical Sciences, Beijing City University, Beijing 100193, China;
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Aihua Zhang
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| |
Collapse
|
5
|
Chen S, Liu Z, Wu H, Wang B, Ouyang Y, Liu J, Zheng X, Zhang H, Li X, Feng X, Li Y, Shen Y, Zhang H, Xiao B, Yu C, Deng W. Adipocyte‑rich microenvironment promotes chemoresistance via upregulation of peroxisome proliferator‑activated receptor gamma/ABCG2 in epithelial ovarian cancer. Int J Mol Med 2024; 53:37. [PMID: 38426604 PMCID: PMC10914313 DOI: 10.3892/ijmm.2024.5361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/22/2023] [Indexed: 03/02/2024] Open
Abstract
The effects of adipocyte‑rich microenvironment (ARM) on chemoresistance have garnered increasing interest. Ovarian cancer (OVCA) is a representative adipocyte‑rich associated cancer. In the present study, epithelial OVCA (EOC) was used to investigate the influence of ARM on chemoresistance with the aim of identifying novel targets and developing novel strategies to reduce chemoresistance. Bioinformatics analysis was used to explore the effects of ARM‑associated mechanisms contributing to chemoresistance and treated EOC cells, primarily OVCAR3 cells, with human adipose tissue extracts (HATES) from the peritumoral adipose tissue of patients were used to mimic ARM in vitro. Specifically, the peroxisome proliferator‑activated receptor γ (PPARγ) antagonist GW9662 and the ABC transporter G family member 2 (ABCG2) inhibitor KO143, were used to determine the underlying mechanisms. Next, the effect of HATES on the expression of PPARγ and ABCG2 in OVCAR3 cells treated with cisplatin (DDP) and paclitaxel (PTX) was determined. Additionally, the association between PPARγ, ABCG2 and chemoresistance in EOC specimens was assessed. To evaluate the effect of inhibiting PPARγ, using DDP, a nude mouse model injected with OVCAR3‑shPPARγ cells and a C57BL/6 model injected with ID8 cells treated with GW9662 were established. Finally, the factors within ARM that contributed to the mechanism were determined. It was found that HATES promoted chemoresistance by increasing ABCG2 expression via PPARγ. Expression of PPARγ/ABCG2 was related to chemoresistance in EOC clinical specimens. GW9662 or knockdown of PPARγ improved the efficacy of chemotherapy in mice. Finally, angiogenin and oleic acid played key roles in HATES in the upregulation of PPARγ. The present study showed that the introduction of ARM‑educated PPARγ attenuated chemoresistance in EOC, highlighting a potentially novel therapeutic adjuvant to chemotherapy and shedding light on a means of improving the efficacy of chemotherapy from the perspective of ARM.
Collapse
Affiliation(s)
- Siqi Chen
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Zixuan Liu
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Haixia Wu
- Department of Pathology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin 300100, P.R. China
| | - Bo Wang
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yuqing Ouyang
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Junru Liu
- Department of Blood Transfusion, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong 253000, P.R. China
| | - Xiaoyan Zheng
- Department of Laboratory, Shanxi Eye Hospital, Taiyuan, Shanxi 030002, P.R. China
| | - Haoke Zhang
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xueying Li
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xiaofan Feng
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yan Li
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yangyang Shen
- Department of Clinical Laboratory, The Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hong Zhang
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Bo Xiao
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Chunyan Yu
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Weimin Deng
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| |
Collapse
|
6
|
Yang L, Gao J, Zhang Y, Perez EA, Wu Y, Guo T, Li C, Wang H, Xu Y. Protective effects of palbociclib on colitis-associated colorectal cancer. J Gastrointest Oncol 2023; 14:2436-2447. [PMID: 38196536 PMCID: PMC10772689 DOI: 10.21037/jgo-23-860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024] Open
Abstract
Background Chronic or recurrent inflammatory injury to the intestinal mucosa is closely related to inflammation-related colorectal cancer (CRC). This study aimed to examine the protective effects of palbociclib, a stimulator of interferon genes (STING) antagonist, on colitis-related colorectal carcinogenesis. Methods Bioinformatic analyses, including Gene Ontology (GO) enrichment, gene set enrichment analysis (GSEA), and network analysis, were conducted. Male C57BL/6 mice were administered azoxymethane (AOM) and dextran sulfate sodium (DSS), followed by treatment with palbociclib for 6 weeks. The general conditions of mice were observed and recorded. The colon histopathology was assessed based on hematoxylin and eosin (H&E) staining results. Relative messenger RNA (mRNA) expression levels of interferon b1 (Ifnb1), interleukin 6 (Il6), and interleukin 1b (Il1b) in colon were estimated based on quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analysis. Results The STING signaling pathway was significantly upregulated in stages III and IV of CRC in The Cancer Genome Atlas (TCGA)-CRC cohort. After treatment with AOM/DSS, the weight of mice decreased significantly, whereas administration of palbociclib partially reversed this trend. The mouse colon treated with AOM/DSS showed significant pathological damages, disorderly epithelial cell structure, atypical hyperplasia, and infiltration of several inflammatory cell types; however, the colon damage was remarkably reduced upon treatment with palbociclib. It was also found that palbociclib almost abolished the increase in the downstream effectors of STING-mediated transcription in the colon tissue treated with AOM/DSS, as evidenced by the transcription levels of Ifnb1, Il6, and Il1b. Conclusions These findings indicate that the STING pathway is closely associated with CRC. Palbociclib significantly alleviates tumor development in AOM/DSS-induced colitis-associated CRC.
Collapse
Affiliation(s)
- Li Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiani Gao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuqin Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology Surgery, Fudan University Shanghai Cancer Center, Minhang District, Shanghai, China
| | - Eduardo A. Perez
- Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuchen Wu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tianan Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Endoscopy Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Guo Z, Bergeron KF, Lingrand M, Mounier C. Unveiling the MUFA-Cancer Connection: Insights from Endogenous and Exogenous Perspectives. Int J Mol Sci 2023; 24:9921. [PMID: 37373069 DOI: 10.3390/ijms24129921] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Monounsaturated fatty acids (MUFAs) have been the subject of extensive research in the field of cancer due to their potential role in its prevention and treatment. MUFAs can be consumed through the diet or endogenously biosynthesized. Stearoyl-CoA desaturases (SCDs) are key enzymes involved in the endogenous synthesis of MUFAs, and their expression and activity have been found to be increased in various types of cancer. In addition, diets rich in MUFAs have been associated with cancer risk in epidemiological studies for certain types of carcinomas. This review provides an overview of the state-of-the-art literature on the associations between MUFA metabolism and cancer development and progression from human, animal, and cellular studies. We discuss the impact of MUFAs on cancer development, including their effects on cancer cell growth, migration, survival, and cell signaling pathways, to provide new insights on the role of MUFAs in cancer biology.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| | - Karl-Frédérik Bergeron
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| | - Marine Lingrand
- Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Catherine Mounier
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| |
Collapse
|
8
|
Hellbach F, Sinke L, Costeira R, Baumeister SE, Beekman M, Louca P, Leeming ER, Mompeo O, Berry S, Wilson R, Wawro N, Freuer D, Hauner H, Peters A, Winkelmann J, Koenig W, Meisinger C, Waldenberger M, Heijmans BT, Slagboom PE, Bell JT, Linseisen J. Pooled analysis of epigenome-wide association studies of food consumption in KORA, TwinsUK and LLS. Eur J Nutr 2023; 62:1357-1375. [PMID: 36571600 PMCID: PMC10030421 DOI: 10.1007/s00394-022-03074-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Examining epigenetic patterns is a crucial step in identifying molecular changes of disease pathophysiology, with DNA methylation as the most accessible epigenetic measure. Diet is suggested to affect metabolism and health via epigenetic modifications. Thus, our aim was to explore the association between food consumption and DNA methylation. METHODS Epigenome-wide association studies were conducted in three cohorts: KORA FF4, TwinsUK, and Leiden Longevity Study, and 37 dietary exposures were evaluated. Food group definition was harmonized across the three cohorts. DNA methylation was measured using Infinium MethylationEPIC BeadChip in KORA and Infinium HumanMethylation450 BeadChip in the Leiden study and the TwinsUK study. Overall, data from 2293 middle-aged men and women were included. A fixed-effects meta-analysis pooled study-specific estimates. The significance threshold was set at 0.05 for false-discovery rate-adjusted p values per food group. RESULTS We identified significant associations between the methylation level of CpG sites and the consumption of onions and garlic (2), nuts and seeds (18), milk (1), cream (11), plant oils (4), butter (13), and alcoholic beverages (27). The signals targeted genes of metabolic health relevance, for example, GLI1, RPTOR, and DIO1, among others. CONCLUSION This EWAS is unique with its focus on food groups that are part of a Western diet. Significant findings were mostly related to food groups with a high-fat content.
Collapse
Affiliation(s)
- Fabian Hellbach
- Institute for Medical Information Processing, Biometry, and Epidemiology, Medical Faculty, Ludwig-Maximilian University Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - Lucy Sinke
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Ricardo Costeira
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, England, UK
| | - Sebastian-Edgar Baumeister
- Institute of Health Services Research in Dentistry, Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Panayiotis Louca
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, England, UK
| | - Emily R Leeming
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, England, UK
| | - Olatz Mompeo
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, England, UK
| | - Sarah Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | - Rory Wilson
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Nina Wawro
- Institute for Medical Information Processing, Biometry, and Epidemiology, Medical Faculty, Ludwig-Maximilian University Munich, Marchioninistr. 15, 81377, Munich, Germany
- Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Dennis Freuer
- Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - Hans Hauner
- Else Kröner-Fresenius-Center for Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Georg-Brauchle-Ring 62, 80992, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD E.V.), Ingolstädter Landstr. 1, 85764, Munich-Neuherberg, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health (HmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Wolfgang Koenig
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Pettenkoferstr. 8A & 9, 80336, Munich, Germany
- German Heart Centre Munich, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Helmholtzstr. 22, 89081, Ulm, Germany
| | - Christa Meisinger
- Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD E.V.), Ingolstädter Landstr. 1, 85764, Munich-Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Pettenkoferstr. 8A & 9, 80336, Munich, Germany
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - P Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, England, UK
| | - Jakob Linseisen
- Institute for Medical Information Processing, Biometry, and Epidemiology, Medical Faculty, Ludwig-Maximilian University Munich, Marchioninistr. 15, 81377, Munich, Germany
- Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| |
Collapse
|
9
|
Zeng H, Safratowich BD, Cheng WH, Magnuson AD, Picklo MJ. Changes in the Fecal Metabolome Accompany an Increase in Aberrant Crypt Foci in the Colon of C57BL/6 Mice Fed with a High-Fat Diet. Biomedicines 2022; 10:biomedicines10112891. [PMID: 36428460 PMCID: PMC9687353 DOI: 10.3390/biomedicines10112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022] Open
Abstract
High-fat diet (HFD)-induced obesity is a risk factor for colon cancer. Our previous data show that compared to an AIN-93 diet (AIN), a HFD promotes azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) formation and microbial dysbiosis in C57BL/6 mice. To explore the underlying metabolic basis, we hypothesize that AOM treatment triggers a different fecal metabolomic profile in C57BL/6 mice fed the HFD or the AIN. We found that 65 of 196 identified metabolites were significantly different among the four groups of mice (AIN, AIN + AOM, HFD, and HFD + AOM). A sparse partial least squares discriminant analysis (sPLSDA) showed that concentrations of nine fecal lipid metabolites were increased in the HFD + AOM compared to the HFD, which played a key role in overall metabolome group separation. These nine fecal lipid metabolite concentrations were positively associated with the number of colonic ACF, the cell proliferation of Ki67 proteins, and the abundance of dysbiotic bacteria. These data suggest that the process of AOM-induced ACF formation may increase selective fecal lipid concentrations in mice fed with a HFD but not an AIN. Collectively, the accumulation of these critical fecal lipid species may alter the overall metabolome during tumorigenesis in the colon.
Collapse
Affiliation(s)
- Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
- Correspondence: ; Tel.: +1-701-795-8465
| | - Bryan D. Safratowich
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Andrew D. Magnuson
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - Matthew J. Picklo
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| |
Collapse
|
10
|
CD36-Fatty Acid-Mediated Metastasis via the Bidirectional Interactions of Cancer Cells and Macrophages. Cells 2022; 11:cells11223556. [PMID: 36428985 PMCID: PMC9688315 DOI: 10.3390/cells11223556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
Tumour heterogeneity refers to the complexity of cell subpopulations coexisting within the tumour microenvironment (TME), such as proliferating tumour cells, tumour stromal cells and infiltrating immune cells. The bidirectional interactions between cancer and the surrounding microenvironment mark the tumour survival and promotion functions, which allow the cancer cells to become invasive and initiate the metastatic cascade. Importantly, these interactions have been closely associated with metabolic reprogramming, which can modulate the differentiation and functions of immune cells and thus initiate the antitumour response. The purpose of this report is to review the CD36 receptor, a prominent cell receptor in metabolic activity specifically in fatty acid (FA) uptake, for the metabolic symbiosis of cancer-macrophage. In this review, we provide an update on metabolic communication between tumour cells and macrophages, as well as how the immunometabolism indirectly orchestrates the tumour metastasis.
Collapse
|