1
|
Cho HJ, Yeo DJ, Yang H, Koo J. Comprehensive Transcriptomic Analysis Reveals Cell-Type-Specific Roles of Human Odorant Receptors in Glioblastoma and the Tumor Microenvironment. Int J Mol Sci 2024; 25:13382. [PMID: 39769144 PMCID: PMC11676228 DOI: 10.3390/ijms252413382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Odorant receptors (ORs), which constitute approximately 50% of all human G protein-coupled receptors, are increasingly recognized for their diverse roles beyond odor perception, including functions in various pathological conditions like brain diseases and cancers. However, the roles of ORs in glioblastoma (GBM), the most aggressive primary brain tumor with a median survival of only 15 months, remain largely unexplored. Here, we performed an integrated transcriptomic analysis combining The Cancer Genome Atlas RNA-seq and single-cell RNA sequencing data from GBM patients to uncover cell-type-specific roles of ORs within the tumor and its microenvironment. Our findings reveal that ORs display distinct expression patterns, with OR51E1 enriched in pericytes linked to vascular remodeling and angiogenesis, OR2B11 associated with tumor-associated macrophages supporting immunosuppressive phenotypes, and OR2L13 correlated with synaptic activity in recurrent tumors, potentially mediating treatment-induced neuronal adaptations. These results highlight ORs as potential therapeutic targets, offering new insights into their regulatory roles in GBM progression, immune modulation, and treatment resistance.
Collapse
Affiliation(s)
- Hee Jin Cho
- Department of Biomedical Convergence Science and Technology, Advanced Institute of Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (H.J.C.); (D.J.Y.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Dong Jun Yeo
- Department of Biomedical Convergence Science and Technology, Advanced Institute of Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (H.J.C.); (D.J.Y.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - HeeWoong Yang
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea;
| | - JaeHyung Koo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea;
- Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea
| |
Collapse
|
2
|
Liu J, Wei L, Chen T, Wang H, Luo J, Chen X, Jiang Q, Xi Q, Sun J, Zhang L, Zhang Y. MiR-143 Targets SYK to Regulate NEFA Uptake and Contribute to Thermogenesis in Male Mice. Endocrinology 2023; 164:bqad114. [PMID: 37486737 DOI: 10.1210/endocr/bqad114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Excessive energy intake is the main cause of obesity, and stimulation of brown adipose tissue (BAT) and white adipose tissue (WAT) thermogenesis has emerged as an attractive tool for antiobesity. Although miR-143 has been reported to be associated with BAT thermogenesis, its role remains unclear. Here, we found that miR-143 had highest expression in adipose tissue, especially in BAT. During short-term cold exposure or CL316,243 was injected, miR-143 was markedly downregulated in BAT and subcutaneous WAT (scWAT). Moreover, knockout (KO) of miR-143 increases the body temperature of mice upon cold exposure, which may be due to the increased thermogenesis of BAT and scWAT. More importantly, supplementation of miR-143 in BAT of KO mice can inhibit the increase in body temperature in KO mice. Mechanistically, spleen tyrosine kinase was revealed for the first time as a new target of miR-143, and deletion of miR-143 facilitates fatty acid uptake in BAT. In addition, we found that brown adipocytes can promote fat mobilization of white adipocytes, and miR-143 may participate in this process. Meanwhile, we demonstrate that inactivation of adenylate cyclase 9 (AC9) in BAT inhibits thermogenesis through AC9-PKA-AMPK-CREB-UCP1 signaling pathway. Overall, our results reveal a novel function of miR-143 on thermogenesis, and a new functional link of the BAT and WAT.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experi-mental Animal Research Center), Sanya, Hainan 572000, China
- Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Hainan Key Laboratory for Tropical Animal Breeding and Disease Research, Haikou, Hainan 571100, China
| | - Limin Wei
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experi-mental Animal Research Center), Sanya, Hainan 572000, China
- Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Hainan Key Laboratory for Tropical Animal Breeding and Disease Research, Haikou, Hainan 571100, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Huan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| |
Collapse
|
3
|
Lenda B, Żebrowska-Nawrocka M, Turek G, Balcerczak E. Zinc Finger E-Box Binding Homeobox Family: Non-Coding RNA and Epigenetic Regulation in Gliomas. Biomedicines 2023; 11:biomedicines11051364. [PMID: 37239035 DOI: 10.3390/biomedicines11051364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Gliomas are the most common malignant brain tumours. Among them, glioblastoma (GBM) is a grade four tumour with a median survival of approximately 15 months and still limited treatment options. Although a classical epithelial to mesenchymal transition (EMT) is not the case in glioma due to its non-epithelial origin, the EMT-like processes may contribute largely to the aggressive and highly infiltrative nature of these tumours, thus promoting invasive phenotype and intracranial metastasis. To date, many well-known EMT transcription factors (EMT-TFs) have been described with clear, biological functions in glioma progression. Among them, EMT-related families of molecules such as SNAI, TWIST and ZEB are widely cited, well-established oncogenes considering both epithelial and non-epithelial tumours. In this review, we aimed to summarise the current knowledge with a regard to functional experiments considering the impact of miRNA and lncRNA as well as other epigenetic modifications, with a main focus on ZEB1 and ZEB2 in gliomas. Although we explored various molecular interactions and pathophysiological processes, such as cancer stem cell phenotype, hypoxia-induced EMT, tumour microenvironment and TMZ-resistant tumour cells, there is still a pressing need to elucidate the molecular mechanisms by which EMT-TFs are regulated in gliomas, which will enable researchers to uncover novel therapeutic targets as well as improve patients' diagnosis and prognostication.
Collapse
Affiliation(s)
- Bartosz Lenda
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Marta Żebrowska-Nawrocka
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Grzegorz Turek
- Department of Neurosurgery, Bródnowski Masovian Hospital, Kondratowicza 8, 03-242 Warsaw, Poland
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| |
Collapse
|
4
|
Xi M, Zhang G, Wang L, Chen H, Gao L, Zhang L, Yang Z, Shi H. Genetic Variations of CARMN Modulate Glioma Susceptibility and Prognosis in a Chinese Han Population. Pharmgenomics Pers Med 2022; 15:487-497. [PMID: 35592549 PMCID: PMC9112042 DOI: 10.2147/pgpm.s345764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/05/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Min Xi
- Department of Neurosurgery, Xi’an Children’s Hospital, Xi’an, 710043, People’s Republic of China
| | - Gang Zhang
- Department of Neurosurgery, Xi’an Children’s Hospital, Xi’an, 710043, People’s Republic of China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, 710038, People’s Republic of China
| | - Hu Chen
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, 710038, People’s Republic of China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, 710038, People’s Republic of China
| | - Luyi Zhang
- Department of Neurosurgery, Xi’an Children’s Hospital, Xi’an, 710043, People’s Republic of China
| | - Zhangkai Yang
- Department of Neurosurgery, Xi’an Children’s Hospital, Xi’an, 710043, People’s Republic of China
| | - Hangyu Shi
- Department of Neurosurgery, Xi’an Children’s Hospital, Xi’an, 710043, People’s Republic of China
- Correspondence: Hangyu Shi, Department of Neurosurgery, Xi’an Children’s Hospital, #69, Xijuyuan Lane, Lianhu District, Xi’an, 710043, Shaanxi, People’s Republic of China, Tel/Fax +86-15202910508, Email
| |
Collapse
|
5
|
Abstract
Odorant receptors (ORs), the largest subfamily of G protein-coupled receptors, detect odorants in the nose. In addition, ORs were recently shown to be expressed in many nonolfactory tissues and cells, indicating that these receptors have physiological and pathophysiological roles beyond olfaction. Many ORs are expressed by tumor cells and tissues, suggesting that they may be associated with cancer progression or may be cancer biomarkers. This review describes OR expression in various types of cancer and the association of these receptors with various types of signaling mechanisms. In addition, the clinical relevance and significance of the levels of OR expression were evaluated. Namely, levels of OR expression in cancer were analyzed based on RNA-sequencing data reported in the Cancer Genome Atlas; OR expression patterns were visualized using t-distributed stochastic neighbor embedding (t-SNE); and the associations between patient survival and levels of OR expression were analyzed. These analyses of the relationships between patient survival and expression patterns obtained from an open mRNA database in cancer patients indicate that ORs may be cancer biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Chan Chung
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
| | - Hee Jin Cho
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu 41566, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - ChaeEun Lee
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
| | - JaeHyung Koo
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
- Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| |
Collapse
|
6
|
Chung C, Cho HJ, Lee C, Koo J. Odorant receptors in cancer. BMB Rep 2022; 55:72-80. [PMID: 35168702 PMCID: PMC8891625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/21/2025] Open
Abstract
Odorant receptors (ORs), the largest subfamily of G protein-coupled receptors, detect odorants in the nose. In addition, ORs were recently shown to be expressed in many nonolfactory tissues and cells, indicating that these receptors have physiological and pathophysiological roles beyond olfaction. Many ORs are expressed by tumor cells and tissues, suggesting that they may be associated with cancer progression or may be cancer biomarkers. This review describes OR expression in various types of cancer and the association of these receptors with various types of signaling mechanisms. In addition, the clinical relevance and significance of the levels of OR expression were evaluated. Namely, levels of OR expression in cancer were analyzed based on RNA-sequencing data reported in the Cancer Genome Atlas; OR expression patterns were visualized using t-distributed stochastic neighbor embedding (t-SNE); and the associations between patient survival and levels of OR expression were analyzed. These analyses of the relationships between patient survival and expression patterns obtained from an open mRNA database in cancer patients indicate that ORs may be cancer biomarkers and therapeutic targets. [BMB Reports 2022;55(2): 72-80].
Collapse
Affiliation(s)
- Chan Chung
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
| | - Hee Jin Cho
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu 41566, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - ChaeEun Lee
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
| | - JaeHyung Koo
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
- Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| |
Collapse
|
7
|
Cho HJ, Koo J. Odorant G protein-coupled receptors as potential therapeutic targets for adult diffuse gliomas: a systematic analysis and review. BMB Rep 2021. [PMID: 34847986 PMCID: PMC8728539 DOI: 10.5483/bmbrep.2021.54.12.165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Odorant receptors (ORs) account for about 60% of all human G protein-coupled receptors (GPCRs). OR expression outside of the nose has functions distinct from odor perception, and may contribute to the pathogenesis of disorders including brain diseases and cancers. Glioma is the most common adult malignant brain tumor and requires novel therapeutic strategies to improve clinical outcomes. Here, we outlined the expression of brain ORs and investigated OR expression levels in glioma. Although most ORs were not ubiquitously expressed in gliomas, a subset of ORs displayed glioma subtype-specific expression. Moreover, through systematic survival analysis on OR genes, OR51E1 (mouse Olfr558) was identified as a potential biomarker of unfavorable overall survival, and OR2C1 (mouse Olfr15) was identified as a potential biomarker of favorable overall survival in isocitrate dehydrogenase (IDH) wild-type glioma. In addition to transcriptomic analysis, mutational profiles revealed that somatic mutations in OR genes were detected in > 60% of glioma samples. OR5D18 (mouse Olfr1155) was the most frequently mutated OR gene, and OR5AR1 (mouse Olfr1019) showed IDH wild-type-specific mutation. Based on this systematic analysis and review of the genomic and transcriptomic profiles of ORs in glioma, we suggest that ORs are potential biomarkers and therapeutic targets for glioma.
Collapse
Affiliation(s)
- Hee Jin Cho
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu 41566, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - JaeHyung Koo
- Department of New Biology, DGIST, Daegu 42988, Korea
- 4New Biology Research Center (NBRC), DGIST, Daegu 42988, 5Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| |
Collapse
|