1
|
Mohamed FS, Jalal D, Fadel YM, El-Mashtoly SF, Khaled WZ, Sayed AA, Ghazy MA. Characterization and comparative profiling of piRNAs in serum biopsies of pediatric Wilms tumor patients. Cancer Cell Int 2025; 25:163. [PMID: 40287690 PMCID: PMC12034122 DOI: 10.1186/s12935-025-03780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Piwi-interacting RNAs (piRNAs) are small non-coding RNAs involved in transposon silencing and linked to cancer progression. However, their role in Wilms tumors (WT) remains unexplored. We conducted a thorough analysis and characterization of piRNAs in serum liquid biopsies of WT patients. Our study examined their expression patterns and functional annotations related to WT pathogenesis, as well as their clinical potential for diagnosis and monitoring. We identified 307 piRNAs expressed in WT serum samples, with 4% classified as repeat-related and 96% as non-repeat-related. The most abundant repeat-related piRNAs originated from LINEs retrotransposon, while tRNA-derived piRNAs were the most prevalent among non-repeat-related piRNAs. Furthermore, a distinct profile of 34 piRNAs showed significant differential expression in WT patients compared to healthy controls-22 downregulated and 12 upregulated. The target genes of differentially expressed piRNAs exhibited significant enrichment in biological pathways related to cytokine activity, inflammatory responses, TGF-beta signaling, p38 MAPK, and ErbB signaling. These genes are also involved in DNA damage response, DNA methylation, cell cycle regulation, as well as kidney development and function. Low expression levels of several piRNAs, especially piR-hsa-1,913,711, piR-hsa-28,190, piR-hsa-28,849, piR-hsa-28,848, and piR-hsa-28,318, showed significant diagnostic potential as non-invasive biomarkers for WT (AUC > 0.8, p < 0.05). Their expression levels also significantly correlated with adverse pathological features, including metastasis, anaplasia, and bilateral WT development. In conclusion, non-transposon-related piRNAs may serve as reliable biomarkers for WT and possess potential non-germline functions, particularly in regulating DNA methylation, cell growth, immune responses, and immune responses. Further studies are warranted to elucidate their functional significance.
Collapse
Affiliation(s)
- Fatma S Mohamed
- Biotechnology Program, Institute of Basic and Applied Science Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt
- Biochemistry ProgramFaculty of Science, Minia University, El-Minia, Egypt
| | - Deena Jalal
- Genomics and Metagenomics Program, Department of Basic Research, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
| | - Youssef M Fadel
- Genomics and Metagenomics Program, Department of Basic Research, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
- Bioinformatics Group, Center for Informatics Science, School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Samir F El-Mashtoly
- Leibniz Institute of Photonic Technology, Albert Einstein-Straße 9, 07745, Jena, Germany
| | - Wael Z Khaled
- Department of Pediatric Oncology, National Cancer Institute, Cairo, Egypt
- Department of Pediatric Oncology, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
- Consultant Pediatric Oncology, Mouwasat Hospital, Dammam, Saudi Arabia
| | - Ahmed A Sayed
- Genomics and Metagenomics Program, Department of Basic Research, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt.
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Mohamed A Ghazy
- Biotechnology Program, Institute of Basic and Applied Science Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Wang S, Chen X, Wang K, Yang S. The Regulatory Role of NcRNAs in Pyroptosis and Disease Pathogenesis. Cell Biochem Biophys 2025:10.1007/s12013-025-01720-7. [PMID: 40249522 DOI: 10.1007/s12013-025-01720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 04/19/2025]
Abstract
Non-coding RNAs (ncRNAs), as critical regulators of gene expression, play a pivotal role in the modulation of pyroptosis and exhibit a close association with a wide range of diseases. Pyroptosis is a form of programmed cell death mediated by inflammasomes, characterized by cell membrane perforation, release of inflammatory cytokines, and a robust immune response. Recent studies have revealed that ncRNAs influence the initiation and execution of pyroptosis by regulating the expression of pyroptosis-related genes or modulating associated signaling pathways. This review systematically summarizes the molecular mechanisms and applications of ncRNAs in diseases such as cancer, infectious diseases, neurological disorders, cardiovascular diseases, and metabolic disorders. It further explores the potential of ncRNAs as diagnostic biomarkers and therapeutic targets, elucidates the intricate interactions among ncRNAs, pyroptosis, and diseases, and provides novel strategies and directions for the precision treatment of related diseases.
Collapse
Affiliation(s)
- Shaocong Wang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xinzhe Chen
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Sumin Yang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Luangtrakul W, Wongdontri C, Jaree P, Boonchuen P, Somboonviwat K, Sarnow P, Somboonwiwat K. Unveiling the impact of shrimp piRNAs on WSSV infection and immune modulation. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110124. [PMID: 39826629 DOI: 10.1016/j.fsi.2025.110124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Piwi-interacting RNAs (piRNAs) are small non-coding RNAs that play a crucial role in gene regulation and immune defense. This study investigates their function in Penaeus vannamei shrimp during White Spot Syndrome Virus (WSSV) infection. Analysis of small RNA libraries from WSSV-infected shrimp hemocytes identified 82,788 piRNA homologs, with 138 showing altered expression during infection. Putative piRNAs were mapped to both the P. vannamei nuclear and mitochondrial genomes, highlighting their diverse origins. Interestingly, some piRNA sequences from uninfected shrimp mapped to both the shrimp and WSSV genomes, suggesting potential subversion or integration of viral fragments into the host genome. We focused on piR-pva-926938, a downregulated piRNA targeting the WSSV186 gene. Introducing piR-pva-926938 into WSSV-infected shrimp suppressed WSSV186 expression, but paradoxically increased viral load by downregulating host immune genes like calcineurin B and dynamin-binding protein. This study is the first to report WSSV-responsive piRNAs in shrimp and reveals the complex interplay between piRNAs, viral genes, and host immunity during WSSV infection.
Collapse
Affiliation(s)
- Waruntorn Luangtrakul
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Chantaka Wongdontri
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Phattarunda Jaree
- Center of Applied Shrimp Research and Innovation, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand
| | - Kulwadee Somboonviwat
- Department of Computer Engineering, Faculty of Engineering at Sriracha, Kasetsart University Sriracha Campus, Chonburi, Thailand
| | - Peter Sarnow
- Department of Microbiology & Immunology, Stanford University SOM, Stanford, CA, USA
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Beňačka R, Szabóová D, Guľašová Z, Hertelyová Z. Non-Coding RNAs in Breast Cancer: Diagnostic and Therapeutic Implications. Int J Mol Sci 2024; 26:127. [PMID: 39795985 PMCID: PMC11719911 DOI: 10.3390/ijms26010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Breast cancer (BC) is one of the most prevalent forms of cancer globally, and has recently become the leading cause of cancer-related mortality in women. BC is a heterogeneous disease comprising various histopathological and molecular subtypes with differing levels of malignancy, and each patient has an individual prognosis. Etiology and pathogenesis are complex and involve a considerable number of genetic alterations and dozens of alterations in non-coding RNA expression. Non-coding RNAs are part of an abundant family of single-stranded RNA molecules acting as key regulators in DNA replication, mRNA processing and translation, cell differentiation, growth, and overall genomic stability. In the context of breast cancer, non-coding RNAs are involved in cell cycle control and tumor cell migration and invasion, as well as treatment resistance. Alterations in non-coding RNA expression may contribute to the development and progression of breast cancer, making them promising biomarkers and targets for novel therapeutic approaches. Currently, the use of non-coding RNAs has not yet been applied to routine practice; however, their potential has been very well studied. The present review is a literature overview of current knowledge and its objective is to delineate the function of diverse classes of non-coding RNAs in breast cancer, with a particular emphasis on their potential utility as diagnostic and prognostic markers or as therapeutic targets and tools.
Collapse
Affiliation(s)
- Roman Beňačka
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia;
| | - Daniela Szabóová
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia;
| | - Zuzana Guľašová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| | - Zdenka Hertelyová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| |
Collapse
|
5
|
Baptista HS, Portela LMF, Fioretto MN, Mattos R, Ribeiro IT, Lorente ABL, Oliveira JIN, Justulin LA. Influence of aging and maternal protein restriction on PIWI-interacting RNA expression in the offspring rat ventral prostate. Sci Rep 2024; 14:30372. [PMID: 39639045 PMCID: PMC11621812 DOI: 10.1038/s41598-024-77901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/27/2024] [Indexed: 12/07/2024] Open
Abstract
The Developmental Origins of Health and Disease (DOHaD) concept explores the link between exposure to adverse conditions during fetal and early childhood development and the onset of chronic non-communicable diseases, such as prostate cancer (PCa). Changes in epigenetics that control gene expression have been identified as potential contributors to the developmental origin of PCa. Piwi-interacting RNAs (piRNAs), for example, control transposable elements (TEs) and maintain genome integrity in germ cells. However, stress-induced deregulation of TEs warrants investigating the role of piRNAs in the prostate gland from the DOHaD perspective, which remains underexplored. This study aimed to detect and characterize piRNA expression in the ventral prostate (VP) of Sprague Dawley rat offspring at 21 postnatal days (PND21) and PND540. The rats were subjected to maternal protein restriction during pregnancy and lactation to understand its impact on prostate development and aging. Histological analyses showed that the gestational and lactation low-protein diet (GLLP) group experienced a delay in prostate gland development, with increased stromal and epithelial compartments and decreased luminal compartments during early life. Aging in this group resulted in decreased luminal compartments and increased stromal areas. Epithelial atrophy was observed in both groups, with an increased incidence of carcinoma in situ in the GLLP group. Small RNA sequencing from control and restricted groups (at PND21 and PND540) identified piRNA clusters in both young and aged animals. We also detected the expression of PIWI genes (Riwi, Rili, Rili2) in the prostate. Our data highlight the key role of maternal malnutrition in modulating piRNA expression in the offspring's VP, with the potential to influence prostate developmental biology and the risk of prostatic disorders with aging.
Collapse
Affiliation(s)
- Hecttor S Baptista
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Luiz M Frediani Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Matheus N Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Renato Mattos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Isabelle T Ribeiro
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Ana B Leite Lorente
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | | | - Luis A Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil.
| |
Collapse
|
6
|
Öner Ç, Köser F, Çolak E. The association of piR-651 and piR-823 on metastatic and invasive characteristics of triple negative breast cancer cells. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-17. [PMID: 39630699 DOI: 10.1080/15257770.2024.2437037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
PIWI-Interacting RNAs are small non-coding RNAs derived from single-stranded RNAs which plays a crucial role in epigenetic regulation through transposon silencing and mRNA degradation via deamination. This study aimed to inhibit piR-651 and piR-823 in MDA-MB-231 triple-negative breast cancer cells and to explore their potential effects on healthy HUVEC cells. Non-target, anti-piR-651, and anti-piR-823 sequences were transfected in bothHUVEC and MDA-MB-231 cells using Lipofectamine. Proliferation and motility were assessed at 24, 48, and 72 h post-transfection in both cell lines. Based on the motility findings, MDA-MB-231 cells were underwent an invasion assay using crystal violet staining. The expressions of Ki-67, HIF-1α, MMP-2, and MMP-9 genes were measured at 48 h, when both cell lines exhibited the most significant effects of inhibition. The optimal time for proliferation of anti-piR-651 and anti-piR-823 transfected MDA-MB-231 cells was determined to be at 48 h, as indicated by decreased motility and invasion assay results (p < 0.001). NeverthelessHowever, there was no significant difference in the motility and proliferation of HUVECss transfected with anti-piR-651 and anti-piR-823 compared to the control group (p > 0.05). Asides from MMP-2 in anti-piR-823 transfected HUVECs and HIF-1α in anti-piR-823 transfected MDA-MB-231 cells, gene expressions of Ki-67, HIF-1α, MMP-2, and MMP-9 were reduced in both cell lines (p < 0.001). Inhibition of piR-651 and piR-823 decreased the survival and metastasis of cancer cells, without causing vital structural changes in healthy cells. Future research in cancer gene therapy or genetic modification may benefit from investigating piR-651 and piR-823 as possible inhibitors of breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Çağrı Öner
- Department of Medical Biology, Kırklareli University, Faculty of Medicine, Kırklareli, Turkey
- Department of Medical and Genetics, Maltepe University, Faculty of Medicine, İstanbul, Turkey
| | - Faruk Köser
- Faculty of Medicine, Maltepe University, İstanbul, Turkey
| | - Ertuğrul Çolak
- Department of Biostatistics, Eskişehir Osmangazi University, Faculty of Medicine, Eskişehir, Turkey
| |
Collapse
|
7
|
Li S, Kouznetsova VL, Kesari S, Tsigelny IF. piRNA in Machine-Learning-Based Diagnostics of Colorectal Cancer. Molecules 2024; 29:4311. [PMID: 39339306 PMCID: PMC11434383 DOI: 10.3390/molecules29184311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Objective biomarkers are crucial for early diagnosis to promote treatment and raise survival rates for diseases. With the smallest non-coding RNAs-piwi-RNAs (piRNAs)-and their transcripts, we sought to identify if these piRNAs could be used as biomarkers for colorectal cancer (CRC). Using previously published data from serum samples of patients with CRC, 13 differently expressed piRNAs were selected as potential biomarkers. With this data, we developed a machine learning (ML) algorithm and created 1020 different piRNA sequence descriptors. With the Naïve Bayes Multinomial classifier, we were able to isolate the 27 most influential sequence descriptors and achieve an accuracy of 96.4%. To test the validity of our model, we used data from piRBase with known associations with CRC that we did not use to train the ML model. We were able to achieve an accuracy of 85.7% with these new independent data. To further validate our model, we also tested data from unrelated diseases, including piRNAs with a correlation to breast cancer and no proven correlation to CRC. The model scored 44.4% on these piRNAs, showing that it can identify a difference between biomarkers of CRC and biomarkers of other diseases. The final results show that our model is an effective tool for diagnosing colorectal cancer. We believe that in the future, this model will prove useful for colorectal cancer and other diseases diagnostics.
Collapse
Affiliation(s)
- Sienna Li
- CureScience Institute, San Diego, CA 92121, USA; (S.L.); (V.L.K.)
| | - Valentina L. Kouznetsova
- CureScience Institute, San Diego, CA 92121, USA; (S.L.); (V.L.K.)
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Santosh Kesari
- Pacific Neuroscience Institute, Santa Monica, CA 90404, USA;
| | - Igor F. Tsigelny
- CureScience Institute, San Diego, CA 92121, USA; (S.L.); (V.L.K.)
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Hammad G, Magdy M, Aboushousha T, Abdelraouf A, Mamdouh S. HEPPAR1 and PIWIL2 as Panel Markers for Hepatocellular Carcinoma. Asian Pac J Cancer Prev 2024; 25:2123-2131. [PMID: 38918675 PMCID: PMC11382836 DOI: 10.31557/apjcp.2024.25.6.2123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the expression profiles of PIWI-like protein- 2 (PIWIL2), and HepPar1 and their immunohistochemical (IHC) characteristics in Hepatocellular Carcinoma (HCC), and determine their correlation with clinicopathological parameters of this type of cancer to determine their diagnostic value in combination. METHODS Seventy-five patients with HCC were assessed for the expression of PIWIL2 in serum and tissue using real-time polymerase chain reaction (RT-PCR) and IHC was performed for PIWIL2 and HepPar1 was performed on all patients. RESULTS A statistically significantly higher level of PIWIL2 was found in HCC compared to controls (p≤0.001). Both HepPar1 and PIWIL2 were detected in 84% of HCC cases, the diagnostic and prognostic factors for PIWIL2 were found to be significant in liver tumour tissue samples and non-tumorous sections p<0.001, and the same was observed for serum samples and results of healthy serum controls (p<0.001) when compared to AFP. CONCLUSION Our results affirm the hypothesis that reactivation of PIWI expression in various caner types is crucial for cancer development, and that a possible panel maybe used for these markers HCC diagnosis.
Collapse
Affiliation(s)
- Gehan Hammad
- Faculty of Biotechnology, October University for Modern Sciences & Arts (MSA), Giza, Egypt
| | - Mona Magdy
- Department of Pathology, Theodor Bilharz Research Institute, (TBRI), Giza, Egypt
| | - Tarek Aboushousha
- Department of Pathology, Theodor Bilharz Research Institute, (TBRI), Giza, Egypt
| | - Amr Abdelraouf
- Department of Hepatobiliopancreatic Surgery, National Hepatology and Tropical Medicine Research Institute, (NHTMRI), Cairo, Egypt
| | - Samah Mamdouh
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
9
|
Han R, Rao X, Zhou H, Lu L. Synergistic Immunoregulation: harnessing CircRNAs and PiRNAs to Amplify PD-1/PD-L1 Inhibition Therapy. Int J Nanomedicine 2024; 19:4803-4834. [PMID: 38828205 PMCID: PMC11144010 DOI: 10.2147/ijn.s461289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/12/2024] [Indexed: 06/05/2024] Open
Abstract
The utilization of PD-1/PD-L1 inhibitors marks a significant advancement in cancer therapy. However, the efficacy of monotherapy is still disappointing in a substantial subset of patients, necessitating the exploration of combinational strategies. Emerging from the promising results of the KEYNOTE-942 trial, RNA-based therapies, particularly circRNAs and piRNAs, have distinguished themselves as innovative sensitizers to immune checkpoint inhibitors (ICIs). These non-coding RNAs, notable for their stability and specificity, were once underrecognized but are now known for their crucial roles in regulating PD-L1 expression and bolstering anti-cancer immunity. Our manuscript offers a comprehensive analysis of selected circRNAs and piRNAs, elucidating their immunomodulatory effects and mechanisms, thus underscoring their potential as ICIs enhancers. In conjunction with the recent Nobel Prize-awarded advancements in mRNA vaccine technology, our review highlights the transformative implications of these findings for cancer treatment. We also discuss the prospects of circRNAs and piRNAs in future therapeutic applications and research. This study pioneers the synergistic application of circRNAs and piRNAs as novel sensitizers to augment PD-1/PD-L1 inhibition therapy, demonstrating their unique roles in regulating PD-L1 expression and modulating immune responses. Our findings offer a groundbreaking approach for enhancing the efficacy of cancer immunotherapy, opening new avenues for treatment strategies. This abstract aims to encapsulate the essence of our research and the burgeoning role of these non-coding RNAs in enhancing PD-1/PD-L1 inhibition therapy, encouraging further investigation into this promising field.
Collapse
Affiliation(s)
- Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
- Department of Chinese Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Xiwu Rao
- Department of Oncology, The First Hospital Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Huiling Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, People’s Republic of China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA
- School of Medicine, Center for Biomedical Data Science, Yale University, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
10
|
Samare-Najaf M, Kouchaki H, Moein Mahini S, Saberi Rounkian M, Tavakoli Y, Samareh A, Karim Azadbakht M, Jamali N. Prostate cancer: Novel genetic and immunologic biomarkers. Clin Chim Acta 2024; 555:117824. [PMID: 38316287 DOI: 10.1016/j.cca.2024.117824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Prostate cancer (PCa) is considered one of the most prevalent male malignancies worldwide with a global burden estimated to increase over the next two decades. Due to significant mortality and debilitation of survival, early diagnosis has been described as key. Unfortunately, current diagnostic serum-based strategies have low specificity and sensitivity. Histologic examination is invasive and not useful for treatment and monitoring purposes. Hence, a plethora of studies have been conducted to identify and validate an efficient noninvasive approach in the diagnosis, staging, and prognosis of PCa. These investigations may be categorized as genetic (non-coding biomarkers and gene markers), immunologic (immune cells, interleukins, cytokines, antibodies, and auto-antibodies), and heterogenous (PSA-related markers, PHI-related indices, and urinary biomarkers) subgroups. This review examines current approaches and potential strategies using biomarker panels in PCa.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hosein Kouchaki
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Moein Mahini
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Saberi Rounkian
- Student Research Committee, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Yasaman Tavakoli
- Department of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Ali Samareh
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Navid Jamali
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran.
| |
Collapse
|
11
|
Gholami M, Klashami ZN, Ebrahimi P, Mahboobipour AA, Farid AS, Vahidi A, Zoughi M, Asadi M, Amoli MM. Metformin and long non-coding RNAs in breast cancer. J Transl Med 2023; 21:155. [PMID: 36849958 PMCID: PMC9969691 DOI: 10.1186/s12967-023-03909-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/21/2023] [Indexed: 03/01/2023] Open
Abstract
Breast cancer (BC) is the second most common cancer and cause of death in women. In recent years many studies investigated the association of long non-coding RNAs (lncRNAs), as novel genetic factors, on BC risk, survival, clinical and pathological features. Recent studies also investigated the roles of metformin treatment as the firstline treatment for type 2 diabetes (T2D) played in lncRNAs expression/regulation or BC incidence, outcome, mortality and survival, separately. This comprehensive study aimed to review lncRNAs associated with BC features and identify metformin-regulated lncRNAs and their mechanisms of action on BC or other types of cancers. Finally, metformin affects BC by regulating five BC-associated lncRNAs including GAS5, HOTAIR, MALAT1, and H19, by several molecular mechanisms have been described in this review. In addition, metformin action on other types of cancers by regulating ten lncRNAs including AC006160.1, Loc100506691, lncRNA-AF085935, SNHG7, HULC, UCA1, H19, MALAT1, AFAP1-AS1, AC026904.1 is described.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeynab Nickhah Klashami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pirooz Ebrahimi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | | | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Vahidi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Zoughi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asadi
- Metabolomics and Genomics Research Center Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Bajo-Santos C, Brokāne A, Zayakin P, Endzeliņš E, Soboļevska K, Belovs A, Jansons J, Sperga M, Llorente A, Radoviča-Spalviņa I, Lietuvietis V, Linē A. Plasma and urinary extracellular vesicles as a source of RNA biomarkers for prostate cancer in liquid biopsies. Front Mol Biosci 2023; 10:980433. [PMID: 36818049 PMCID: PMC9935579 DOI: 10.3389/fmolb.2023.980433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Extracellular vesicles (EVs) have emerged as a very attractive source of cancer- derived RNA biomarkers for the early detection, prognosis and monitoring of various cancers, including prostate cancer (PC). However, biofluids contain a mixture of EVs released from a variety of tissues and the fraction of total EVs that are derived from PC tissue is not known. Moreover, the optimal biofluid-plasma or urine-that is more suitable for the detection of EV- enclosed RNA biomarkers is not yet clear. Methodology: In the current study, we performed RNA sequencing analysis of plasma and urinary EVs collected before and after radical prostatectomy, and matched tumor and normal prostate tissues of 10 patients with prostate cancer. Results and Discussion: The most abundant RNA biotypes in EVs were miRNA, piRNA, tRNA, lncRNA, rRNA and mRNA. To identify putative cancer-derived RNA biomarkers, we searched for RNAs that were overexpressed in tumor as compared to normal tissues, present in the pre-operation EVs and decreased in the post-operation EVs in each RNA biotype. The levels of 63 mRNAs, 3 lncRNAs, 2 miRNAs and 1 piRNA were significantly increased in the tumors and decreased in the post-operation urinary EVs, thus suggesting that these RNAs mainly originate from PC tissue. No such RNA biomarkers were identified in plasma EVs. This suggests that the fraction of PC-derived EVs in urine is larger than in plasma and allows the detection and tracking of PC-derived RNAs.
Collapse
Affiliation(s)
| | - Agnese Brokāne
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | | | | | | | - Alicia Llorente
- Department Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway,Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway
| | | | | | - Aija Linē
- Latvian Biomedical Research and Study Centre, Riga, Latvia,*Correspondence: Aija Linē,
| |
Collapse
|
13
|
Sabeena S. Role of noncoding RNAs with emphasis on long noncoding RNAs as cervical cancer biomarkers. J Med Virol 2023; 95:e28525. [PMID: 36702772 DOI: 10.1002/jmv.28525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/28/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023]
Abstract
Cervical cancer is a significant public health problem in developing countries, as most cases present at an advanced stage. This review aimed to analyze the role of noncoding RNAs as diagnostic and prognostic biomarkers in cervical cancers. Published studies on specific microRNA signatures in body fluids and cervical cancer tissues are highly heterogeneous, and there are no validated assays. The precision of the various immune-associated long noncoding (lncRNA) signatures should be assessed in clinical samples. Even though lncRNAs are tissue and cancer-specific, safe and appropriate methods for delivery to tumor tissues, toxicities and side effects are to be explored. Few studies have evaluated deregulated lncRNA expression levels with clinicopathological factors in a limited number of clinical samples. Prospective studies assessing the diagnostic and prognostic roles of circulating lncRNAs and P-Element-induced wimpy testis interacting PIWI RNAs (Piwil RNAs) in cervical cancer cases are essential. For the clinical application of lnc-RNA-based biomarkers, comprehensive research is needed as the impact of noncoding transcripts on molecular pathways is complex. The standardization and validation of deregulated ncRNAs in noninvasive samples of cervical cancer cases are needed.
Collapse
|
14
|
Sun Z, Wu Y, Gao F, Li H, Wang C, Du L, Dong L, Jiang Y. In situ detection of exosomal RNAs for cancer diagnosis. Acta Biomater 2023; 155:80-98. [PMID: 36343908 DOI: 10.1016/j.actbio.2022.10.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Exosomes are considered as biomarkers reflecting the physiological state of the human body. Studies have revealed that the expression levels of specific exosomal RNAs are closely associated with certain cancers. Thus, detection of exosomal RNA offers a new avenue for liquid biopsy of cancers. Many exosomal RNA detection methods based on various principles have been developed, and most of the methods detect the extracted RNAs after lysing exosomes. Besides complex and time-consuming extraction steps, a major drawback of this approach is the degradation of the extracted RNAs in the absence of plasma membrane and cytosol. In addition, there is considerable loss of RNAs during their extraction. In situ detection of exosomal RNAs can avoid these drawbacks, thus allowing higher diagnostic reliability. In this paper, in situ detection of exosomal RNAs was systematically reviewed from the perspectives of detection methods, transport methods of the probe systems, probe structures, signal amplification strategies, and involved functional materials. Furthermore, the limitations and possible improvements of the current in situ detection methods for exosomal RNAs towards the clinical diagnostic application are discussed. This review aims to provide a valuable reference for the development of in situ exosomal RNA detection strategies for non-invasive diagnosis of cancers. STATEMENT OF SIGNIFICANCE: Certain RNAs have been identified as valuable biomarkers for some cancers, and sensitive detection of cancer-related RNAs is expected to achieve better diagnostic efficacy. Currently, the detection of exosomal RNAs is receiving increasing attention due to their high stability and significant concentration differences between patients and healthy individuals. In situ detection of exosomal RNAs has greater diagnostic reliability due to the avoidance of RNA degradation and loss. However, this mode is still limited by some factors such as detection methods, transport methods of the probe systems, probe structures, signal amplification strategies, etc. This review focuses on the progress of in situ detection of exosomal RNAs and aims to promote the development of this field.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Yanqiu Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Fucheng Gao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, China.
| | - Lun Dong
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China.
| |
Collapse
|
15
|
Nasseri S, Sharifi M, Mehrzad V. Effects of hsa-piR-32877 Suppression with Antisense LNA GapmeRs on the Proliferation and Apoptosis of Human Acute Myeloid Leukemia Cells. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:18-29. [PMID: 37942262 PMCID: PMC10629728 DOI: 10.22088/ijmcm.bums.12.1.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 11/10/2023]
Abstract
Acute myeloid leukemia (AML) is an invasive form of hematologic malignancies which results in the overproduction of myeloid cells in the bone marrow. Aberrant expression of piwi-interacting RNAs (piRNAs) which belong to small non-coding RNAs, play important roles in different cancer cells' progress. hsa- piR- 32877 is up-regulated in AML. Down regulation of hsa-piR-32877 by antisense LNA GapmeRs could be potential for suppression of myeloid cell proliferation and induce myeloid cell apoptosis. We have blocked the expression of hsa-piR-32877 by antisense LNA GapmeRs in human bone marrow blast cells, and the M-07e cell line. Samples were transfected with antisense LNA GapmeRs at 24, 48, and 72 hours. The Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was performed to investigate the expression of hsa-piR-32877, CASP3, and CASP9. Both CASP3 and CASP9 play important roles in apoptosis. Cell proliferation was studied via CFSE (carboxyfluorescein diacetate succinimidyl ester) assay. Results showed that hsa-piR-32877 was down-regulated by antisense LNA GapmeRs in the patient and cell line samples. Also, after transfection, cell proliferation and apoptosis decreased and increased, respectively. Our data suggested that hsa-piR-32877 suppression may act as a novel therapeutic method for the inhibition of human leukemic cells proliferation in AML.
Collapse
Affiliation(s)
- Sepideh Nasseri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Valiollah Mehrzad
- Department of Internal Medicine, Division of Hematology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
16
|
Zhao Q, Qian L, Guo Y, Lü J, Li D, Xie H, Wang Q, Ma W, Liu P, Liu Y, Wang T, Wu X, Han J, Yu Z. IL11 signaling mediates piR-2158 suppression of cell stemness and angiogenesis in breast cancer. Theranostics 2023; 13:2337-2349. [PMID: 37153732 PMCID: PMC10157741 DOI: 10.7150/thno.82538] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Emerging evidence has indicated the aberrant expression of PIWI-interacting RNAs (piRNAs) in human cancer cells to regulate tumor development and progression by governing cancer cell stemness. Herein, we identified downregulation of piR-2158 in human breast cancer tumors, especially in ALDH+ breast cancer stem cells (BCSCs) from patients and cell lines, which was further validated in two types of genetically engineered mouse models of breast cancer (MMTV-Wnt and MMTV-PyMT). Enforced overexpression of piR-2158 in basal-like or luminal subtypes of breast cancer cells suppressed cell proliferation, migration, epithelial-mesenchymal transition (EMT) and stemness in vitro. Administration of a dual mammary tumor-targeting piRNA delivery system in mice reduced tumor growth in vivo. RNA-seq, ChIP-seq and luciferase reporter assays demonstrated piR-2158 as a transcriptional repressor of IL11 by competing with AP-1 transcription factor subunit FOSL1 to bind the promoter of IL11. STAT3 signaling mediated piR-2158-IL11 regulation of cancer cell stemness and tumor growth. Moreover, by co-culturing of MDA-MB-231 and HUVECs in vitro and CD31 staining of tumor endothelial cells in vivo, we demonstrated inhibition of angiogenesis by piR-2158-IL11 in breast cancer. In conclusion, the current study not only reveals a novel mechanism through which piR-2158 inhibits mammary gland tumorigenesis via regulating cancer stem cells and tumor angiogenesis, but also provides a novel therapeutic strategy in treatment of breast cancer.
Collapse
Affiliation(s)
- Qian Zhao
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Qian
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuefan Guo
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinhui Lü
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danni Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Heying Xie
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- School of Basic Medicine, Jinzhou Medical University, Liaoning, China
| | - Qiong Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjing Ma
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pengfei Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- School of Basic Medicine, Jinzhou Medical University, Liaoning, China
| | - Tao Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuebiao Wu
- Shanghai OE Biotech Co., Ltd., Shanghai, China
| | - Junyi Han
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- ✉ Corresponding authors: Zuoren Yu, Ph.D., Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China; . Or Junyi Han, M.D;
| | - Zuoren Yu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- ✉ Corresponding authors: Zuoren Yu, Ph.D., Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China; . Or Junyi Han, M.D;
| |
Collapse
|
17
|
Akimniyazova AN, Niyazova TK, Yurikova OY, Pyrkova AY, Zhanuzakov MA, Ivashchenko AT. piRNAs may regulate expression of candidate genes of esophageal adenocarcinoma. Front Genet 2022; 13:1069637. [PMID: 36531220 PMCID: PMC9747755 DOI: 10.3389/fgene.2022.1069637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 07/29/2023] Open
Abstract
Elucidation of ways to regulate the expression of candidate cancer genes will contribute to the development of methods for cancer diagnosis and therapy. The aim of the present study was to show the role of piRNAs as efficient regulators of mRNA translation of esophageal adenocarcinoma (EAC) candidate genes. We used bioinformatic methods to study the interaction characteristics of up to 200 thousand piRNAs with mRNAs of 38 candidate EAC genes. The piRNAs capable of binding to mRNA of AR, BTG3, CD55, ERBB3, FKBP5, FOXP1, LEP, SEPP1, SMAD4, and TP53 genes with high free energy by the formation of hydrogen bonds between canonical (G-C, A-U) and noncanonical (G-U, A-C) piRNA and mRNA nucleotide pairs were revealed. The organization of piRNA binding sites (BSs) in the mRNA of candidate genes was found to overlap nucleotide sequences to form clusters. Clusters of piRNA BSs were detected in the 5'-untranslated region, coding domain sequence, and 3'-untranslated region of mRNA. Due to the formation of piRNA binding site clusters, compaction of BSs occurs and competition between piRNAs for binding to mRNA of candidate EAC genes occurs. Associations of piRNA and candidate genes were selected for use as markers for the diagnosis of EAC.
Collapse
Affiliation(s)
- A. N. Akimniyazova
- Higher School of Medicine, Faculty of Medicine and Healthcare, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - T. K. Niyazova
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - O. Yu. Yurikova
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - A. Yu. Pyrkova
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
- Center for Bioinformatics and Nanomedicine, Almaty, Kazakhstan
| | - M. A. Zhanuzakov
- Higher School of Medicine, Faculty of Medicine and Healthcare, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | |
Collapse
|
18
|
AmeliMojarad M, Amelimojarad M. piRNAs and PIWI proteins as potential biomarkers in Breast cancer. Mol Biol Rep 2022; 49:9855-9862. [PMID: 35612777 DOI: 10.1007/s11033-022-07506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND PIWI interacting RNAs (piRNAs) are another subgroup of small non-coding RNAs, that can play different biological activity further to their capabilities in the germline such as regulating the gene and protein expression, epigenetic silencing of transposable elements, and regulating the spermatogenesis by interacting with PIWI proteins. METHODS We search online academic data bases including (Google Scholar, Web of Science and Pub Med), the relevant literature was extracted from the databases by using search terms of piRNAs and breast cancer as free-text words and also with the combination with OR /AND by may 2022. RESULTS Recently, with the help of next-generation sequencing abnormal piRNA expression has been observed to associate with the occurrence and development of human cancers, such as breast cancer (BC). Recent investigation proposing piRNA as a prognostic and diagnostic biomarker based on their cancer-related interaction in the treatment of BC. CONCLUSION This review aims to focus on the role of piRNAs in the initiation, progression, and the occurrence of breast cancer in order to understand its function and provide a better therapeutic strategy.
Collapse
|
19
|
Akimniyazova A, Yurikova O, Pyrkova A, Rakhmetullina A, Niyazova T, Ryskulova AG, Ivashchenko A. In Silico Study of piRNA Interactions with the SARS-CoV-2 Genome. Int J Mol Sci 2022; 23:9919. [PMID: 36077317 PMCID: PMC9456458 DOI: 10.3390/ijms23179919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022] Open
Abstract
A prolonged pandemic with numerous human casualties requires a rapid search for means to control the various strains of SARS-CoV-2. Since only part of the human population is affected by coronaviruses, there are probably endogenous compounds preventing the spread of these viral pathogens. It has been shown that piRNA (PIWI-interacting RNAs) interact with the mRNA of human genes and can block protein synthesis at the stage of translation. Estimated the effects of piRNA on SARS-CoV-2 genomic RNA (gRNA) in silico. A cluster of 13 piRNA binding sites (BS) in the SARS-CoV-2 gRNA region encoding the oligopeptide was identified. The second cluster of BSs 39 piRNAs also encodes the oligopeptide. The third cluster of 24 piRNA BS encodes the oligopeptide. Twelve piRNAs were identified that strongly interact with the gRNA. Based on the identified functionally important endogenous piRNAs, synthetic piRNAs (spiRNAs) are proposed that will suppress the multiplication of the coronavirus even more strongly. These spiRNAs and selected endogenous piRNAs have little effect on human 17494 protein-coding genes, indicating a low probability of side effects. The piRNA and spiRNA selection methodology created for the control of SARS-CoV-2 (NC_045512.2) can be used to control all strains of SARS-CoV-2.
Collapse
Affiliation(s)
- Aigul Akimniyazova
- Higher School of Medicine, Faculty of Medicine and Healthcare, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Oxana Yurikova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Anna Pyrkova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Center for Bioinformatics and Nanomedicine, Almaty 050060, Kazakhstan
| | - Aizhan Rakhmetullina
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Togzhan Niyazova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Alma-Gul Ryskulova
- Department of Population Health and Social Sciences, Kazakhstan’s Medical University “KSPH”, Almaty 050060, Kazakhstan
| | | |
Collapse
|
20
|
Cheang I, Zhu Q, Liao S, Li X. Current Understanding of piRNA in Cardiovascular Diseases. FRONTIERS IN MOLECULAR MEDICINE 2022; 1:791931. [PMID: 39087079 PMCID: PMC11285661 DOI: 10.3389/fmmed.2021.791931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/17/2021] [Indexed: 08/02/2024]
Abstract
The relationship regarding non-coding genomes and cardiovascular disease (CVD) has been explored in the past decade. As one of the leading causes of death, there remains a lack of sensitive and specific genomic biomarkers in the diagnosis and prognosis of CVD. Piwi-interacting RNA (piRNA) is a group of small non-coding RNA (ncRNA) which associated with Piwi proteins. There is an emerging strong body of evidence in support of a role for ncRNAs, including piRNAs, in pathogenesis and prognosis of CVD. This article reviews the current evidence for piRNA-regulated mechanisms in CVD, which could lead to the development of new therapeutic strategies for prevention and treatment.
Collapse
Affiliation(s)
| | | | | | - Xinli Li
- First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Emerging role of exosomes as biomarkers in cancer treatment and diagnosis. Crit Rev Oncol Hematol 2021; 169:103565. [PMID: 34871719 DOI: 10.1016/j.critrevonc.2021.103565] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a leading cause of death worldwide and cancer incidence and mortality are rapidly growing. These massive amounts of cancer patients require rapid diagnosis and efficient treatment strategies. However, the currently utilized methods are invasive and cost-effective. Recently, the effective roles of exosomes as promising diagnostic, prognostic, and predictive biomarkers have been revealed. Exosomes are membrane-bound extracellular vesicles containing RNAs, DNAs, and proteins, and are present in a wide array of body fluids. Exosomal cargos have shown the potential to detect various types of cancers at early stages with high sensitivity and specificity. They can also delivery therapeutic agents efficiently. In this article, an overview of recent advances in the research of exosomal biomarkers and their applications in cancer diagnosis and treatment has been provided. Furthermore, the advantages and challenges of exosomes as liquid biopsy targets are discussed and the clinical implications of using exosomal miRNAs have been revealed.
Collapse
|
22
|
Non-Coding RNAs in Pancreatic Cancer Diagnostics and Therapy: Focus on lncRNAs, circRNAs, and piRNAs. Cancers (Basel) 2021; 13:cancers13164161. [PMID: 34439315 PMCID: PMC8392713 DOI: 10.3390/cancers13164161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Pancreatic cancer is the seventh leading cause of cancer related death worldwide. In the United States, pancreatic cancer remains the fourth leading cause of cancer related death. The lack of early diagnosis and effective therapy contributes to the high mortality of pancreatic cancer. Therefore, there is an urgent need to find novel and effective biomarkers for the diagnosis and treatment of pancreatic cancer. Long noncoding RNA, circular RNAs and piwi-interacting RNA are non-coding RNAs and could become new biomarkers for the diagnosis, prognosis, and treatment of pancreatic cancer. We summarize the new findings on the roles of these non-coding RNAs in pancreatic cancer diagnosis, prognosis and targeted therapy. Abstract Pancreatic cancer is an aggressive malignance with high mortality. The lack of early diagnosis and effective therapy contributes to the high mortality of this deadly disease. For a long time being, the alterations in coding RNAs have been considered as major targets for diagnosis and treatment of pancreatic cancer. However, with the advances in high-throughput next generation of sequencing more alterations in non-coding RNAs (ncRNAs) have been discovered in different cancers. Further mechanistic studies have demonstrated that ncRNAs such as long noncoding RNAs (lncRNA), circular RNAs (circRNA) and piwi-interacting RNA (piRNA) play vital roles in the regulation of tumorigenesis, tumor progression and prognosis. In recent years, increasing studies have focused on the roles of ncRNAs in the development and progression of pancreatic cancer. Novel findings have demonstrated that lncRNA, circRNA, and piRNA are critically involved in the regulation of gene expression and cellular signal transduction in pancreatic cancer. In this review, we summarize the current knowledge of roles of lncRNA, circRNA, and piRNA in the diagnosis and prognosis of pancreatic cancer, and molecular mechanisms underlying the regulation of these ncRNAs and related signaling in pancreatic cancer therapy. The information provided here will help to find new strategies for better treatment of pancreatic cancer.
Collapse
|