1
|
Hamdan H, Siddon A, Ramia de Cap M, Germans S, Cantu MD, Fuda F, Vandergriff T, Aggarwal N, Weinberg OK. Investigation of NPM1 mutation frequency in cutaneous blastic plasmacytoid dendritic cell neoplasms. Hum Pathol 2025; 158:105766. [PMID: 40216030 DOI: 10.1016/j.humpath.2025.105766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Blastic plasmacytoid dendritic cell neoplasm (BPDCN) and acute myeloid leukemia (AML) show overlapping clinicopathological presentations, which makes it challenging to differentiate on a small skin biopsy. NPM1 mutations are the most common genetic lesions in AML, accounting for one third of cases and cause an aberrant cytoplasmic delocalization of NPM1 mutants, which can be detected by an immunohistochemical stain. Frequency of NPM1 mutations in BPDCN remains controversial. We aimed to investigate NPM1 mutations in cutaneous BPDCN cases and compare them with cutaneous NPM1 positive leukemia cutis cases. METHODS From a multi-institutional search, we identified and analyzed 13 cases of cutaneous BPDCN and 19 cases of cutaneous myeloid sarcoma (7 of which were primary leukemia cutis) with NPM1 mutations. We compared the clinical and pathological findings of these patients and identified distinguishing features between these groups. RESULTS BPDCN patients presented at an older age, with lower white blood cell count, higher hemoglobin level, and elevated platelets counts as compared to cutaneous myeloid sarcoma patients (p < 0.05). The bone marrow of patients in both groups was similarly involved at the time of diagnosis with no significant difference in rate; however, the percentage of involvement was significantly different among the two groups. Complex karyotype was more frequently seen in BPDCN patients (37.5 %) as compared with 15.7 % of cutaneous myeloid sarcoma patients (p < 0.05). Mutational profile differed among the two groups with absence of NPM1 mutations in BPDCN cases. Comparison of co-mutations detected in both groups revealed that BPDCN cases were significantly enriched in IDH2, NRAS, and SRSF2 mutations. CONCLUSION We find that BPDCN patients present in a similar way to cutaneous AML patients but appear to uniformly lack NPM1 mutations. Our study suggests that NPM1 can be used as a surrogate immunohistochemical stain to differentiate this rare disease from myeloid sarcoma in a rapid and cost-effective method.
Collapse
Affiliation(s)
- Hanan Hamdan
- University of Texas Southwestern Medical Center, UTSW, 2230 Inwood Rd, Dallas, TX, 75235, USA.
| | - Alexa Siddon
- Yale School of Medicine. 55 Park Street, Rm 435B. New Haven, CT, 06511, USA.
| | - Maximiliano Ramia de Cap
- Department of Cellular Pathology, Imperial College Healthcare NHS Trust, London, United Kingdom.
| | - Sharon Germans
- University of Texas Southwestern Medical Center, UTSW, 2230 Inwood Rd, Dallas, TX, 75235, USA.
| | - Miguel D Cantu
- University of Texas Southwestern Medical Center, UTSW, 2230 Inwood Rd, Dallas, TX, 75235, USA.
| | - Franklin Fuda
- University of Texas Southwestern Medical Center, UTSW, 2230 Inwood Rd, Dallas, TX, 75235, USA.
| | - Travis Vandergriff
- University of Texas Southwestern Medical Center, UTSW, 2230 Inwood Rd, Dallas, TX, 75235, USA.
| | - Nidhi Aggarwal
- Department of Pathology, UPMC Presbyterian Hospital, Pittsburgh, PA, 15213, USA.
| | - Olga K Weinberg
- University of Texas Southwestern Medical Center, UTSW, 2230 Inwood Rd, Dallas, TX, 75235, USA.
| |
Collapse
|
2
|
Kim H, Kim G, Park H, Lee MJ, Park Y, Jang S. Integrating holotomography and deep learning for rapid detection of NPM1 mutations in AML. Sci Rep 2024; 14:23780. [PMID: 39390137 PMCID: PMC11467337 DOI: 10.1038/s41598-024-75168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
Rapid and accurate diagnosis of acute myeloid leukemia (AML) remains a significant challenge, particularly in the context of myelodysplastic syndrome (MDS) or MDS/myeloproliferative neoplasm with NPM1 mutations. This study introduces an innovative approach using holotomography (HT), a 3D label-free quantitative phase imaging technique, to detect NPM1 mutations. We analyzed a dataset of 2073 HT myeloblast images from 48 individuals, including both NPM1 wild-type and mutated samples, to distinguish subcellular morphological changes associated with NPM1 mutations. Employing a convolutional neural network, we analyzed 3D cell morphology, focusing on refractive index distributions. The machine learning model showed high accuracy, with an area under the receiver operating characteristic curve of 0.9375 and a validation accuracy of 76.0%. Our findings reveal distinct morphological differences between the NPM1 wild-type and mutation at the subcellular level. This study demonstrates the potential of HT combined with deep learning for early, efficient, and cost-effective diagnosis of AML, offering a promising alternative to traditional stepwise genetic testing methods and providing additional assistance in morphological myeloblast discrimination. This approach may revolutionize the diagnostic process in leukemia, facilitating early detection and potentially reducing the reliance on extensive genetic testing.
Collapse
Affiliation(s)
- Hyunji Kim
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Geon Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - HeyJung Park
- Department of Laboratory Medicine, Asan Institute for Life Science, Asan Medical Center, Seoul, South Korea
| | - Mahn Jae Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Tomocube Inc., Daejeon, Republic of Korea.
| | - Seongsoo Jang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
3
|
Revoltar M, van der Linde R, Cromer D, Gatt PN, Smith S, Fernandez MA, Vaughan L, Blyth E, Curnow J, Tegg E, Brown DA, Sasson SC. Indeterminate measurable residual disease by multiparameter flow cytometry is associated with an intermediate risk of clinical relapse in adult patients with acute leukaemia. Pathology 2024; 56:882-888. [PMID: 39025727 DOI: 10.1016/j.pathol.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 07/20/2024]
Abstract
Measurable residual disease (MRD) is useful for prognostication and for monitoring response to treatment in patients with acute leukaemia. MRD by multiparametric flow cytometry (MFC-MRD) utilises the leukaemia-associated immunophenotype (LAIP) and difference from normal (DfN) strategies to identify the leukaemic clone. Difficulties arise when the LAIP overlaps with normal regeneration, there is clonal evolution, or when the abnormal clone population is exceptionally small e.g., <0.01% of CD45+ cells. Such cases are reported as 'indeterminate'; however, there is little international consensus on this reporting. The relationship between clinical outcomes and indeterminate MFC-MRD is unknown. Here we determine the rate of indeterminate MFC-MRD reporting, its relationship to concurrent molecular MRD results when available, and to clinical outcomes to 12 months. We performed an internal audit of all adult testing for MFC-MRD between January and December 2021. A total of 153 consecutive patients with a diagnosis of acute leukaemia were included. Successive MFC-MRD results and clinical outcomes were recorded over a 12-month period from time of inclusion into the study. In total, 460 MFC-MRD tests from 153 patients were reviewed and 73 (16%) MFC-MRD tests from 54 (35%) patients were reported as indeterminate. The majority (70%) were at low levels between 0.01-0.1% of CD45+ cells. Compared to patients with a negative result, acute myeloid leukaemia (AML) was more frequent in patients who had an indeterminate MFC-MRD (70% vs 36%), and B-cell acute lymphoblastic leukaemia was less common (20% vs 55%). In patients with indeterminate MFC-MRD results, one-third had received either chemotherapy or allogeneic haemopoietic stem cell transplant (aHSCT) within the preceding 3 months. Agreement between MFC and molecular MRD testing was low. Patients with indeterminate MFC-MRD had leukaemia relapse rates below patients with a positive MFC-MRD, but greater than those with negative MFC-MRD (positive 33% vs indeterminate 21% vs negative 8%, p = 0.038). Overall, these findings indicate that indeterminate MFC-MRD results are more common in adults with AML and also in those who have received chemotherapy or aHSCT within the previous 3 months. We report for the first time that indeterminate MFC-MRD is a finding of potential clinical significance, which associates with a numerically higher median relapse rate within 12 months when compared to a negative MFC-MRD result.
Collapse
Affiliation(s)
- Maxine Revoltar
- Department of Laboratory Haematology, ICPMR, Westmead Hospital, NSW Health Pathology, Westmead, NSW, Australia; Department of Clinical Haematology, Westmead Hospital, Westmead, NSW, Australia.
| | - Riana van der Linde
- Department of Laboratory Haematology, ICPMR, Westmead Hospital, NSW Health Pathology, Westmead, NSW, Australia; Flow Cytometry Unit, ICPMR, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Deborah Cromer
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Prudence N Gatt
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Sandy Smith
- Flow Cytometry Unit, ICPMR, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
| | - Marian A Fernandez
- Flow Cytometry Unit, ICPMR, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
| | - Lachlin Vaughan
- Department of Laboratory Haematology, ICPMR, Westmead Hospital, NSW Health Pathology, Westmead, NSW, Australia; Department of Clinical Haematology, Westmead Hospital, Westmead, NSW, Australia; Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Emily Blyth
- Department of Clinical Haematology, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Jennifer Curnow
- Department of Clinical Haematology, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Elizabeth Tegg
- Department of Laboratory Haematology, ICPMR, Westmead Hospital, NSW Health Pathology, Westmead, NSW, Australia; Flow Cytometry Unit, ICPMR, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - David A Brown
- Flow Cytometry Unit, ICPMR, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Westmead Institute for Medical Research, Westmead, NSW, Australia; Department of Clinical Immunology, Westmead Hospital, Westmead, NSW, Australia
| | - Sarah C Sasson
- Flow Cytometry Unit, ICPMR, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
4
|
Jakovic L, Djordjevic V, Kraguljac Kurtovic N, Virijevic M, Mitrovic M, Trajkovic L, Vidovic A, Bogdanovic A. Early Prediction and Streamline of Nucleophosmin Mutation Status in Acute Myeloid Leukemia Using Cup-Like Nuclear Morphology. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1443. [PMID: 39336484 PMCID: PMC11434006 DOI: 10.3390/medicina60091443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: With the advent of novel therapies for nucleophosmin gene (NPM1)-mutated acute myeloid leukemia (AML), there is a growing need for the reliable prediction of NPM1 mutations. This study explored the role of cytomorphological features in the early prediction of NPM1-mutated AML. Materials and Methods: Altogether, 212 de novo AML cases with normal karyotypes, diagnosed and treated at a single institution within 5 years (2018-2023), were retrospectively evaluated. A final diagnosis of NPM1-mutated AML, based on the World Health Organization (WHO) integrated criteria, including real-time based identification of NPM1 mutation and normal karyotype, was established in 83/212 (39.15%) cases. Results: Cup-like blasts (CLBs), a cytomorphological feature suggestive of NPM1-mutated AML, were detected in 56/83 (67%) patients. Most cases (44/56, 78.6%) had CLB ≥ 10%. In total, 27 of 83 AML NPM1-mutated patients had no CLB morphology (missed call). Additionally, two of 212 had CLB morphology without confirmed NPM1 mutation (wrong call). The positive/negative predictive values of cytomorphological evaluation for CLB ≥ 10% were 95.7%/75.6%, with sensitivity/specificity of 53%/98.5%, while the accuracy was 80.7%. We noted an increased percentage of CLBs (≥15%) in 77.8% and 50% of patients with AML without and with granulocytic maturation, respectively (the specificity for NPM1 mutation prediction was 100%). CLB was associated with fms-like tyrosine kinase 3 (FLT3) mutation (p = 0.03), but, without statistical significance for CLB ≥ 10% and CLB ≥ 15%. Conclusions: Our investigation confirmed that the morphological identification of CLB at diagnosis represents a reliable and easily reproducible tool for the early prediction of NPM1 mutations, enabling a streamlined genetic work-up for its confirmation. This may facilitate considering the early administration of individualized therapies by clinicians for specific patients.
Collapse
Affiliation(s)
- Ljubomir Jakovic
- Clinic of Hematology, University Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| | - Vesna Djordjevic
- Clinic of Hematology, University Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia
| | - Nada Kraguljac Kurtovic
- Clinic of Hematology, University Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia
| | - Marijana Virijevic
- Clinic of Hematology, University Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| | - Mirjana Mitrovic
- Clinic of Hematology, University Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| | - Lazar Trajkovic
- Clinic of Hematology, University Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia
| | - Ana Vidovic
- Clinic of Hematology, University Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| | - Andrija Bogdanovic
- Clinic of Hematology, University Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Brar N, Lawrence L, Fung E, Zehnder JL, Greenberg PL, Mannis GN, Zhang TY, Gratzinger D, Oak J, Silva O, Kurzer J, Tan B, Menke JR, Fernandez-Pol S. p53 immunohistochemistry as an ancillary tool for rapid assessment of residual disease in TP53-mutated acute myeloid leukemia and myelodysplastic syndromes. Am J Clin Pathol 2024; 162:269-281. [PMID: 38643353 DOI: 10.1093/ajcp/aqae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/02/2024] [Indexed: 04/22/2024] Open
Abstract
OBJECTIVES Measurable residual disease flow cytometry (MRD-FC) and molecular studies are the most sensitive methods for detecting residual malignant populations after therapy for TP53-mutated acute myeloid leukemia and myelodysplastic neoplasms (TP53+ AML/MDS). However, their sensitivity is limited in suboptimal aspirates or when the immunophenotype of the neoplastic blasts overlaps with erythroids or normal maturing myeloid cells. In this study, we set out to determine if p53 immunohistochemistry (IHC) correlates with MRD-FC and next-generation sequencing (NGS) in the posttherapy setting and to determine the utility of p53 IHC to detect residual disease in the setting of negative or equivocal MRD-FC. METHODS We retrospectively identified 28 pre- and posttherapy bone marrow biopsy specimens from 9 patients with TP53+ AML/MDS and a p53 overexpressor phenotype by IHC (strong 3+ staining at initial diagnosis). Next-generation sequencing and/or MRD-FC results were collected for each specimen. RESULTS Using a threshold of more than ten 2-3+ cells in any one 400× field, p53 IHC detected residual disease with a sensitivity of 94% and a specificity of 89%. The threshold used in this study showed a high degree of concordance among 6 blinded pathologists (Fleiss κ = 0.97). CONCLUSIONS Our study suggests that p53 IHC can be used as a rapid tool (within 24 hours) to aid in the detection of residual disease that may complement MRD-FC or NGS in cases in which the flow cytometry immunophenotype is equivocal and/or the bone marrow aspirate is suboptimal.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Neoplasm, Residual/diagnosis
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/diagnosis
- Myelodysplastic Syndromes/pathology
- Myelodysplastic Syndromes/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Immunohistochemistry
- Retrospective Studies
- Male
- Middle Aged
- Female
- Aged
- Mutation
- High-Throughput Nucleotide Sequencing
- Flow Cytometry
- Aged, 80 and over
- Adult
- Immunophenotyping
- Sensitivity and Specificity
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/analysis
Collapse
Affiliation(s)
- Nivaz Brar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, US
| | - Lauren Lawrence
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, US
| | - Eula Fung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, US
| | - James L Zehnder
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, US
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford, CA, US
| | - Peter L Greenberg
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford, CA, US
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, US
| | - Gabriel N Mannis
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford, CA, US
| | - Tian Y Zhang
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford, CA, US
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, US
| | - Dita Gratzinger
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, US
| | - Jean Oak
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, US
| | - Oscar Silva
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, US
| | - Jason Kurzer
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, US
| | - Brent Tan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, US
| | - Joshua R Menke
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, US
| | | |
Collapse
|
6
|
van der Linde R, Gatt PN, Smith S, Fernandez MA, Vaughan L, Blyth E, Curnow J, Brown DA, Tegg E, Sasson SC. Measurable Residual Disease (MRD) by Flow Cytometry in Adult B-Acute Lymphoblastic Leukaemia (B-ALL) and Acute Myeloid Leukaemia (AML): Correlation with Molecular MRD Testing and Clinical Outcome at One Year. Cancers (Basel) 2023; 15:5064. [PMID: 37894431 PMCID: PMC10605425 DOI: 10.3390/cancers15205064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Measurable residual disease (MRD) detected by flow cytometry (FC) is well established in paediatric B- lymphoblastic leukaemia (B-ALL) and adult chronic lymphocytic leukaemia (CLL), but its utility in adult B-ALL and adult acute myeloid leukaemia (AML) is less clear. In this prospective MRD study, one of the largest in Australia to date, we examined consecutive bone marrow aspirates from adult participants with B-ALL (n = 47) and AML (n = 87) sent for FC-MRD testing at a quaternary referral hospital in Sydney. FC-MRD results were correlated to corresponding Mol-MRD testing where available and clinical outcomes at three-month intervals over 1 year. B-ALL showed a moderate positive correlation (rs = 0.401, p < 0.001), while there was no correlation between FC-MRD and Mol-MRD for AML (rs = 0.13, p = 0.237). Five FC-MRD patterns were identified which had significant associations with relapse (X2(4) = 31.17(4), p > 0.001) and survival (X2(4) = 13.67, p = 0.008) in AML, but not in B-ALL. The three-month MRD results were also strongly associated with survival in AML, while the association in B-ALL was less evident. There was a moderate correlation between FC-MRD and Mol-MRD in B-ALL but not AML. The association of FC-MRD with relapse and survival was stronger in AML than in B-ALL. Overall, these findings suggest divergent utilities of FC-MRD in AML and B-ALL.
Collapse
Affiliation(s)
- Riana van der Linde
- Department of Laboratory Haematology, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (L.V.); (E.T.)
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia; (P.N.G.); (E.B.); (J.C.); (D.A.B.); (S.C.S.)
| | - Prudence N. Gatt
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia; (P.N.G.); (E.B.); (J.C.); (D.A.B.); (S.C.S.)
- Westmead Institute for Medical Research, University of Sydney, Sydney, NSW 2145, Australia
| | - Sandy Smith
- Flow Cytometry Unit, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (S.S.); (M.A.F.)
| | - Marian A. Fernandez
- Flow Cytometry Unit, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (S.S.); (M.A.F.)
| | - Lachlin Vaughan
- Department of Laboratory Haematology, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (L.V.); (E.T.)
- Department of Haematology, Western Sydney Local Health District, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Emily Blyth
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia; (P.N.G.); (E.B.); (J.C.); (D.A.B.); (S.C.S.)
- Westmead Institute for Medical Research, University of Sydney, Sydney, NSW 2145, Australia
- Department of Haematology, Western Sydney Local Health District, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Jennifer Curnow
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia; (P.N.G.); (E.B.); (J.C.); (D.A.B.); (S.C.S.)
- Department of Haematology, Western Sydney Local Health District, Westmead Hospital, Westmead, NSW 2145, Australia
| | - David A. Brown
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia; (P.N.G.); (E.B.); (J.C.); (D.A.B.); (S.C.S.)
- Westmead Institute for Medical Research, University of Sydney, Sydney, NSW 2145, Australia
- Department of Clinical Immunology and Immunopathology, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Elizabeth Tegg
- Department of Laboratory Haematology, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (L.V.); (E.T.)
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia; (P.N.G.); (E.B.); (J.C.); (D.A.B.); (S.C.S.)
| | - Sarah C. Sasson
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia; (P.N.G.); (E.B.); (J.C.); (D.A.B.); (S.C.S.)
- Department of Clinical Immunology and Immunopathology, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
7
|
Li Y, Deng K, Kaner J, Geyer JT, Ouseph M, Fang F, Xu K, Roboz G, Kluk MJ. Detection of Hybrid Fusion Transcripts, Aberrant Transcript Expression, and Specific Single Nucleotide Variants in Acute Leukemia and Myeloid Disorders with Recurrent Gene Rearrangements. Pathobiology 2023; 91:76-88. [PMID: 37490880 PMCID: PMC11524540 DOI: 10.1159/000532085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
INTRODUCTION A variety of gene rearrangements and molecular alterations are key drivers in the pathobiology of acute leukemia and myeloid disorders; current classification systems increasingly incorporate these findings in diagnostic algorithms. Therefore, clinical laboratories require versatile tools, which can detect an increasing number and variety of molecular and cytogenetic alterations of clinical significance. METHODS We validated an RNA-based next-generation sequencing (NGS) assay that enables the detection of: (i) numerous hybrid fusion transcripts (including rare/novel gene partners), (ii) aberrantly expressed EVI1 (MECOM) and IKZF1 (Del exons 4-7) transcripts, and (iii) hotspot variants in KIT, ABL1, NPM1 (relevant in the context of gene rearrangement status). RESULTS For hybrid fusion transcripts, the assay showed 98-100% concordance for known positive and negative samples, with an analytical sensitivity (i.e., limit of detection) of approximately 0.8% cells. Samples with underlying EVI1 (MECOM) translocations demonstrated increased EVI1 (MECOM) expression. Aberrant IKZF1 (Del exons 4-7) transcripts detectable with the assay were also present on orthogonal reverse transcription PCR. Specific hotspot mutations in KIT, ABL1, and NPM1 detected with the assay showed 100% concordance with orthogonal testing. Lastly, several illustrative samples are included to highlight the assay's clinically relevant contributions to patient workup. CONCLUSION Through its ability to simultaneously detect various gene rearrangements, aberrantly expressed transcripts, and hotspot mutations, this RNA-based NGS assay is a valuable tool for clinical laboratories to supplement other molecular and cytogenetic methods used in the diagnostic workup and in clinical research for patients with acute leukemia and myeloid disorders.
Collapse
Affiliation(s)
- Yuewei Li
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kaifang Deng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Justin Kaner
- Department of Medicine, Hematology and Medical Oncology, Clinical and Translational Leukemia Program, Weill Cornell Medicine, New York, NY, USA
| | - Julia T. Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Madhu Ouseph
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Frank Fang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kemin Xu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Gail Roboz
- Department of Medicine, Hematology and Medical Oncology, Clinical and Translational Leukemia Program, Weill Cornell Medicine, New York, NY, USA
| | - Michael J. Kluk
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
8
|
Lou X, Yan H, Su L, Sun Y, Wang X, Gong L, Chen Y, Li Z, Fang Z, Mao H, Chen K, Zhang Y. Detecting the Neuraminidase R294K Mutation in Avian Influenza A (H7N9) Virus Using Reverse Transcription Droplet Digital PCR Method. Viruses 2023; 15:v15040983. [PMID: 37112963 PMCID: PMC10146270 DOI: 10.3390/v15040983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The R294K mutation in neuraminidase (NA) causes resistance to oseltamivir in the avian influenza virus H7N9. Reverse transcription droplet digital polymerase chain reaction (RT-dd PCR) is a novel technique for detecting single-nucleotide polymorphisms. This study aimed to develop an RT-dd PCR method for detecting the R294K mutation in H7N9. Primers and dual probes were designed using the H7N9 NA gene and the annealing temperature was optimized at 58.0 °C. The sensitivity of our RT-dd PCR method was not significantly different from that of RT-qPCR (p = 0.625), but it could specifically detect R294 and 294K in H7N9. Among 89 clinical samples, 2 showed the R294K mutation. These two strains were evaluated using a neuraminidase inhibition test, which revealed that their sensitivity to oseltamivir was greatly reduced. The sensitivity and specificity of RT-dd PCR were similar to those of RT-qPCR and its accuracy was comparable to that of NGS. The RT-dd PCR method had the advantages of absolute quantitation, eliminating the need for a calibration standard curve, and being simpler in both experimental operation and result interpretation than NGS. Therefore, this RT-dd PCR method can be used to quantitatively detect the R294K mutation in H7N9.
Collapse
Affiliation(s)
- Xiuyu Lou
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Hao Yan
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Lingxuan Su
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yi Sun
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Xinyin Wang
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Liming Gong
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yin Chen
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Zhen Li
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Zhongbiao Fang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Haiyan Mao
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yanjun Zhang
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| |
Collapse
|
9
|
Kurzer JH, Weinberg OK. Updates in molecular genetics of acute myeloid leukemia. Semin Diagn Pathol 2023; 40:140-151. [PMID: 37059636 DOI: 10.1053/j.semdp.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Acute myeloid leukemia (AML) is a type of cancer caused by aggressive neoplastic proliferations of immature myeloid cells that is fatal if untreated. AML accounts for 1.0% of all new cancer cases in the United States, with a 5-year relative survival rate of 30.5%. Once defined primarily morphologically, advances in next generational sequencing have expanded the role of molecular genetics in categorizing the disease. As such, both the World Health Organization Classification of Haematopoietic Neoplasms and The International Consensus Classification System now define a variety of AML subsets based on mutations in driver genes such as NPM1, CEBPA, TP53, ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, and ZRSR2. This article provides an overview of some of the genetic mutations associated with AML and compares how the new classification systems incorporate molecular genetics into the definition of AML.
Collapse
Affiliation(s)
- Jason H Kurzer
- Department of Pathology, Stanford University Medical School, Palo Alto, CA, United States.
| | - Olga K Weinberg
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
10
|
Measurable residual disease in adult acute myeloid leukaemia: evaluation of a multidimensional 'radar' flow cytometric plot analysis method. Pathology 2023; 55:383-390. [PMID: 36725446 DOI: 10.1016/j.pathol.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/11/2022] [Accepted: 10/09/2022] [Indexed: 01/01/2023]
Abstract
Measurable residual disease (MRD) monitoring in acute myeloid leukaemia (AML) is becoming increasingly important and is predominantly performed by multiparameter flow cytometry (MFC) or quantitative polymerase chain reactions (RT-qPCR). We investigated the use of multidimensional plots (MD-MFC) for AML MRD monitoring in an adult cohort. AML MRD was determined using a novel MD-MFC method for 115 MRD samples. Results were correlated with traditional two-dimensional MFC (2D-MFC) and molecular methods. Using the standard cut-off of 0.1% CD45+ cells, concordance was 99/115 (p=0.332). Eighty-four of 115 were concordant using a very low reporting limit of 0.01% (p=0.216). MRD <0.1% by either method was present in 40 of 115 samples. Fifteen of 40 were MD-MFC positive and 2D-MFC negative. Of these two of 15 had a molecular MRD marker and both were positive. Molecular MRD markers were available in 36 of 115 cases. Twenty-one of 36 (58%) were concordant with MD-MFC. Eight of 36 had detectable molecular MRD only and eight of 36 had positive MD-MFC only. There was no correlation between either the MFC method and the molecular results. In summary, there is good correlation between MD- and 2D-MFC-MRD and no correlation between the MFC and molecular methods.
Collapse
|
11
|
Patel SS. NPM1-Mutated Acute Myeloid Leukemia: Recent Developments and Open Questions. Pathobiology 2023; 91:18-29. [PMID: 36944324 PMCID: PMC10857804 DOI: 10.1159/000530253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Somatic mutations in the nucleophosmin (NPM1) gene occur in approximately 30% of de novo acute myeloid leukemias (AMLs) and are relatively enriched in normal karyotype AMLs. Earlier World Health Organization (WHO) classification schema recognized NPM1-mutated AMLs as a unique subtype of AML, while the latest WHO and International Consensus Classification (ICC) now consider NPM1 mutations as AML-defining, albeit at different blast count thresholds. NPM1 mutational load correlates closely with disease status, particularly in the post-therapy setting, and therefore high sensitivity-based methods for detection of the mutant allele have proven useful for minimal/measurable residual disease (MRD) monitoring. MRD status has been conventionally measured by either multiparameter flow cytometry (MFC) and/or molecular diagnostic techniques, although recent data suggest that MFC data may be potentially more challenging to interpret in this AML subtype. Of note, MRD status does not predict patient outcome in all cases, and therefore a deeper understanding of the biological significance of MRD may be required. Recent studies have confirmed that NPM1-mutated cells rely on overexpression of HOX/MEIS1, which is dependent on the presence of the aberrant cytoplasmic localization of mutant NPM1 protein (NPM1c); this biology may explain the promising response to novel agents, including menin inhibitors and second-generation XPO1 inhibitors. In this review, these and other recent developments around NPM1-mutated AML, in addition to open questions warranting further investigation, will be discussed.
Collapse
Affiliation(s)
- Sanjay S Patel
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/NewYork-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|