1
|
Chen T, Ma W, Wang X, Ye Q, Hou X, Wang Y, Jiang C, Meng X, Sun Y, Cai J. Insights of immune cell heterogeneity, tumor-initiated subtype transformation, drug resistance, treatment and detecting technologies in glioma microenvironment. J Adv Res 2025; 72:527-554. [PMID: 39097088 DOI: 10.1016/j.jare.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND With the gradual understanding of glioma development and the immune microenvironment, many immune cells have been discovered. Despite the growing comprehension of immune cell functions and the clinical application of immunotherapy, the precise roles and characteristics of immune cell subtypes, how glioma induces subtype transformation of immune cells and its impact on glioma progression have yet to be understood. AIM OF THE REVIEW In this review, we comprehensively center on the four major immune cells within the glioma microenvironment, particularly neutrophils, macrophages, lymphocytes, myeloid-derived suppressor cells (MDSCs), and other significant immune cells. We discuss (1) immune cell subtype markers, (2) glioma-induced immune cell subtype transformation, (3) the mechanisms of each subtype influencing chemotherapy resistance, (4) therapies targeting immune cells, and (5) immune cell-associated single-cell sequencing. Eventually, we identified the characteristics of immune cell subtypes in glioma, comprehensively summarized the exact mechanism of glioma-induced immune cell subtype transformation, and concluded the progress of single-cell sequencing in exploring immune cell subtypes in glioma. KEY SCIENTIFIC CONCEPTS OF REVIEW In conclusion, we have analyzed the mechanism of chemotherapy resistance detailly, and have discovered prospective immunotherapy targets, excavating the potential of novel immunotherapies approach that synergistically combines radiotherapy, chemotherapy, and surgery, thereby paving the way for improved immunotherapeutic strategies against glioma and enhanced patient outcomes.
Collapse
Affiliation(s)
- Tongzheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qile Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintong Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Six Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ying Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Liu S, Jiang A, Tang F, Duan M, Li B. Drug-induced tolerant persisters in tumor: mechanism, vulnerability and perspective implication for clinical treatment. Mol Cancer 2025; 24:150. [PMID: 40413503 DOI: 10.1186/s12943-025-02323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/04/2025] [Indexed: 05/27/2025] Open
Abstract
Cancer remains a significant global health burden due to its high morbidity and mortality. Oncogene-targeted therapy and immunotherapy have markedly improved the 5-year survival rate in the patients with advanced or metastatic tumors compared to outcomes in the era of chemotherapy/radiation. Nevertheless, the majority of patients remain incurable. Initial therapies eliminate the bulk of tumor cells, yet residual populations termed drug-tolerant persister cells (DTPs) survive, regenerate tumor and even drive distant metastases. Notably, DTPs frequently render tumor cross-resistance, a detrimental phenomenon observed in the patients with suboptimal responses to subsequent therapies. Analogous to species evolution, DTPs emerge as adaptative products at the cellular level, instigated by integrated intracellular stress responses to therapeutic pressures. These cells exhibit profound heterogeneity and adaptability shaped by the intricate feedforward loops among tumor cells, surrounding microenvironments and host ecology, which vary across tumor types and therapeutic regimens. In this review, we revisit the concept of DTPs, with a focus on their generation process upon targeted therapy or immunotherapy. We dissect the critical phenotypes and molecule mechanisms underlying DTPs to therapy from multiple aspects, including intracellular events, intercellular crosstalk and the distant ecologic pre-metastatic niches. We further spotlight therapeutic strategies to target DTP vulnerabilities, including synthetic lethality approaches, adaptive dosing regimens informed by mathematical modeling, and immune-mediated eradication. Additionally, we highlight synergistic interventions such as lifestyle modifications (e.g., exercise, stress reduction) to suppress pro-tumorigenic inflammation. By integrating mechanistic insights with translational perspectives, this work bridges the gap between DTP biology and clinical strategies, aiming for optimal efficacy and preventing relapse.
Collapse
Affiliation(s)
- Shujie Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha , Hunan, 410008, People's Republic of China
| | - Anfeng Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha , Hunan, 410008, People's Republic of China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Faqing Tang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Minghao Duan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha , Hunan, 410008, People's Republic of China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha , Hunan, 410008, People's Republic of China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
3
|
Oyama K, Nakata K, Abe T, Hirotaka K, Fujimori N, Kiyotani K, Iwamoto C, Ikenaga N, Morisaki S, Umebayashi M, Tanaka H, Koya N, Nakagawa S, Tsujimura K, Yoshimura S, Onishi H, Nakamura Y, Nakamura M, Morisaki T. Neoantigen peptide-pulsed dendritic cell vaccine therapy after surgical treatment of pancreatic cancer: a retrospective study. Front Immunol 2025; 16:1571182. [PMID: 40248703 PMCID: PMC12004129 DOI: 10.3389/fimmu.2025.1571182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/10/2025] [Indexed: 04/19/2025] Open
Abstract
Introduction Pancreatic cancer shows very poor prognosis and high resistance to conventional standard chemotherapy and immunotherapy; therefore, the development of new breakthrough therapies is highly desirable. Method We retrospectively evaluated the safety and efficacy of neoantigen peptide-pulsed dendritic cell (Neo-P DC) vaccine therapy after surgical treatment of pancreatic cancer. Result The result showed induction of neoantigen-specific T cells in 13 (81.3%) of the 16 patients who received Neo-P DC vaccines. In survival analysis of the nine patients who received Neo-P DC vaccines after recurrence, longer overall survival was observed in patients with neoantigen-specific T cell induction than those without T cell induction. Notably, only one of the seven patients who received Neo-P DC vaccines as adjuvant setting developed recurrence, and no patient died during median follow-up 61 months after surgery (range, 25-70 months). Furthermore, TCR repertoire analyses were performed in a case treated with Neo-P DC vaccine combined with long and short peptides, and one significantly dominant clone induced by the long peptide was detected among CD4+ T cell populations. Discussion The present study suggests the feasibility and efficacy of Neo-P DC vaccine therapy after surgical treatment of pancreatic cancer in both postoperative recurrence cases and adjuvant setting. A case analysis suggests the importance of combination with long peptides targeting CD4+ T cell.
Collapse
Affiliation(s)
- Koki Oyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiya Abe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kento Hirotaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nao Fujimori
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuma Kiyotani
- Laboratory of Immunogenomics, Center for Intractable Diseases and ImmunoGenomics, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Morisaki
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masayo Umebayashi
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Hiroto Tanaka
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Norihiro Koya
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Shinichiro Nakagawa
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Kenta Tsujimura
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Sachiko Yoshimura
- Corporate Headquarters, Cancer Precision Medicine Inc., Kawasaki, Japan
| | - Hideya Onishi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Nakamura
- Laboratory of Immunogenomics, Center for Intractable Diseases and ImmunoGenomics, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Morisaki
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| |
Collapse
|
4
|
Zheng Y, Wang B, Cai Z, Lai Z, Yu H, Wu M, Liu X, Zhang D. Tailoring nanovectors for optimal neoantigen vaccine efficacy. J Mater Chem B 2025; 13:4045-4058. [PMID: 40042164 DOI: 10.1039/d4tb02547d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The primary objective of neoantigen vaccines is to elicit a robust anti-tumor immune response by generating neoantigen-specific T cells that can eradicate tumor cells. Despite substantial advancements in personalized neoantigen prediction using next-generation sequencing, machine learning, and mass spectrometry, challenges remain in efficiently expanding neoantigen-specific T cell populations in vivo. This challenge impedes the widespread clinical application of neoantigen vaccines. Nanovector-based neoantigen delivery systems have emerged as a promising solutions to this challenge. These nanovectors offer several advantages, such as enhanced stability, targeted intracellular delivery, sustained release, and improved antigen-presenting cell (APC) activation. Notably, they effectively deliver various neoantigen vaccine formulations (DC cell-based, synthetic long peptide (SLP)-based or DNA/mRNA-based) to APCs or T cells, thereby activating both CD4+ T and CD8+ T cells. This ultimately induces a specific anti-tumor immune response. This review focuses on recent innovations in neoantigen vaccine delivery vectors. We aim to identify optimal design parameters for vectors tailored to different neoantigen vaccine types, with an emphasis on enhancing the tumor microenvironment and stimulating the production of neoantigen-specific cytotoxic T cells. By maximizing the potential of these delivery systems, we aim to accelerate the clinical translation of neoantigen nanovaccines and advance cancer immunotherapy.
Collapse
Affiliation(s)
- Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Bing Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zisen Lai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Haijun Yu
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
5
|
Mi Y, Jiang P, Luan J, Feng L, Zhang D, Gao X. Peptide‑based therapeutic strategies for glioma: Current state and prospects. Peptides 2025; 185:171354. [PMID: 39922284 DOI: 10.1016/j.peptides.2025.171354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Glioma is a prevalent form of primary malignant central nervous system tumor, characterized by its cellular invasiveness, rapid growth, and the presence of the blood-brain barrier (BBB)/blood-brain tumor barrier (BBTB). Current therapeutic approaches, such as chemotherapy and radiotherapy, have shown limited efficacy in achieving significant antitumor effects. Therefore, there is an urgent demand for new treatments. Therapeutic peptides represent an innovative class of pharmaceutical agents with lower immunogenicity and toxicity. They are easily modifiable via chemical means and possess deep tissue penetration capabilities which reduce side effects and drug resistance. These unique pharmacokinetic characteristics make peptides a rapidly growing class of new therapeutics that have demonstrated significant progress in glioma treatment. This review outlines the efforts and accomplishments in peptide-based therapeutic strategies for glioma. These therapeutic peptides can be classified into four types based on their anti-tumor function: tumor-homing peptides, inhibitor/antagonist peptides targeting cell surface receptors, interference peptides, and peptide vaccines. Furthermore, we briefly summarize the results from clinical trials of therapeutic peptides in glioma, which shows that peptide-based therapeutic strategies exhibit great potential as multifunctional players in glioma therapy.
Collapse
Affiliation(s)
- Yajing Mi
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Pengtao Jiang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Jing Luan
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Lin Feng
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Dian Zhang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Xingchun Gao
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
6
|
Middelburg J, Schaap G, Sluijter M, Lloyd K, Ovcinnikovs V, Schuurman J, van der Burg SH, Kemper K, van Hall T. Cancer vaccines compensate for the insufficient induction of protective tumor-specific immunity of CD3 bispecific antibody therapy. J Immunother Cancer 2025; 13:e010331. [PMID: 39800374 PMCID: PMC11749218 DOI: 10.1136/jitc-2024-010331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/23/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND CD3 bispecific antibody (CD3 bsAb) therapy has become an established treatment modality for some cancer types and exploits endogenous T cells irrespective of their specificity. However, durable clinical responses are hampered by immune escape through loss of tumor target antigen expression. Induction of long-lasting tumor-specific immunity might therefore improve therapeutic efficacy, but has not been studied in detail yet for CD3 bsAbs. Here, we examined multiple combination strategies aiming to improve survival rates in solid tumors and, simultaneously, install endogenous immunity capable of protection to tumor rechallenge. METHODS Two syngeneic mouse tumor models were employed: The immunologically "cold" B16F10 melanoma and the immunologically "hot" MC38.TRP1 colon carcinoma model. Mice were treated with CD3xTRP1 bsAb (murine Fc-inert immunoglobulin G2a) as monotherapy, or in combination with agonistic costimulatory antibodies, Fc-active tumor-opsonizing antibodies, or tumor-(non)specific vaccines. Treatment efficacy of primary tumors and protection from rechallenge was monitored, as well as induction of tumor-specific T-cell responses. RESULTS In the immunologically "cold" B16F10 model, all combination therapies improved antitumor activity compared with CD3 bsAb monotherapy and induced systemic tumor-specific T-cell responses. However, this endogenous T-cell immunity swiftly waned and failed to protect mice from subsequent tumor rechallenge, except for combination therapy with tumor-specific vaccination. These vaccines strongly improved the therapeutic efficacy of CD3 bsAb against primary tumors and led to long-term immunological protection. In the immunologically "hot" MC38.TRP1 model, CD3 bsAb combined with only the vaccine adjuvant was sufficient to generate protective T-cell immunity and, moreover, prevented tumor escape via antigen loss. CONCLUSIONS These results demonstrate the impact of tumor antigenicity on the induction of protective endogenous antitumor immunity during CD3 bsAb treatment and, importantly, show that the combination with tumor-specific vaccines improves therapeutic efficacy and installs long-term immunological memory in both "hot" and "cold" tumors.
Collapse
Affiliation(s)
- Jim Middelburg
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Gaby Schaap
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Sluijter
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Katy Lloyd
- Genmab BV, Utrecht, Utrecht, The Netherlands
| | | | | | - Sjoerd H van der Burg
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Thorbald van Hall
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Ren Y, Yue Y, Li X, Weng S, Xu H, Liu L, Cheng Q, Luo P, Zhang T, Liu Z, Han X. Proteogenomics offers a novel avenue in neoantigen identification for cancer immunotherapy. Int Immunopharmacol 2024; 142:113147. [PMID: 39270345 DOI: 10.1016/j.intimp.2024.113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/11/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Cancer neoantigens are tumor-specific non-synonymous mutant peptides that activate the immune system to produce an anti-tumor response. Personalized cancer vaccines based on neoantigens are currently one of the most promising therapeutic approaches for cancer treatment. By utilizing the unique mutations within each patient's tumor, these vaccines aim to elicit a strong and specific immune response against cancer cells. However, the identification of neoantigens remains challenging due to the low accuracy of current prediction tools and the high false-positive rate of candidate neoantigens. Since the concept of "proteogenomics" emerged in 2004, it has evolved rapidly with the increased sequencing depth of next-generation sequencing technologies and the maturation of mass spectrometry-based proteomics technologies to become a more comprehensive approach to neoantigen identification, allowing the discovery of high-confidence candidate neoantigens. In this review, we summarize the reason why cancer neoantigens have become attractive targets for immunotherapy, the mechanism of cancer vaccines and the advances in cancer immunotherapy. Considerations relevant to the application emerging of proteogenomics technologies for neoantigen identification and challenges in this field are described.
Collapse
Affiliation(s)
- Yuqing Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yi Yue
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinyang Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tengfei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.
| |
Collapse
|
8
|
Borges F, Laureano RS, Vanmeerbeek I, Sprooten J, Demeulenaere O, Govaerts J, Kinget L, Saraswat S, Beuselinck B, De Vleeschouwer S, Clement P, De Smet F, Sorg RV, Datsi A, Vigneron N, Naulaerts S, Garg AD. Trial watch: anticancer vaccination with dendritic cells. Oncoimmunology 2024; 13:2412876. [PMID: 39398476 PMCID: PMC11469433 DOI: 10.1080/2162402x.2024.2412876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Dendritic cells (DCs) are critical players at the intersection of innate and adaptive immunity, making them ideal candidates for anticancer vaccine development. DC-based immunotherapies typically involve isolating patient-derived DCs, pulsing them with tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs), and utilizing maturation cocktails to ensure their effective activation. These matured DCs are then reinfused to elicit tumor-specific T-cell responses. While this approach has demonstrated the ability to generate potent immune responses, its clinical efficacy has been limited due to the immunosuppressive tumor microenvironment. Recent efforts have focused on enhancing the immunogenicity of DC-based vaccines, particularly through combination therapies with T cell-targeting immunotherapies. This Trial Watch summarizes recent advances in DC-based cancer treatments, including the development of new preclinical and clinical strategies, and discusses the future potential of DC-based vaccines in the evolving landscape of immuno-oncology.
Collapse
Affiliation(s)
- Francisca Borges
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Octavie Demeulenaere
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Kinget
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Saurabh Saraswat
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Benoit Beuselinck
- Department of Medical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Paul Clement
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Institute for Single-Cell Omics (LISCO), KU Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Rüdiger V. Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université de Louvain, Brussels, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhishek D. Garg
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Bojarska J, Wolf WM. Short Peptides as Powerful Arsenal for Smart Fighting Cancer. Cancers (Basel) 2024; 16:3254. [PMID: 39409876 PMCID: PMC11476321 DOI: 10.3390/cancers16193254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Short peptides have been coming around as a strong weapon in the fight against cancer on all fronts-in immuno-, chemo-, and radiotherapy, and also in combinatorial approaches. Moreover, short peptides have relevance in cancer imaging or 3D culture. Thanks to the natural 'smart' nature of short peptides, their unique structural features, as well as recent progress in biotechnological and bioinformatics development, short peptides are playing an enormous role in evolving cutting-edge strategies. Self-assembling short peptides may create excellent structures to stimulate cytotoxic immune responses, which is essential for cancer immunotherapy. Short peptides can help establish versatile strategies with high biosafety and effectiveness. Supramolecular short peptide-based cancer vaccines entered clinical trials. Peptide assemblies can be platforms for the delivery of antigens, adjuvants, immune cells, and/or drugs. Short peptides have been unappreciated, especially in the vaccine aspect. Meanwhile, they still hide the undiscovered unlimited potential. Here, we provide a timely update on this highly active and fast-evolving field.
Collapse
Affiliation(s)
- Joanna Bojarska
- Chemistry Department, Institute of Inorganic and Ecological Chemistry, Łódź University of Technology, S. Żeromskiego Str. 116, 90-924 Łódź, Poland;
| | | |
Collapse
|
10
|
Shebbo S, Binothman N, Darwaish M, Niaz HA, Abdulal RH, Borjac J, Hashem AM, Mahmoud AB. Redefining the battle against colorectal cancer: a comprehensive review of emerging immunotherapies and their clinical efficacy. Front Immunol 2024; 15:1350208. [PMID: 38533510 PMCID: PMC10963412 DOI: 10.3389/fimmu.2024.1350208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer globally and presents a significant challenge owing to its high mortality rate and the limitations of traditional treatment options such as surgery, radiotherapy, and chemotherapy. While these treatments are foundational, they are often poorly effective owing to tumor resistance. Immunotherapy is a groundbreaking alternative that has recently emerged and offers new hope for success by exploiting the body's own immune system. This article aims to provide an extensive review of clinical trials evaluating the efficacy of various immunotherapies, including CRC vaccines, chimeric antigen receptor T-cell therapies, and immune checkpoint inhibitors. We also discuss combining CRC vaccines with monoclonal antibodies, delve into preclinical studies of novel cancer vaccines, and assess the impact of these treatment methods on patient outcomes. This review seeks to provide a deeper understanding of the current state of CRC treatment by evaluating innovative treatments and their potential to redefine the prognosis of patients with CRC.
Collapse
Affiliation(s)
- Salima Shebbo
- Strategic Research and Innovation Laboratories, Taibah University, Madinah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Najat Binothman
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Manar Darwaish
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hanan A. Niaz
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Rwaa H. Abdulal
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamilah Borjac
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- Strategic Research and Innovation Laboratories, Taibah University, Madinah, Saudi Arabia
- College of Applied Medical Sciences, Taibah University, Almadinah Almunawarah, Saudi Arabia
| |
Collapse
|
11
|
Knöbel S, Bosio A. Scaling of cell and gene therapies to population. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:145-154. [PMID: 39341651 DOI: 10.1016/b978-0-323-90120-8.00012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Cell and gene therapies (CGTs) are intended to address many different diseases, including widespread diseases with millions of patients. The success of CGTs thus depends on the practicability of scaling cell manufacturing to population. It is obvious that process integration and automation are key for the reproducibility, quality, cost-effectiveness, and scalability of cell manufacturing. Still, different manufacturing concepts can be considered depending on the characteristics of cell therapies such as the degree of ex vivo manipulation of cells, the intended treatment scheme for the underlying medical indication, the prevalence of the indication, and the cell dose per final drug product. Here, we explain the characteristics of cellular products and their implications from the perspective of a manufacturer. We outline and exemplify with a list of devices' different strategies and scaling options for CGT manufacturing considering technical and regulatory aspects in the early and late clinical development of cellular products. Finally, we address the need for appropriate in-process and quality controls and the regulatory requirements and options for improvements of a cellular product at different manufacturing stages.
Collapse
Affiliation(s)
- Sebastian Knöbel
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Andreas Bosio
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany.
| |
Collapse
|
12
|
Li X, You J, Hong L, Liu W, Guo P, Hao X. Neoantigen cancer vaccines: a new star on the horizon. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0395. [PMID: 38164734 PMCID: PMC11033713 DOI: 10.20892/j.issn.2095-3941.2023.0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
Immunotherapy represents a promising strategy for cancer treatment that utilizes immune cells or drugs to activate the patient's own immune system and eliminate cancer cells. One of the most exciting advances within this field is the targeting of neoantigens, which are peptides derived from non-synonymous somatic mutations that are found exclusively within cancer cells and absent in normal cells. Although neoantigen-based therapeutic vaccines have not received approval for standard cancer treatment, early clinical trials have yielded encouraging outcomes as standalone monotherapy or when combined with checkpoint inhibitors. Progress made in high-throughput sequencing and bioinformatics have greatly facilitated the precise and efficient identification of neoantigens. Consequently, personalized neoantigen-based vaccines tailored to each patient have been developed that are capable of eliciting a robust and long-lasting immune response which effectively eliminates tumors and prevents recurrences. This review provides a concise overview consolidating the latest clinical advances in neoantigen-based therapeutic vaccines, and also discusses challenges and future perspectives for this innovative approach, particularly emphasizing the potential of neoantigen-based therapeutic vaccines to enhance clinical efficacy against advanced solid tumors.
Collapse
Affiliation(s)
- Xiaoling Li
- Cell Biotechnology Laboratory, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
- National Clinical Research Center for Cancer, Tianjin 300060, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300090, China
| | - Jian You
- Department of Thoracic Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
- Department of Thoracic Oncology Surgery, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Liping Hong
- Cell Biotechnology Laboratory, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
- National Clinical Research Center for Cancer, Tianjin 300060, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300090, China
| | - Weijiang Liu
- Cell Biotechnology Laboratory, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
- National Clinical Research Center for Cancer, Tianjin 300060, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300090, China
| | - Peng Guo
- Cell Biotechnology Laboratory, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
- National Clinical Research Center for Cancer, Tianjin 300060, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300090, China
| | - Xishan Hao
- Cell Biotechnology Laboratory, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
- National Clinical Research Center for Cancer, Tianjin 300060, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300090, China
- Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| |
Collapse
|
13
|
Hargrave A, Mustafa AS, Hanif A, Tunio JH, Hanif SNM. Recent Advances in Cancer Immunotherapy with a Focus on FDA-Approved Vaccines and Neoantigen-Based Vaccines. Vaccines (Basel) 2023; 11:1633. [PMID: 38005965 PMCID: PMC10675687 DOI: 10.3390/vaccines11111633] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer immunotherapies refer to the concept of retraining the immune system to target malignant cells. Multiple immunotherapeutic options exist including immune modulating antibodies, immune stimulating cytokines, chimeric antigen receptor T cell therapy, and vaccines. Overall, this field has advanced rapidly as knowledge of the tumor microenvironment, immunological pathways, and biotechnology expands. Specifically, advancements in neoantigen identification, characterization, and formulation into a vaccine show promise. This review is focused on previously United States Food and Drug Administration-approved cancer therapeutic vaccines and neoantigen-based vaccine developments along with the associated relevant clinical trials.
Collapse
Affiliation(s)
- Anna Hargrave
- Department of Biomedical Sciences, University of Pikeville, Pikeville, KY 41501, USA;
| | - Abu Salim Mustafa
- Department of Microbiology, Kuwait University, Kuwait City 12037, Kuwait;
| | - Asma Hanif
- Department of Restorative Sciences, Kuwait University, Kuwait City 12037, Kuwait;
| | - Javed H. Tunio
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | | |
Collapse
|
14
|
Zhao X, Zhang Z, Wen C, Huang J, Yang S, Liu J, Geng H, Peng B, Li Z, Zhang Y. The safety and anti-tumor effect of multiple peptides-pulsed dendritic cells combined with induced specific cytotoxic T lymphocytes for patients with solid tumors. Front Immunol 2023; 14:1284334. [PMID: 37942324 PMCID: PMC10628471 DOI: 10.3389/fimmu.2023.1284334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
OBJECTIVE The aim of this study was to explore the safety and efficacy of multiple peptide-pulsed autologous dendritic cells (DCs) combined with cytotoxic T lymphocytes (CTLs) in patients with cancer. METHODS Five patients diagnosed with cancer between November 2020 and June 2021 were enrolled and received DC-CTLs therapy. Peripheral blood was collected and antigenic peptides were analyzed. The phenotype and function of DC-CTLs and the immune status of patients were detected using flow cytometry or IFN-γ ELISPOT analysis. RESULTS DCs acquired a mature phenotype and expressed high levels of CD80, CD86, CD83, and HLA-DR after co-culture with peptides, and the DC-CTLs also exhibited high levels of IFN-γ. Peripheral blood mononuclear cells from post-treatment patients showed a stronger immune response to peptides than those prior to treatment. Importantly, four of five patients maintained a favorable immune status, of which one patient's disease-free survival lasted up to 28.2 months. No severe treatment-related adverse events were observed. CONCLUSION Our results show that multiple peptide-pulsed DCs combined with CTLs therapy has manageable safety and promising efficacy for cancer patients, which might provide a precise immunotherapeutic strategy for cancer.
Collapse
Affiliation(s)
- Xuan Zhao
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China
| | - Zhen Zhang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China
| | - Chunli Wen
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianmin Huang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China
| | - Shuangning Yang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China
| | - Jinyan Liu
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China
| | - Huizhen Geng
- Hebei Bio-High Technology Development Co., LTD. Shijiazhuang, Hebei, China
| | - Bing Peng
- Hebei Bio-High Technology Development Co., LTD. Shijiazhuang, Hebei, China
| | - Zibo Li
- Hebei Bio-High Technology Development Co., LTD. Shijiazhuang, Hebei, China
| | - Yi Zhang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer 2023; 22:141. [PMID: 37649123 PMCID: PMC10466891 DOI: 10.1186/s12943-023-01844-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development of tumor immunotherapies, including adoptive cell therapies (ACTs), cancer vaccines and antibody-based therapies, particularly for solid tumors. With the development of next-generation sequencing and bioinformatics technology, the rapid identification and prediction of tumor-specific antigens (TSAs) has become possible. Compared with tumor-associated antigens (TAAs), highly immunogenic TSAs provide new targets for personalized tumor immunotherapy and can be used as prospective indicators for predicting tumor patient survival, prognosis, and immune checkpoint blockade response. Here, the identification and characterization of neoantigens and the clinical application of neoantigen-based TCR-T immunotherapy strategies are summarized, and the current status, inherent challenges, and clinical translational potential of these strategies are discussed.
Collapse
Affiliation(s)
- Jiangping Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Donghui Wang
- Department of Radiation Oncology, The Third Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Lei Jia
- International Health Medicine Innovation Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Shihong Nie
- Department of Radiation Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, People's Republic of China
| | - Xingda Zeng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Hu
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
16
|
Koya T, Yoshida K, Togi M, Niida Y, Togi S, Ura H, Mizuta S, Kato T, Yamada S, Shibata T, Liu YC, Yuan SS, Wu DC, Kobayashi H, Utsugisawa T, Kanno H, Shimodaira S. Clinical Trial on the Safety and Tolerability of Personalized Cancer Vaccines Using Human Platelet Lysate-Induced Antigen-Presenting Cells. Cancers (Basel) 2023; 15:3627. [PMID: 37509288 PMCID: PMC10377585 DOI: 10.3390/cancers15143627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Research and development of personalized cancer vaccines as precision medicine are ongoing. We predicted human leukocyte antigen (HLA)-compatible cancer antigen candidate peptides based on patient-specific cancer genomic profiles and performed a Phase I clinical trial for the safety and tolerability of cancer vaccines with human platelet lysate-induced antigen-presenting cells (HPL-APCs) from peripheral monocytes. Among the five enrolled patients, two patients completed six doses per course (2-3 × 107 cells per dose), and an interim analysis was performed based on the immune response. An immune response was detected by enzyme-linked immunosorbent spot (ELISpot) assays to HLA-A*33:03-matched KRASWT, HLA-DRB1*09:01-compliant KRASWT or G12D, or HLA-A*31:01-matched SMAD4WT, and HLA-DRB1*04:01-matched SMAD4G365D peptides in two completed cases, respectively. Moreover, SMAD4WT-specific CD8+ effector memory T cells were amplified. However, an attenuation of the acquired immune response was observed 6 months after one course of cancer vaccination as the disease progressed. This study confirmed the safety and tolerability of HPL-APCs in advanced and recurrent cancers refractory to standard therapy and is the first clinical report to demonstrate the immunoinducibility of personalized cancer vaccines using HPL-APCs. Phase II clinical trials to determine immune responses with optimized adjuvant drugs and continued administration are expected to demonstrate efficacy.
Collapse
Affiliation(s)
- Terutsugu Koya
- Department of Regenerative Medicine, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Kahoku 920-0293, Ishikawa, Japan
| | - Kenichi Yoshida
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Kahoku 920-0293, Ishikawa, Japan
| | - Misa Togi
- Department of Regenerative Medicine, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Kahoku 920-0293, Ishikawa, Japan
| | - Yo Niida
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Sumihito Togi
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Hiroki Ura
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Shuichi Mizuta
- Department of Hematology and Immunology, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Tomohisa Kato
- Division of Stem Cell Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Takeo Shibata
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Yi-Chang Liu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shyng-Shiou Yuan
- Office of Research & Development, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Deng-Chyang Wu
- Internal Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hirohito Kobayashi
- Division of Transfusion and Cell Therapy, Tokyo Women's Medical University, Adachi Medical Center, Adachi 123-8558, Tokyo, Japan
| | - Taiju Utsugisawa
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Shinjuku 162-8666, Tokyo, Japan
| | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Shinjuku 162-8666, Tokyo, Japan
| | - Shigetaka Shimodaira
- Department of Regenerative Medicine, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Kahoku 920-0293, Ishikawa, Japan
- Division of Stem Cell Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Shinjuku 162-8666, Tokyo, Japan
| |
Collapse
|
17
|
Itoh M, Kawagoe S, Nakagawa H, Asahina A, Okano HJ. Generation of induced pluripotent stem cell (iPSC) from NY-ESO-I-specific cytotoxic T cells isolated from the melanoma patient with minor HLAs: The practical pilot study for the adoptive immunotherapy for melanoma using iPSC technology. Exp Dermatol 2023; 32:126-134. [PMID: 36222007 DOI: 10.1111/exd.14686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022]
Abstract
Melanoma is one of the most severe skin cancers, derived from melanocytes. Among various therapies for melanoma, adoptive immunotherapy using tumor-infiltrating lymphocytes/chimeric antigen receptor-T cells (TCs) is advanced in recent years; however, the efficacy is still limited, and major challenges remain in terms of safety and cell supply. To solve the issues of adoptive immunotherapy, we utilized induced pluripotent stem cells (iPSCs), which have an unlimited proliferative ability and various differentiation capability. First, we monoclonally isolated CD8+ TCs specifically reactive with NY-ESO-1, one of tumor antigens, from the melanoma patient's monocytes after stimulated with NY-ESO-1 peptide by manual procedure, and cultured NY-ESO-1-specific TCs until proliferated and formed colonies. iPSCs were consequently generated from colony-forming TCs by exogenous expression of reprogramming factors using Sendai virus vector. After the RAG2 gene in TC-derived iPSCs (T-iPSCs) was knocked out for preventing T-cell receptor (TCR) rearrangement, T-iPSCs were re-differentiated into rejuvenated cytotoxic TCs. We confirmed that TCR of T-iPSC-derived TC was maintained as the same of original TCs. In conclusion, T-iPSCs have a potential to be an unlimited cell source for providing cytotoxic TCs. Our study could be a "touchstone" to develop iPSC-based adoptive immunotherapy for the treatment of melanoma for the future clinical use.
Collapse
Affiliation(s)
- Munenari Itoh
- The Jikei University School of Medicine, Department of Dermatology, Tokyo, Japan
| | - Shiho Kawagoe
- The Jikei University School of Medicine, Department of Dermatology, Tokyo, Japan
| | - Hidemi Nakagawa
- The Jikei University School of Medicine, Department of Dermatology, Tokyo, Japan
| | - Akihiko Asahina
- The Jikei University School of Medicine, Department of Dermatology, Tokyo, Japan
| | - Hirotaka James Okano
- The Jikei University School of Medicine, Division of Regenerative Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Menon T, Gopal S, Rastogi Verma S. Targeted therapies in non-small cell lung cancer and the potential role of AI interventions in cancer treatment. Biotechnol Appl Biochem 2023; 70:344-356. [PMID: 35609005 DOI: 10.1002/bab.2356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 04/17/2022] [Indexed: 11/12/2022]
Abstract
Non-small cell lung cancer is the most prevalent lung cancer, and almost three-fourths of patients are diagnosed in the advanced stage directly. In this stage, chemotherapy gives only a 15% 5-year survival rate. As people have varied symptoms and reactions to a specific cancer type, treatment for the tumor is likely to fall short, complicating cancer therapy. Immunotherapy is a breakthrough treatment involving drugs targeting novel immune checkpoint inhibitors like CTLA-4 and PD-1/PD-L1, along with combination therapies. In addition, the utility of engineered CAR-T and CAR-NK cells can be an effective strategy to promote the immune response against tumors. The concept of personalized cancer vaccines with the discovery of neoantigens loaded on dendritic cell vectors can also be an effective approach to cure cancer. Advances in genetic engineering tools like CRISPR/Cas9-mediated gene editing of T cells to enhance their effector function is another ray of hope. This review aims to provide an overview of recent developments in cancer immunotherapy, which can be used in first- and second-line treatments in the clinical space. Further, the intervention of artificial intelligence to detect cancer tumors at an initial stage with the help of machine learning techniques is also explored.
Collapse
Affiliation(s)
- Tarunya Menon
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Shubhang Gopal
- Department of Information Technology, Delhi Technological University, Delhi, India
| | | |
Collapse
|
19
|
Zhou J, Li L, Jia M, Liao Q, Peng G, Luo G, Zhou Y. Dendritic cell vaccines improve the glioma microenvironment: Influence, challenges, and future directions. Cancer Med 2022; 12:7207-7221. [PMID: 36464889 PMCID: PMC10067114 DOI: 10.1002/cam4.5511] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Gliomas, especially the glioblastomas, are one of the most aggressive intracranial tumors with poor prognosis. This might be explained by the heterogeneity of tumor cells and the inhibitory immunological microenvironment. Dendritic cells (DCs), as the most potent in vivo functional antigen-presenting cells, link innate immunity with adaptive immunity. However, their function is suppressed in gliomas. Therefore, overcoming the dysfunction of DCs in the TME might be critical to treat gliomas. METHOD In this paper we proposed the specificity of the glioma microenvironment, analyzed the pathways leading to the dysfunction of DCs in tumor microenvironment of patients with glioma, summarized influence of DC-based immunotherapy on the tumor microenvironment and proposed new development directions and possible challenges of DC vaccines. RESULT DC vaccines can improve the immunosuppressive microenvironment of glioma patients. It will bring good treatment prospects to patients. We also proposed new development directions and possible challenges of DC vaccines, thus providing an integrated understanding of efficacy on DC vaccines for glioma treatment.
Collapse
Affiliation(s)
- Jing Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Luohong Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Minqi Jia
- Department of Radiation Oncology Peking University Cancer Hospital & Institute Beijing China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Guiping Peng
- Xiangya School of Medicine Central South University Changsha China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine Central South University Changsha Hunan China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| |
Collapse
|
20
|
Liu J, Lin J, Chen L. Heat shock protein 40 of Streptococcus pneumoniae induces immune response of human dendritic cells via TLR4-dependent p38 MAPK and JNK signaling pathways. Immun Inflamm Dis 2022; 10:e735. [PMID: 36444618 PMCID: PMC9695094 DOI: 10.1002/iid3.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Heat shock protein 40 (HSP40) is a vaccine adjuvant candidate for Streptococcus pneumoniae. The mechanism by which HSP40 activates the human dendritic cells (DCs) is unclear. METHODS DCs were isolated from human peripheral blood and their markers (HLA-DR, CD86, CD83, and CD80) were detected by flow cytometry. The messenger RNA (mRNA) and secretion levels of inflammary cytokines were measured after DCs were stimulated with recombinant HSP40 (rHSP40). Short hairpin RNAs were used to knock down toll-like receptor 2 (TLR2) and TLR4. The TLR2- or TLR4-deficient DCs were treated with lipopolysaccharides, rHSP40, or peptidoglycan, and then the secretion levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were measured. Moreover, the secretion levels of TNF-α and IL-6 were measured after DCs were treated with mitogen-activated protein kinase (MAPK) inhibitors including SB203580, SP600125, and U0126. In addition, the phosphorylation levels of p38 MAPK and Jun N-terminal kinase (JNK) in DC cells were determined using western blot analysis after treatment with rHSP40 for different times. RESULTS DCs were successfully isolated and cultured. rHSP40 treatment significantly increased cytokine levels in a concentration-dependent manner. TLR4 deficiency, but not TLR2 deficiency, significantly suppressed the rHSP40-induced secretion of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). SB203580 and SP600125 significantly inhibited the rHSP40-induced secretion of TNF-α and IL-6. rHSP40 significantly enhanced the phosphorylation of p38 MAPK and JNK. CONCLUSION HPS40 stimulates the immune response of DCs via the p38 MAPK and JNK signaling pathways, which depend on TLR4.
Collapse
Affiliation(s)
- Jing‐jing Liu
- Clinical LaboratoryXiamen Children's HospitalXiamenChina
| | - Jian‐cheng Lin
- Clinical LaboratoryXiamen Children's HospitalXiamenChina
| | - Li‐na Chen
- Clinical LaboratoryXiamen Children's HospitalXiamenChina
| |
Collapse
|
21
|
Neoantigen discovery and applications in glioblastoma: An immunotherapy perspective. Cancer Lett 2022; 550:215945. [DOI: 10.1016/j.canlet.2022.215945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022]
|
22
|
Exosome transportation-mediated immunosuppression relief through cascade amplification for enhanced apoptotic body vaccination. Acta Biomater 2022; 153:529-539. [PMID: 36113726 DOI: 10.1016/j.actbio.2022.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/09/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022]
Abstract
Cancer vaccines represent the most promising strategies in the battle against cancers. Eliciting a robust therapeutic effect with vaccines, however, remains a challenge owing to the weak immunogenicity of autologous tumor antigens and highly immunosuppressive microenvironment. In the present study, we constructed CpG oligodeoxyribonucleotide (CpG ODN)-loaded cancer cell apoptotic bodies (Abs) as cancer vaccines for enhanced immunotherapy through cascade amplification-mediated immunosuppression relief. Abs that contain an abundant source of tumor-specific neoantigens and other tumor-associated antigens (TAAs) can be regarded as vaccines with higher immunogenicity. The de novo synthesized Abs-CpG could target and polarize macrophages to improve the immunosuppressive microenvironment. More importantly, we found that the effect of immunosuppression relief was cascade amplified, which was mediated by M1 macrophage-derived exosome transportation. Our results showed that CpG ODN polarized macrophages to M1 type and produced a large amount of TNF-α, which then activated cell division control protein 42 (Cdc42). Interestingly, we found that exosomes from M1 macrophages delivered Cdc42 and CpG to adjacent macrophages and further enhanced the phagocytosis of adjacent macrophages by positive feedback. Through cascade amplification induced by Abs-CpG with macrophage exosomes, the immunogenicity and immunosuppressive microenvironment were greatly improved, which then enhanced the performance of cancer vaccine therapy. Thus, we propose that a strategy of combining the Abs-based vaccine platform with the immunomodulatory approach represents the next generation of cancer immunotherapy. STATEMENT OF SIGNIFICANCE: 1. We discovered a relieving strategy for tumor immunosuppressive microenvironment: Abs-CpG polarized macrophages to M1 type, and M1 macrophage-derived exosomes delivered Cdc42 and CpG to adjacent macrophages, which then further enhanced the phagocytosis of adjacent macrophages by positive feedback. Through cascade amplification induced by the transfer of macrophage exosomes, the immunogenicity and immunosuppressive microenvironment were greatly improved. 2. As a vaccine, Abs contained both tumor-specific neoantigens and other tumor-associated antigens with higher immunogenicity and high clinical transformability.
Collapse
|
23
|
Li L, Zhou J, Dong X, Liao Q, Zhou D, Zhou Y. Dendritic cell vaccines for glioblastoma fail to complete clinical translation: Bottlenecks and potential countermeasures. Int Immunopharmacol 2022; 109:108929. [PMID: 35700581 DOI: 10.1016/j.intimp.2022.108929] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/20/2022] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
Glioblastoma (GBM) is a heterogeneous and invasive WHO grade IV brain tumor. Patients with GBM have a median overall survival (OS) of only 14 to 17 months when treated with surgical resection and chemoradiation. As one of the most promising anti-tumor immunotherapies, dendritic cell (DC) vaccines have demonstrated good efficacy, safety, and tolerability in many clinical trials. However, to date, no Phase III clinical trial has achieved positive endpoints and truly implement clinical development and transformation. Moreover, the survival benefits of DC vaccines for patients with GBM seem to have a delayed effect; therefore, we urgently require strategies to optimize DC vaccines to advance the time point of its survival benefits. Here, we discuss the latest clinical trial progress of DC vaccines in GBM and summarize the benefits and drawbacks of various vaccine design options, as well as the challenges faced in clinical translation. Moreover, we target future combination therapy strategies for DC vaccines in GBM, which provides a new perspective for comprehensively understanding the effectiveness, limitations, and new directions of the development of DC vaccines.
Collapse
Affiliation(s)
- Luohong Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Jing Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Xueting Dong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Dongbo Zhou
- Department of Geriatric, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China, Hunan 410008, China.
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
24
|
Kiessling A, Ramanathan K, Nilsson OB, Notari L, Renken S, Kiessling R, Grönlund H, Wickström SL. Generation of Tumor-Specific Cytotoxic T Cells From Blood via In Vitro Expansion Using Autologous Dendritic Cells Pulsed With Neoantigen-Coupled Microbeads. Front Oncol 2022; 12:866763. [PMID: 35433456 PMCID: PMC9009257 DOI: 10.3389/fonc.2022.866763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
For the past decade, adoptive cell therapy including tumor-infiltrating lymphocytes, genetically modified cytotoxic lymphocytes expressing a chimeric antigen receptor, or a novel T-cell receptor has revolutionized the treatment of many cancers. Progress within exome sequencing and neoantigen prediction technologies provides opportunities for further development of personalized immunotherapies. In this study, we present a novel strategy to deliver in silico predicted neoantigens to autologous dendritic cells (DCs) using paramagnetic beads (EpiTCer beads). DCs pulsed with EpiTCer beads are superior in enriching for healthy donor and patient blood-derived tumor-specific CD8+ T cells compared to DC loaded with whole-tumor lysate or 9mer neoantigen peptides. A dose-dependent effect was observed, with higher EpiTCer bead per DC being favorable. We concluded that CD8+ T cells enriched by DC loaded with EpiTCer beads are tumor specific with limited tumor cross-reactivity and low recognition of autologous non-activated monocytes or CD8+ T cells. Furthermore, tumor specificity and recognition were improved and preserved after additional expansion using our Good Manufacturing Process (GMP)-compatible rapid expansion protocol. Phenotypic analysis of patient-derived EpiTCer DC expanded CD8+ T cells revealed efficient maturation, with high frequencies of central memory and effector memory T cells, similar to those observed in autologous expanded tumor-infiltrating lymphocytes. These results indicate that DC pulsed with EpiTCer beads enrich for a T-cell population with high capacity of tumor recognition and elimination, which are features needed for a T-cell product to be used for personalized adoptive cell therapy.
Collapse
Affiliation(s)
- Adela Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Ola B. Nilsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- NEOGAP Therapeutics AB, Stockholm, Sweden
| | - Luigi Notari
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- NEOGAP Therapeutics AB, Stockholm, Sweden
| | - Stefanie Renken
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Patient Area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden
| | - Hans Grönlund
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- NEOGAP Therapeutics AB, Stockholm, Sweden
| | - Stina L. Wickström
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- NEOGAP Therapeutics AB, Stockholm, Sweden
- Theme Cancer, Patient Area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Stina L. Wickström,
| |
Collapse
|
25
|
Fang X, Guo Z, Liang J, Wen J, Liu Y, Guan X, Li H. Neoantigens and their potential applications in tumor immunotherapy. Oncol Lett 2022; 23:88. [PMID: 35126730 PMCID: PMC8805178 DOI: 10.3892/ol.2022.13208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/04/2022] [Indexed: 12/23/2022] Open
Abstract
The incidence of malignant tumors is increasing, the majority of which are associated with high morbidity and mortality rates worldwide. The traditional treatment method for malignant tumors is surgery, coupled with radiotherapy or chemotherapy. However, these therapeutic strategies are frequently accompanied with adverse side effects. Over recent decades, tumor immunotherapy shown promise in demonstrating notable efficacy for the treatment of cancer. With the development of sequencing technology and bioinformatics algorithms, neoantigens have become compelling targets for cancer immunotherapy due to high levels of immunogenicity. In addition, neoantigen-based vaccines have demonstrated potential for cancer therapy, primarily by augmenting T-cell responses. Neoantigens have also been shown to be effective in immune checkpoint blockade therapy. Therefore, neoantigens may serve to be predictive biomarkers and synergistic treatment targets in cancer immunotherapy. The aim of the present review was to provide an overview of the recent progress in the classification, screening and clinical application of neoantigens for cancer therapy.
Collapse
Affiliation(s)
- Xianzhu Fang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhiliang Guo
- Department of Orthopedic, The 80th Group Army Hospital of Chinese People's Liberation Army, Weifang, Shandong 261021, P.R. China
| | - Jinqing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jiao Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yuanyuan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiumei Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Hong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
26
|
Han MH, Kim CH. Current Immunotherapeutic Approaches for Malignant Gliomas. Brain Tumor Res Treat 2022; 10:1-11. [PMID: 35118842 PMCID: PMC8819466 DOI: 10.14791/btrt.2022.10.e25] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma is the most common malignant central nervous system (CNS) tumor (48.3%), with a median survival of only about 14.6 months. Although the CNS is an immune-privileged site, activated T cells can cross the blood-brain barrier. The recent successes of several immunotherapies for various cancers have drawn interest in immunotherapy for treatment of malignant glioma. There have been extensive attempts to evaluate the efficiency of immunotherapy against malignant glioma. Passive immunotherapy for malignant glioma includes monoclonal antibody-mediated immunotherapy, cytokine-mediated therapy, and adoptive cell transfer, also known as chimeric antigen receptor T cell treatment. On the other hand, active immunotherapy, which stimulates the patient’s adaptive immune system against specific tumor-associated antigens, includes cancer vaccines that are divided into peptide vaccines and cell-based vaccines. In addition, there is immune checkpoint blockade therapy, which increases the efficiency of immunotherapy by reducing the resistance of malignant glioma to immunotherapy. Despite centuries of efforts, immunotherapeutic successes for malignant glioma remain limited. However, many clinical trials of adoptive cell transfer immunotherapy on malignant glioma are ongoing, and the outcomes are eagerly awaited. In addition, although there are still several obstacles, current clinical trials using personalized neoantigen-based dendritic cell vaccines offer new hope to glioblastoma patients. Furthermore, immune checkpoint targeted therapy is expected to decipher the mechanism of immunotherapy resistance in malignant glioma in the near future. More studies are needed to increase the efficacy of immunotherapy in malignant glioma. We hope that immunotherapy will become a new treatment of malignant glioma.
Collapse
Affiliation(s)
- Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Korea
| | - Choong Hyun Kim
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Korea.
| |
Collapse
|
27
|
Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol 2022; 11:3. [PMID: 35074008 PMCID: PMC8784280 DOI: 10.1186/s40164-022-00257-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC) vaccines induce specific immune responses that can selectively eliminate target cells. In recent years, many studies have been conducted to explore DC vaccination in the treatment of hematological malignancies, including acute myeloid leukemia and myelodysplastic syndromes, as well as other nonleukemia malignancies. There are at least two different strategies that use DCs to promote antitumor immunity: in situ vaccination and canonical vaccination. Monocyte-derived DCs (mo-DCs) and leukemia-derived DCs (DCleu) are the main types of DCs used in vaccines for AML and MDS thus far. Different cancer-related molecules such as peptides, recombinant proteins, apoptotic leukemic cells, whole tumor cells or lysates and DCs/DCleu containing a vaster antigenic repertoire with RNA electroporation, have been used as antigen sources to load DCs. To enhance DC vaccine efficacy, new strategies, such as combination with conventional chemotherapy, monospecific/bispecific antibodies and immune checkpoint-targeting therapies, have been explored. After a decade of trials and tribulations, much progress has been made and much promise has emerged in the field. In this review we summarize the recent advances in DC vaccine immunotherapy for AML/MDS as well as other nonleukemia malignancies.
Collapse
Affiliation(s)
- Jifeng Yu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004, Henan, China
| | - Hao Sun
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weijie Cao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongping Song
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China.
| | - Zhongxing Jiang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
28
|
Zachariah NN, Basu A, Gautam N, Ramamoorthi G, Kodumudi KN, Kumar NB, Loftus L, Czerniecki BJ. Intercepting Premalignant, Preinvasive Breast Lesions Through Vaccination. Front Immunol 2021; 12:786286. [PMID: 34899753 PMCID: PMC8652247 DOI: 10.3389/fimmu.2021.786286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) prevention remains the ultimate cost-effective method to reduce the global burden of invasive breast cancer (IBC). To date, surgery and chemoprevention remain the main risk-reducing modalities for those with hereditary cancer syndromes, as well as high-risk non-hereditary breast lesions such as ADH, ALH, or LCIS. Ductal carcinoma in situ (DCIS) is a preinvasive malignant lesion of the breast that closely mirrors IBC and, if left untreated, develops into IBC in up to 50% of lesions. Certain high-risk patients with DCIS may have a 25% risk of developing recurrent DCIS or IBC, even after surgical resection. The development of breast cancer elicits a strong immune response, which brings to prominence the numerous advantages associated with immune-based cancer prevention over drug-based chemoprevention, supported by the success of dendritic cell vaccines targeting HER2-expressing BC. Vaccination against BC to prevent or interrupt the process of BC development remains elusive but is a viable option. Vaccination to intercept preinvasive or premalignant breast conditions may be possible by interrupting the expression pattern of various oncodrivers. Growth factors may also function as potential immune targets to prevent breast cancer progression. Furthermore, neoantigens also serve as effective targets for interception by virtue of strong immunogenicity. It is noteworthy that the immune response also needs to be strong enough to result in target lesion elimination to avoid immunoediting as it may occur in IBC arising from DCIS. Overall, if the issue of vaccine targets can be solved by interrupting premalignant lesions, there is a potential to prevent the development of IBC.
Collapse
Affiliation(s)
| | - Amrita Basu
- Clinical Science Division, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Namrata Gautam
- Clinical Science Division, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Ganesan Ramamoorthi
- Clinical Science Division, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Krithika N Kodumudi
- Clinical Science Division, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Nagi B Kumar
- Clinical Science Division, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Loretta Loftus
- Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Brian J Czerniecki
- Department of Breast Surgery, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|