1
|
Zhang L, Zhang L, Shi Z, Mi Y, Zhang L, Shi X, Gao S, Zuo L. Transcriptional Regulation of NUPR1 by MYH11 Activates PI3 K/AKT and Promotes Bladder Cancer Progression Through Ferroptosis and M2 Polarization of Macrophages. Technol Cancer Res Treat 2025; 24:15330338241305434. [PMID: 39962891 PMCID: PMC11833819 DOI: 10.1177/15330338241305434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND NUPR1 is a small molecule protein that plays an important role in tumor progression and drug resistance. Our previous study found that NUPR1 promotes the progression of bladder cancer, but the specific mechanism is still unclear. MYH11 encodes the smooth muscle myosin heavy chain and belongs to the conventional myosin family. MYH11 has been found to be associated with a variety of malignant tumors. METHODS We identified MYH11 as an upstream regulator of NUPR1 using a bioinformatics approach and tested this hypothesis by knocking down MYH11 and ChIP-qPCR. Subsequently, we verified the association of MYH11 and NUPR1 with the PI3 K/AKT pathway by WB. In addition, gene enrichment results showed that the effect of NUPR1 on bladder cancer was related to ferroptosis and M2 macrophage polarization. We examined ferroptosis metabolites in bladder cancer cells overexpressing NUPR1 and expression of the M2 macrophage marker CD206 in NUPR1 overexpression or MYH11 knockdown bladder cancer cells. RESULTS Bioinformatics results showed that MYH11 was positively correlated with NUPR1, and there may be a mutual binding site at the promoter of NUPR1. Knockdown of MYH11 decreased NUPR1 expression, and ChIP-qPCR showed that MYH11 bound to the promoter of NUPR1. Subsequently, WB results showed that MYH11 knockdown inhibited the PI3 K/AKT pathway, whereas NUPR1 overexpression activated this pathway. After adding ferroptosis activator, the viability of bladder cancer cells decreased, and the content of Fe2+ and MDA increased. However, ferroptosis was significantly inhibited after overexpression of NUPR1. Knockdown of MYH11 inhibited M2 macrophage polarization, while overexpression of NUPR1 promoted this process. CONCLUSION This study suggests that MYH11 activates the PI3 K/AKT pathway by up-regulating the expression of NUPR1, and promotes bladder cancer progression by inhibiting ferroptosis and promoting M2 polarization of macrophages.
Collapse
Affiliation(s)
- Lifeng Zhang
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University (The Third Affiliated Hospital of Nanjing Medical University), Changzhou, China
- Department of Urology, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Li Zhang
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University (The Third Affiliated Hospital of Nanjing Medical University), Changzhou, China
| | - Zebin Shi
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University (The Third Affiliated Hospital of Nanjing Medical University), Changzhou, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Lei Zhang
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University (The Third Affiliated Hospital of Nanjing Medical University), Changzhou, China
| | - Xiaokai Shi
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University (The Third Affiliated Hospital of Nanjing Medical University), Changzhou, China
| | - Shenglin Gao
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University (The Third Affiliated Hospital of Nanjing Medical University), Changzhou, China
- Department of Urology, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Prefecture, China
| | - Li Zuo
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University (The Third Affiliated Hospital of Nanjing Medical University), Changzhou, China
| |
Collapse
|
2
|
Long C, Shi H, Li J, Chen L, Lv M, Tai W, Wang H, Xu Y. The diagnostic accuracy of urine-derived exosomes for bladder cancer: a systematic review and meta-analysis. World J Surg Oncol 2024; 22:285. [PMID: 39472962 PMCID: PMC11520875 DOI: 10.1186/s12957-024-03569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
INTRODUCTION Urine-derived exosomes could potentially be biomarkers for bladder cancer (BC) diagnosis. This study aimed to systematically evaluate the diagnostic worth of urine-derived exosomes in BC patients through a meta-analysis of diverse studies. METHODS A systematic search was carried out in PubMed, Web of Science, Embase, Cochrane, and CNKI databases to obtain the literature concerning the diagnosis of BC via urine-derived exosomes. A literature retrieval strategy was devised to pick articles and extract needed data from the literature. QUADS-2 was used to evaluate the quality of the included literatures, and the aggregated diagnostic effect was assessed by calculating the area under the aggregated SROC curve. All statistical analyses and plots were conducted with STATA 14.0 and RevMan5.3. RESULTS A total of 678 articles were retrieved by means of the search strategy of the online database. Through screening, 21 articles were obtained, involving 3348 participants and 77 studies. The meta-analysis of the results indicated that urinary exosomes had a combined sensitivity of 0.75, a specificity of 0.77, and a combined AUC of 0.83 for the diagnosis of BC, suggesting that urine-derived exosomes have a relatively satisfactory diagnostic effect in the detection of BC. Among the subgroups classified by biomarker, long non-coding RNAs (lncRNAs) had the highest comprehensive sensitivity (SEN = 0.78), and miRNAs had the highest comprehensive specificity (SPN = 0.81). In other subgroup analyses, the biomarker panel for multiple exosomes combined diagnosis demonstrated the best diagnostic efficacy, with a combined the area under the curve ( AUC) of 0.87. CONCLUSIONS As a novel biomarker, urine-derived exosomes have significant diagnostic prospects in the diagnosis of BC. Nevertheless, their application in clinical settings still demands a considerable number of clinical trials to confirm their clinical feasibility and practicability.
Collapse
Affiliation(s)
- Chunyue Long
- Department of Clinical Laboratory, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China
| | - Hongjin Shi
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China
| | - Jinyu Li
- Department of Clinical Laboratory, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China
| | - Lijian Chen
- Department of Clinical Laboratory, Fuqing People's Hospital, Fuqing , Fujian, 350300, China
| | - Mei Lv
- Department of Clinical Laboratory, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China
| | - Wenlin Tai
- Department of Clinical Laboratory, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China
| | - Haifeng Wang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China.
| | - Yiheng Xu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China.
| |
Collapse
|
3
|
Zhao L, Li J, Xue Z, Wang J. Exosomal noncoding RNAs as noninvasive biomarkers in bladder cancer: a diagnostic meta-analysis. Clin Transl Oncol 2024; 26:1497-1507. [PMID: 38227115 PMCID: PMC11108909 DOI: 10.1007/s12094-023-03374-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND In view of discordance consisting in different reports, a meta-analysis was conducted to comprehensively evaluate the diagnostic efficacy of exosomal noncoding RNAs (ncRNAs) in blood and urine in the detection of bladder cancer. METHODS Eligible studies were acquired by systematic retrieval through PubMed, Cochrane Library, and Embase. The pooled diagnostic efficacy was appraised by reckoning the area under the summary receiver operating characteristic (SROC) curve. The latent sources of heterogeneity were probed by subgroup analyses and meta-regression. STATA 12.0, Meta-DiSc 1.4, and RevMan 5.3 were applied to carry out all statistical analyses and plots. RESULTS A total of 46 studies from 15 articles comprising 2622 controls and 3015 bladder cancer patients were included in our meta-analysis. Exosomal ncRNAs in blood and urine represented relatively satisfactory diagnostic efficacy in detecting bladder cancer, with a pooled sensitivity of 0.75, a specificity of 0.79, and an area under the SROC curve (AUC) of 0.84. Exosomal microRNAs (miRNAs) exhibited better diagnostic value with a pooled AUC of 0.91 than that of exosomal long noncoding RNAs (lncRNAs). To some extent, the heterogeneity among studies was induced by exosomal ncRNA types (miRNA or lncRNA), exosomal ncRNA profiling (single- or multiple-ncRNA), sample size, specimen types, and ethnicity. CONCLUSION Exosomal ncRNAs in blood and urine may play a vital role in diagnosing bladder cancer as prospective noninvasive biomarkers; nonetheless, their clinical performance needs to be confirmed by further massive proactive researches.
Collapse
Affiliation(s)
- Liming Zhao
- Department of Nuclear Medicine, Linyi People's Hospital, Shandong University, 27 Jiefang Road, Linyi, 276003, Shandong, People's Republic of China
| | - Jun Li
- Department of Nuclear Medicine, Linyi People's Hospital, Shandong University, 27 Jiefang Road, Linyi, 276003, Shandong, People's Republic of China
| | - Zhongguang Xue
- Department of Nuclear Medicine, Linyi People's Hospital, Shandong University, 27 Jiefang Road, Linyi, 276003, Shandong, People's Republic of China
| | - Jinfeng Wang
- Department of Nuclear Medicine, Linyi People's Hospital, Shandong University, 27 Jiefang Road, Linyi, 276003, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Mao X, Chen X, Xu Z, Ding L, Luo W, Lin Y, Wang R, Xia L, Wang M, Li G. The identification of a N 6-methyladenosin-modifed immune pattern to predict immunotherapy response and survival in urothelial carcinoma. Aging (Albany NY) 2024; 16:7774-7798. [PMID: 38696324 PMCID: PMC11131986 DOI: 10.18632/aging.205782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/29/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Dysregulation of the immune system and N6-methyladenosine (m6A) contribute to immune therapy resistance and cancer progression in urothelial carcinoma (UC). This study aims to identify immune-related molecules, that are m6A-modified, and that are associated with tumor progression, poor prognosis, and immunotherapy response. METHODS We identified prognostic immune genes (PIGs) using Cox analysis and random survival forest variable hunting algorithm (RSF-VH) on immune genes retrieved from the Immunology Database and Analysis Portal database (ImmPort). The RM2Target database and MeRIP-seq analysis, combined with a hypergeometric test, assessed m6A methylation in these PIGs. We analyzed the correlation between the immune pattern and prognosis, as well as their association with clinical factors in multiple datasets. Moreover, we explored the interplay between immune patterns, tumor immune cell infiltration, and m6A regulators. RESULTS 28 PIGs were identified, of which the 10 most significant were termed methylated prognostic immune genes (MPIGs). These MPIGs were used to create an immune pattern score. Kaplan-Meier and Cox analyses indicated this pattern as an independent risk factor for UC. We observed significant associations between the immune pattern, tumor progression, and immune cell infiltration. Differential expression analysis showed correlations with m6A regulators expression. This immune pattern proved effective in predicting immunotherapy response in UC in real-world settings. CONCLUSION The study identified a m6A-modified immune pattern in UC, offering prognostic and therapeutic response predictions. This emphasizes that immune genes may influence tumor immune status and progression through m6A modifications.
Collapse
Affiliation(s)
- Xudong Mao
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xianjiong Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zhehao Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yudong Lin
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| |
Collapse
|
5
|
Ding AX, Wang H, Zhang JM, Yang W, Kuang YT. lncRNA BANCR promotes the colorectal cancer metastasis through accelerating exosomes-mediated M2 macrophage polarization via regulating RhoA/ROCK signaling. Mol Cell Biochem 2024; 479:13-27. [PMID: 36988779 DOI: 10.1007/s11010-023-04709-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023]
Abstract
Cancer cells-derived exosomal lncRNAs could modulate the tumorigenesis of colorectal cancer (CRC) via modulating macrophage M2 polarization. However, the clarified mechanism and function of lncRNA BANCR in CRC remains unclear. Exosomes were identified by TEM, NTA, western blot and fluorescent staining. M2 macrophages were identified by CD206 and CD163 expressions using by flow cytometry and RT-qPCR. In addition, the relation between IGF2BP2 and BANCR or RhoA were explored by RIP assay. The malignant behaviors of CRC cells were examined by CCK-8, EdU and transwell assays. Histopathological changes in mice were observed by H&E staining. Silencing of BANCR notably inhibited the proliferation, migration and invasion of CRC cells. SW620 and HCT-15 cells-derived exosomal BANCR positively regulated the macrophage M2 polarization. In addition, exosomal BANCR remarkably enhanced the promoting roles mediated by M2 macrophages on proliferation and invasion in CRC cells. Meanwhile, exosomal BANCR promoted the M2 macrophage polarization via activation of RhoA/Rock pathway by recruiting IGF2BP2. Inhibition of RhoA/Rock pathway reversed exosomal BANCR-mediated macrophages M2 polarization and CRC malignant behaviors in SW620 and HCT-15 cells. Exosomal lncRNA BANCR derived from SW620 and HCT-15 cells promoted the metastasis of CRC via inducing the polarization of M2 macrophages. Thus, BANCR might be a new target for the treatment of CRC.
Collapse
Affiliation(s)
- Ai-Xing Ding
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, No.188, Shizi Street, Suzhou, 215006, Jiangsu Province, People's Republic of China
- Department of General Surgery, Yancheng City No. 1 People's Hospital, Yancheng, 224300, Jiangsu Province, People's Republic of China
| | - Hao Wang
- Department of General Surgery, Yancheng City No. 1 People's Hospital, Yancheng, 224300, Jiangsu Province, People's Republic of China
| | - Jian-Min Zhang
- Department of General Surgery, Yancheng City No. 1 People's Hospital, Yancheng, 224300, Jiangsu Province, People's Republic of China
| | - Wei Yang
- Department of General Surgery, Yancheng City No. 1 People's Hospital, Yancheng, 224300, Jiangsu Province, People's Republic of China
| | - Yu-Ting Kuang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, No.188, Shizi Street, Suzhou, 215006, Jiangsu Province, People's Republic of China.
| |
Collapse
|
6
|
Applications of Exosomes in Diagnosing Muscle Invasive Bladder Cancer. Pharmaceutics 2022; 14:pharmaceutics14102027. [PMID: 36297462 PMCID: PMC9607910 DOI: 10.3390/pharmaceutics14102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Muscle Invasive Bladder Cancer (MIBC) is a subset of bladder cancer with a significant risk for metastases and death. It accounts for nearly 25% of bladder cancer diagnoses. A diagnostic work-up for MIBC is inclusive of urologic evaluation, radiographic imaging with a CT scan, urinalysis, and cystoscopy. These evaluations, especially cystoscopy, are invasive and carry the risk of secondary health concerns. Non-invasive diagnostics such as urine cytology are an attractive alternative currently being investigated to mitigate the requirement for cystoscopy. A pitfall in urine cytology is the lack of available options with high reliability, specificity, and sensitivity to malignant bladder cells. Exosomes are a novel biomarker source which could resolve some of the concerns with urine cytology, due to the high specificity as the surrogates of tumor cells. This review serves to define muscle invasive bladder cancer, current urine cytology methods, the role of exosomes in MIBC, and exosomes application as a diagnostic tool in MIBC. Urinary exosomes as the specific populations of extracellular vesicles could provide additional biomarkers with specificity and sensitivity to bladder malignancies, which are a consistent source of cellular information to direct clinicians for developing treatment strategies. Given its strong presence and differentiation ability between normal and cancerous cells, exosome-based urine cytology is highly promising in providing a perspective of a patient’s bladder cancer.
Collapse
|
7
|
Shi Z, Huang K, Li Z, Niu Y, Jiang L. Evaluating the expression of tumorigenic long noncoding RNAs in circulating exosomes isolated from non-small-cell lung cancer patients. Biomark Med 2022; 16:241-251. [PMID: 35209738 DOI: 10.2217/bmm-2021-0930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the correlation of long noncoding RNAs (lncRNAs) expression in circulating exosomes and the cancerous and noncancerous tissues in patients with non-small-cell lung carcinoma. Methods: The relative expression of the four lncRNAs including LUADT1, MALAT1, NEAT1 and MIAT between tumor tissue, adjacent noncancerous tissues and circulating exosomes were evaluated by quantitative reverse transcription PCR. Results & conclusion: The relative expression of the lncRNAs, including LUADT1, MALAT1 and NEAT1, was upregulated and MIAT was downregulated in tumor tissue compared with noncancerous tissue samples. The expression of lncRNAs in circulating exosomes was not significantly different from cancerous tissue. Our results indicate that the studied exosomal lncRNAs have a good potential to be further evaluated as prognostic/diagnostic biomarkers in patients with non-small-cell lung cancer.
Collapse
Affiliation(s)
- Zhenshan Shi
- Department of Oncology, People's Hospital of Bozhou, Bozhou, Anhui, 236800, PR China
| | - Kaicheng Huang
- Department of Geriatrics, Haikou People's Hospital, Haikou, Hainan, 570208, PR China
| | - Zheng Li
- Department of Second Thoracic Surgery, Anhui Chest Hospital, Hefei, Anhui, 230000, PR China
| | - Yanli Niu
- Department of Operation Room, Xiangyang No 1 People's Hospital, Affiliated Hospital of Hubei University of Medicne, Xiangyang, Hube, 441000, PR China
| | - Lihao Jiang
- Department of Oncology, The People's Hospital of Dazu, Chongqing, Chongqing, 402360, PR China
| |
Collapse
|