1
|
Leal VNC, Bork F, Mateo Tortola M, von Guilleaume JC, Greve CL, Bugl S, Danker B, Bittner ZA, Grimbacher B, Pontillo A, Weber ANR. Bruton's tyrosine kinase (BTK) and matrix metalloproteinase-9 (MMP-9) regulate NLRP3 inflammasome-dependent cytokine and neutrophil extracellular trap responses in primary neutrophils. J Allergy Clin Immunol 2025; 155:569-582. [PMID: 39547282 DOI: 10.1016/j.jaci.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Inflammation is a double-edged state of immune activation that is required to resolve threats harmful to the host, but can also cause severe collateral damage. Polymorphonuclear neutrophils (PMNs), the primary leukocyte population in humans, mediate inflammation through the release of cytokines and neutrophil extracellular traps (NETs). Although the pathophysiological importance of NETs is unequivocal, the multiple molecular pathways driving NET release are not fully defined. Recently, NET release was linked to the NLRP3 inflammasome, which is regulated by Bruton's tyrosine kinase (BTK) in macrophages. OBJECTIVE As NLRP3 inflammasome regulation by BTK has not been studied in neutrophils, we explored a potential regulatory role of BTK in primary murine and human neutrophils and matched monocytes or macrophages from Btk-deficient versus wild-type mice, or from healthy donors versus BTK-deficient patients with X-linked agammaglobulinemia. METHODS Cytokine, myeloperoxidase, and matrix metalloproteinase-9 (MMP-9) release were quantified by ELISA, NET release, and inflammasome formation by immunofluorescence microscopy. RESULTS Surprisingly, in both mouse and human primary neutrophils, we observed a significant increase in NLRP3 inflammasome-dependent IL-1β and NETs when BTK was absent or inhibited, whereas IL-1β release was decreased in corresponding primary mouse macrophages or human PBMCs. This suggests a novel negative regulatory role of BTK in terms of neutrophil NLRP3 activation. IL-1β and NET release in both mouse and human primary neutrophils was strictly dependent on NLRP3, caspase-1 and, surprisingly, MMP-9. CONCLUSIONS This study highlights BTK and MMP-9 as novel and versatile inflammasome regulators and may have implications for the clinical use of BTK inhibitors.
Collapse
Affiliation(s)
- Vinicius N C Leal
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany; Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Francesca Bork
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Maria Mateo Tortola
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | | | - Carsten L Greve
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Stefanie Bugl
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Bettina Danker
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Zsofia A Bittner
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Bodo Grimbacher
- Klinik für Rheumatologie/Klinische Immunologie, Universitätsklinikum Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Alessandra Pontillo
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Alexander N R Weber
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany; iFIT-Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany; CMFI-Cluster of Excellence (EXC 2124) "Controlling Microbes to Fight Infection," University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Sastri KT, Gupta NV, Kannan A, Dutta S, Ali M Osmani R, V B, Ramkishan A, S S. The next frontier in multiple sclerosis therapies: Current advances and evolving targets. Eur J Pharmacol 2024; 985:177080. [PMID: 39491741 DOI: 10.1016/j.ejphar.2024.177080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Recent advancements in research have significantly enhanced our comprehension of the intricate immune components that contribute to multiple sclerosis (MS) pathogenesis. By conducting an in-depth analysis of complex molecular interactions involved in the immunological cascade of the disease, researchers have successfully identified novel therapeutic targets, leading to the development of innovative therapies. Leveraging pioneering technologies in proteomics, genomics, and the assessment of environmental factors has expedited our understanding of the vulnerability and impact of these factors on the progression of MS. Furthermore, these advances have facilitated the detection of significant biomarkers for evaluating disease activity. By integrating these findings, researchers can design novel molecules to identify new targets, paving the way for improved treatments and enhanced patient care. Our review presents recent discoveries regarding the pathogenesis of MS, highlights their genetic implications, and proposes an insightful approach for engaging with newer therapeutic targets in effectively managing this debilitating condition.
Collapse
Affiliation(s)
- K Trideva Sastri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Suman Dutta
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - Balamuralidhara V
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - A Ramkishan
- Deputy Drugs Controller (India), Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | | |
Collapse
|
3
|
Peng X, Tang F, Li Y, Bai J, Li L, Zhang L. Combination of BCL-2 inhibitors and immunotherapy: a promising therapeutic strategy for hematological malignancies. Discov Oncol 2024; 15:311. [PMID: 39060763 PMCID: PMC11282050 DOI: 10.1007/s12672-024-01161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The rapid development of high-throughput sequencing in recent years has facilitated great progress in the molecular-targeted therapy of hematological malignancies, including leukemia, lymphoma, and multiple myeloma. BCL-2 inhibitors are among the most important molecular-targeted agents. Immunotherapy for hematologic malignancy has rapidly increased in popularity in recent years and has been proven to improve the overall survival rate. However, few clinical studies have investigated combination therapy with BCL-2 inhibitors and immunotherapies, such as immune molecule-targeted drugs or immune cell adoptive therapy. In this review, we discuss the drug discovery process, current clinical application status, and resistance and tolerance issues associated with BCL-2 inhibitors. We emphasize their important role in regulating the immune system and propose that the combination of BCL-2 inhibitors with immunotherapy may be one of the most promising treatment methods for hematologic malignancies.
Collapse
Affiliation(s)
- Xiaohuan Peng
- Department of Hematology, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Futian Tang
- Key Laboratory of the Digestive Tumor of Gansu Province, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yanhong Li
- Key Laboratory of the Hematology of Gansu Province, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jun Bai
- Key Laboratory of the Hematology of Gansu Province, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China.
- Key Laboratory of the Hematology of Gansu Province, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China.
| | - Liansheng Zhang
- Department of Hematology, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China.
- Key Laboratory of the Hematology of Gansu Province, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
4
|
Xu M, Xu Y, Yuan L, Shang D, Chen R, Liu S, Li Y, Liu A, Liu R, Wang Q, Ding T, Xie Q, Hao CM. Case report: BTK inhibitors is effective in type II mixed cryoglobulinemia with wild-type MyD88. Front Immunol 2024; 15:1390958. [PMID: 38765016 PMCID: PMC11099222 DOI: 10.3389/fimmu.2024.1390958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
This study presents two cases of type II mixed cryoglobulinemia. One case is essential, while the other is presumably associated with hepatitis B virus (HBV) infection. Both patients tested positive for monoclonal IgMκ, but negative for MyD88 mutation. They showed resistance to rituximab combined with a glucosteroid regimen, but responded positively to BTK inhibitors. These cases highlight the remarkable effectiveness of BTK inhibitors in treating refractory type II cryoglobulinemia without MyD88 mutation. The first patient achieved rapid complete remission of nephrotic syndrome within one month of starting ibrutinib, along with a significant reduction in cryoglobulin levels and abnormal clonal cells. The second patient had a rapid disappearance of rash within three days and accelerated wound healing within one week of initiating orelabrutinib, accompanied by a reduction in C-reactive protein. However, there was no reduction in cryoglobulin levels during the 12-month follow-up. These findings suggest varied mechanisms of action of BTK inhibitors in type II cryoglobulinemia through different mechanisms.
Collapse
Affiliation(s)
- Mingyue Xu
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yunyu Xu
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Yuan
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Da Shang
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiying Chen
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaojun Liu
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Li
- Division of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Aiping Liu
- Clinical Laboratory of Huashan Hospital, Fudan University, Shanghai, China
| | - Ruilai Liu
- Clinical Laboratory of Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Wang
- Division of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianling Ding
- Division of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qionghong Xie
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
He D, Jiao Y, Xu J, Luo J, Cui Y, Han X, Zhao H. mmu-miR-185 regulates osteoclasts differentiation and migration by targeting Btk. J Gene Med 2024; 26:e3687. [PMID: 38690623 DOI: 10.1002/jgm.3687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Bones undergo a constant remodeling, a process involving osteoclast-mediated bone resorption and osteoblast-mediated bone formation, crucial for maintaining healthy bone mass. We previously observed that miR-185 depletion may promote bone formation by regulating Bgn expression and the BMP/Smad signaling pathway. However, the effects of miR-185-5p on the osteoclasts and bone remodeling have not been elucidated, warranting further exploration. METHODS Tartrate-resistant acid phosphatase staining was utilized to assess the differentiation ability of bone marrow mononuclear macrophages (BMMs) from mmu-miR-185 gene knockout (KO) mice and wild-type (WT) mice. A reverse transcriptase-quantitative PCR was conducted to compare differences in miR-185-5p and osteoclast marker molecules, including Trap, Dcstamp, Ctsk and Nfatc1, between the KO group and WT group BMMs. Western blot analysis was employed to observe the expression of osteoclast marker molecules. A cell-counting kit-8 was used to analyze cell proliferation ability. Transwell experiments were conducted to detect cell migration. Dual-luciferase reporter assays were employed to confirm whether Btk is a downstream target gene of miR-185-5p. RESULTS miR-185 depletion promoted osteoclast differentiation in bone marrow-derived monocytes/macrophages. Overexpression of miR-185-5p in RAW264.7 cells inhibited differentiation and migration of osteoclasts. Furthermore, Btk was identified as a downstream target gene of miR-185-5p, suggesting that miR-185-5p may inhibit osteoclast differentiation and migration by targeting Btk. CONCLUSIONS miR-185 regulates osteoclasts differentiation, with overexpression of miR-185-5p inhibiting osteoclast differentiation and migration in vitro. Additionally, miR-185-5p may modulate osteoclastic differentiation and migration by regulating Btk expression.
Collapse
Affiliation(s)
- Dan He
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Yueying Jiao
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Jian Xu
- Department of Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Junjie Luo
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Yaqi Cui
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Xiabing Han
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Hongshan Zhao
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Kawata K, Hatano S, Baba A, Imabayashi K, Baba Y. Bruton's tyrosine kinase inhibition limits endotoxic shock by suppressing IL-6 production by marginal zone B cells in mice. Front Immunol 2024; 15:1388947. [PMID: 38638439 PMCID: PMC11024364 DOI: 10.3389/fimmu.2024.1388947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Sepsis is a systemic inflammatory response to a severe, life-threatening infection with organ dysfunction. Although there is no effective treatment for this fatal illness, a deeper understanding of the pathophysiological basis of sepsis and its underlying mechanisms could lead to the development of new treatment approaches. Here, we demonstrate that the selective Bruton's tyrosine kinase (Btk) inhibitor acalabrutinib augments survival rates in a lipopolysaccharide (LPS)-induced septic model. Our in vitro and in vivo findings both indicate that acalabrutinib reduces IL-6 production specifically in marginal zone B (MZ B) cells rather than in macrophages. Furthermore, Btk-deficient MZ B cells exhibited suppressed LPS-induced IL-6 production in vitro. Nuclear factor-kappa B (NF-κB) signaling, which is the downstream signaling cascade of Toll-like receptor 4 (TLR4), was also severely attenuated in Btk-deficient MZ B cells. These findings suggest that Btk blockade may prevent sepsis by inhibiting IL-6 production in MZ B cells. In addition, although Btk inhibition may adversely affect B cell maturation and humoral immunity, antibody responses were not impaired when acalabrutinib was administered for a short period after immunization with T-cell-independent (TI) and T-cell-dependent (TD) antigens. In contrast, long-term administration of acalabrutinib slightly impaired humoral immunity. Therefore, these findings suggest that Btk inhibitors may be a potential option for alleviating endotoxic shock without compromising humoral immunity and emphasize the importance of maintaining a delicate balance between immunomodulation and inflammation suppression.
Collapse
Affiliation(s)
| | | | | | | | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Lozinski BM, Ghorbani S, Yong VW. Biology of neurofibrosis with focus on multiple sclerosis. Front Immunol 2024; 15:1370107. [PMID: 38596673 PMCID: PMC11002094 DOI: 10.3389/fimmu.2024.1370107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Tissue damage elicits a wound healing response of inflammation and remodeling aimed at restoring homeostasis. Dysregulation of wound healing leads to accumulation of effector cells and extracellular matrix (ECM) components, collectively termed fibrosis, which impairs organ functions. Fibrosis of the central nervous system, neurofibrosis, is a major contributor to the lack of neural regeneration and it involves fibroblasts, microglia/macrophages and astrocytes, and their deposited ECM. Neurofibrosis occurs commonly across neurological conditions. This review describes processes of wound healing and fibrosis in tissues in general, and in multiple sclerosis in particular, and considers approaches to ameliorate neurofibrosis to enhance neural recovery.
Collapse
Affiliation(s)
| | | | - V. Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Khaparkhuntikar K, Maji I, Gupta SK, Mahajan S, Aalhate M, Sriram A, Gupta U, Guru SK, Kulkarni P, Singh PK. Acalabrutinib as a novel hope for the treatment of breast and lung cancer: an in-silico proof of concept. J Biomol Struct Dyn 2024; 42:1469-1484. [PMID: 37272883 DOI: 10.1080/07391102.2023.2217923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/01/2023] [Indexed: 06/06/2023]
Abstract
Drug repurposing is proved to be a groundbreaking concept in the field of cancer research, accelerating the pace of de novo drug discovery by investigating the anti-cancer activity of the already approved drugs. On the other hand, it got highly benefitted from the advancement in the in-silico tools and techniques, which are used to build up the initial "proof of concept" based on the drug-target interaction. Acalabrutinib (ACL) is a well-known drug for the treatment of hematological malignancies. But, the therapeutic ability of ACL against solid tumors is still unexplored. Thereby, the activity of ACL on breast cancer and lung cancer was evaluated utilizing different computational methods. A series of proteins such as VEGFR1, ALK, BCL2, CXCR-4, mTOR, AKT, PI3K, HER-2, and Estrogen receptors were selected based on their involvement in the progression of the breast as well as lung cancer. A multi-level computational study starting from protein-ligand docking to molecular dynamic (MD) simulations were performed to detect the binding potential of ACL towards the selected proteins. Results of the study led to the identification of ACL as a ligand that showed a high docking score and binding energy with HER-2, mTOR, and VEGFR-1 successively. Whereas, the MD simulations study has also shown good docked complex stability of ACL with HER2 and VEGFR1. Our findings suggest that interaction with those receptors can lead to preventive action on both breast and lung cancer, thus it can be concluded that ACL could be a potential molecule for the same purpose.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kedar Khaparkhuntikar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sunil Kumar Gupta
- Department of Bioinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anitha Sriram
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Prachi Kulkarni
- Department of Physiology, Shri B. M. Patil Medical College, Hospital & Research Centre BLDE (Deemed to be University), Vijayapura, Karnataka, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
9
|
Welch BM, Manso BA, Gwin KA, Lothert PK, Parikh SA, Kay NE, Medina KL. Comparison of the blood immune repertoire with clinical features in chronic lymphocytic leukemia patients treated with chemoimmunotherapy or ibrutinib. Front Oncol 2023; 13:1302038. [PMID: 38111528 PMCID: PMC10725910 DOI: 10.3389/fonc.2023.1302038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of CD19+ CD5+ clonal B lymphocytes in the blood, bone marrow, and peripheral lymphoid organs. Treatment options for patients range from historical chemoimmunotherapy (CIT) to small molecule inhibitors targeting pro-survival pathways in leukemic B cells, such as the Bruton's tyrosine kinase inhibitor ibrutinib (IBR). Using biobanked blood samples obtained pre-therapy and at standard response evaluation timepoints, we performed an in-depth evaluation of the blood innate and adaptive immune compartments between pentostatin-based CIT and IBR and looked for correlations with clinical sequelae. CD4+ conventional T cells and CD8+ cytotoxic T cells responded similarly to CIT and IBR, although exhaustion status differed. Both treatments dramatically increased the prevalence and functional status of monocyte, dendritic cell, and natural killer cell subsets. As expected, both regimens reduced clonal B cell levels however, we observed no substantial recovery of normal B cells. Although improvements in most immune subsets were observed with CIT and IBR at response evaluation, both patient groups remained susceptible to infections and secondary malignancies during the study.
Collapse
Affiliation(s)
- Baustin M. Welch
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Bryce A. Manso
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Kimberly A. Gwin
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Petra K. Lothert
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Sameer A. Parikh
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Neil E. Kay
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Kay L. Medina
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
10
|
Role of myeloid-derived suppressor cells in tumor recurrence. Cancer Metastasis Rev 2023; 42:113-142. [PMID: 36640224 PMCID: PMC9840433 DOI: 10.1007/s10555-023-10079-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
The establishment of primary tumor cells in distant organs, termed metastasis, is the principal cause of cancer mortality and is a crucial therapeutic target in oncology. Thus, it is critical to establish a better understanding of metastatic progression for the future development of improved therapeutic approaches. Indeed, such development requires insight into the timing of tumor cell dissemination and seeding of distant organs resulting in occult lesions. Following dissemination of tumor cells from the primary tumor, they can reside in niches in distant organs for years or decades, following which they can emerge as an overt metastasis. This timeline of metastatic dormancy is regulated by interactions between the tumor, its microenvironment, angiogenesis, and tumor antigen-specific T-cell responses. An improved understanding of the mechanisms and interactions responsible for immune evasion and tumor cell release from dormancy would help identify and aid in the development of novel targeted therapeutics. One such mediator of dormancy is myeloid derived suppressor cells (MDSC), whose number in the peripheral blood (PB) or infiltrating tumors has been associated with cancer stage, grade, patient survival, and metastasis in a broad range of tumor pathologies. Thus, extensive studies have revealed a role for MDSCs in tumor escape from adoptive and innate immune responses, facilitating tumor progression and metastasis; however, few studies have considered their role in dormancy. We have posited that MDSCs may regulate disseminated tumor cells resulting in resurgence of senescent tumor cells. In this review, we discuss clinical studies that address mechanisms of tumor recurrence including from dormancy, the role of MDSCs in their escape from dormancy during recurrence, the development of occult metastases, and the potential for MDSC inhibition as an approach to prolong the survival of patients with advanced malignancies. We stress that assessing the impact of therapies on MDSCs versus other cellular targets is challenging within the multimodality interventions required clinically.
Collapse
|
11
|
Sonowal H, Rice WG, Howell SB. Luxeptinib interferes with LYN-mediated activation of SYK and modulates BCR signaling in lymphoma. PLoS One 2023; 18:e0277003. [PMID: 36888611 PMCID: PMC9994718 DOI: 10.1371/journal.pone.0277003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/19/2023] [Indexed: 03/09/2023] Open
Abstract
Luxeptinib (LUX) is a novel oral kinase inhibitor that inhibits FLT3 and also interferes with signaling from the BCR and cell surface TLRs, as well as activation of the NLRP3 inflammasome. Ongoing clinical trials are testing its activity in patients with lymphoma and AML. This study sought to refine understanding of how LUX modulates the earliest steps downstream of the BCR following its activation by anti-IgM in lymphoma cells in comparison to ibrutinib (IB). LUX decreased anti-IgM-induced phosphorylation of BTK at Y551 and Y223 but its ability to reduce phosphorylation of kinases further upstream suggests that BTK is not the primary target. LUX was more effective than IB at reducing both steady state and anti-IgM-induced phosphorylation of LYN and SYK. LUX decreased phosphorylation of SYK (Y525/Y526) and BLNK (Y96) which are necessary regulators of BTK activation. Further upstream, LUX blunted the anti-IgM-induced phosphorylation of LYN (Y397) whose activation is required for phosphorylation of SYK and BLNK. These results indicate that LUX is targeting autophosphorylation of LYN or a step further upstream of LYN in the cascade of signal generated by BCR and that it does so more effectively than IB. The fact that LUX has activity at or upstream of LYN is important because LYN is an essential signaling intermediate in multiple cellular signaling processes that regulate growth, differentiation, apoptosis, immunoregulation, migration and EMT in normal and cancer cells.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Moores Cancer Center, Division of Hematology, Department of Medicine, University of California, San Diego, San Diego, California, United States of America
| | - William G. Rice
- Aptose Biosciences, Inc., San Diego, California, United States of America
| | - Stephen B. Howell
- Moores Cancer Center, Division of Hematology, Department of Medicine, University of California, San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Tannoury M, Garnier D, Susin SA, Bauvois B. Current Status of Novel Agents for the Treatment of B Cell Malignancies: What's Coming Next? Cancers (Basel) 2022; 14:6026. [PMID: 36551511 PMCID: PMC9775488 DOI: 10.3390/cancers14246026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Resistance to death is one of the hallmarks of human B cell malignancies and often contributes to the lack of a lasting response to today's commonly used treatments. Drug discovery approaches designed to activate the death machinery have generated a large number of inhibitors of anti-apoptotic proteins from the B-cell lymphoma/leukemia 2 family and the B-cell receptor (BCR) signaling pathway. Orally administered small-molecule inhibitors of Bcl-2 protein and BCR partners (e.g., Bruton's tyrosine kinase and phosphatidylinositol-3 kinase) have already been included (as monotherapies or combination therapies) in the standard of care for selected B cell malignancies. Agonistic monoclonal antibodies and their derivatives (antibody-drug conjugates, antibody-radioisotope conjugates, bispecific T cell engagers, and chimeric antigen receptor-modified T cells) targeting tumor-associated antigens (TAAs, such as CD19, CD20, CD22, and CD38) are indicated for treatment (as monotherapies or combination therapies) of patients with B cell tumors. However, given that some patients are either refractory to current therapies or relapse after treatment, novel therapeutic strategies are needed. Here, we review current strategies for managing B cell malignancies, with a focus on the ongoing clinical development of more effective, selective drugs targeting these molecules, as well as other TAAs and signaling proteins. The observed impact of metabolic reprogramming on B cell pathophysiology highlights the promise of targeting metabolic checkpoints in the treatment of these disorders.
Collapse
Affiliation(s)
| | | | | | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France
| |
Collapse
|
13
|
Aghamajidi A, Farhangnia P, Pashangzadeh S, Damavandi AR, Jafari R. Tumor-promoting myeloid cells in the pathogenesis of human oncoviruses: potential targets for immunotherapy. Cancer Cell Int 2022; 22:327. [PMID: 36303138 PMCID: PMC9608890 DOI: 10.1186/s12935-022-02727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Oncoviruses, known as cancer-causing viruses, are typically involved in cancer progression by inhibiting tumor suppressor pathways and uncontrolled cell division. Myeloid cells are the most frequent populations recruited to the tumor microenvironment (TME) and play a critical role in cancer development and metastasis of malignant tumors. Tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumor-associated dendritic cells (TADCs), and tumor-associated neutrophils (TANs) exert different states from anti-tumorigenic to pro-tumorigenic phenotypes in TME. Although their role in the anti-tumorigenic state is well introduced, their opposing roles, pro-tumorigenic activities, such as anti-inflammatory cytokine and reactive oxygen species (ROS) production, should not be ignored since they result in inflammation, tumor progression, angiogenesis, and evasion. Since the blockade of these cells had promising results against cancer progression, their inhibition might be helpful in various cancer immunotherapies. This review highlights the promoting role of tumor-associated myeloid cells (TAMCs) in the pathophysiology of human virus tumorigenesis.
Collapse
Affiliation(s)
- Azin Aghamajidi
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pooya Farhangnia
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- grid.411705.60000 0001 0166 0922Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmasoud Rayati Damavandi
- grid.411705.60000 0001 0166 0922Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- grid.412763.50000 0004 0442 8645Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
14
|
Tribondeau A, Sachs LM, Buisine N. Tetrabromobisphenol A effects on differentiating mouse embryonic stem cells reveals unexpected impact on immune system. Front Genet 2022; 13:996826. [PMID: 36386828 PMCID: PMC9640982 DOI: 10.3389/fgene.2022.996826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/06/2022] [Indexed: 07/27/2023] Open
Abstract
Tetrabromobisphenol A (TBBPA) is a potent flame retardant used in numerous appliances and a major pollutant in households and ecosystems. In vertebrates, it was shown to affect neurodevelopment, the hypothalamic-pituitary-gonadal axis and thyroid signaling, but its toxicity and modes of actions are still a matter of debate. The molecular phenotype resulting from exposure to TBBPA is only poorly described, especially at the level of transcriptome reprogramming, which further limits our understanding of its molecular toxicity. In this work, we combined functional genomics and system biology to provide a system-wide description of the transcriptomic alterations induced by TBBPA acting on differentiating mESCs, and provide potential new toxicity markers. We found that TBBPA-induced transcriptome reprogramming affect a large collection of genes loosely connected within the network of biological pathways, indicating widespread interferences on biological processes. We also found two hotspots of action: at the level of neuronal differentiation markers, and surprisingly, at the level of immune system functions, which has been largely overlooked until now. This effect is particularly strong, as terminal differentiation markers of both myeloid and lymphoid lineages are strongly reduced: the membrane T cell receptor (Cd79a, Cd79b), interleukin seven receptor (Il7r), macrophages cytokine receptor (Csf1r), monocyte chemokine receptor (Ccr2). Also, the high affinity IgE receptor (Fcer1g), a key mediator of allergic reactions, is strongly induced. Thus, the molecular imbalance induce by TBBPA may be stronger than initially realized.
Collapse
|
15
|
Leitinger DE, Kaplan DZ. BTK Inhibitors in Haematology: Beyond B Cell Malignancies. Transfus Med Rev 2022; 36:239-245. [DOI: 10.1016/j.tmrv.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/25/2022] [Indexed: 11/27/2022]
|
16
|
Chen Z, DiPaolo RJ. Editorial: Autoimmunity, Infection and Cancer, an Inflammatory Relationship With Intimate Implication to Cancer Prevention and Immunotherapy. Front Cell Dev Biol 2022; 10:855191. [PMID: 35223861 PMCID: PMC8873587 DOI: 10.3389/fcell.2022.855191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhibin Chen
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
- *Correspondence: Zhibin Chen, ; Richard J. DiPaolo,
| | - Richard J. DiPaolo
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- *Correspondence: Zhibin Chen, ; Richard J. DiPaolo,
| |
Collapse
|
17
|
Ibrutinib in Refractory or Relapsing Primary Central Nervous System Lymphoma: A Systematic Review. Neurol Int 2022; 14:99-108. [PMID: 35076567 PMCID: PMC8788490 DOI: 10.3390/neurolint14010009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 01/05/2023] Open
Abstract
Primary Central Nervous System Lymphoma (PCNSL) is a rare variant of Non-Hodgkin Lymphoma (NHL) representing 1–2% of all NHL cases. PCNSL is defined as a lymphoma that occurs in the brain, spinal cord, leptomeninges, or eyes. Efforts to treat PCNSL by traditional chemotherapy and radiotherapy have generally been unsuccessful as a significant proportion of patients have frequent relapses or are refractory to treatment. The prognosis of patients with Refractory or Relapsed (R/R) PCNSL is abysmal. The optimal treatment for R/R PCNSL is poorly defined as there are only a limited number of studies in this setting. Several studies have recently shown that ibrutinib, a Bruton tyrosine kinase (BTK) inhibitor, has promising results in the treatment of R/R PCNSL. However, these are preliminary studies with a limited sample size. In this systematic review, we explored and critically appraised the evidence about the efficacy of the novel agent ibrutinib in treating R/R PCNSL.
Collapse
|