1
|
Yin C, Zhang H, Du J, Zhu Y, Zhu H, Yue H. Artificial intelligence in imaging for liver disease diagnosis. Front Med (Lausanne) 2025; 12:1591523. [PMID: 40351457 PMCID: PMC12062035 DOI: 10.3389/fmed.2025.1591523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
Liver diseases, including hepatitis, non-alcoholic fatty liver disease (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC), remain a major global health concern, with early and accurate diagnosis being essential for effective management. Imaging modalities such as ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI) play a crucial role in non-invasive diagnosis, but their sensitivity and diagnostic accuracy can be limited. Recent advancements in artificial intelligence (AI) have improved imaging-based liver disease assessment by enhancing pattern recognition, automating fibrosis and steatosis quantification, and aiding in HCC detection. AI-driven imaging techniques have shown promise in fibrosis staging through US, CT, MRI, and elastography, reducing the reliance on invasive liver biopsy. For liver steatosis, AI-assisted imaging methods have improved sensitivity and grading consistency, while in HCC detection and characterization, AI models have enhanced lesion identification, classification, and risk stratification across imaging modalities. The growing integration of AI into liver imaging is reshaping diagnostic workflows and has the potential to improve accuracy, efficiency, and clinical decision-making. This review provides an overview of AI applications in liver imaging, focusing on their clinical utility and implications for the future of liver disease diagnosis.
Collapse
Affiliation(s)
- Chenglong Yin
- Department of Gastroenterology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
- Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, China
| | | | - Jin Du
- Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, China
- Department of Science and Education, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Yingling Zhu
- Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, China
- Department of Science and Education, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Hua Zhu
- Department of Gastroenterology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
- Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, China
| | - Hongqin Yue
- Department of Gastroenterology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
- Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, China
| |
Collapse
|
2
|
Ren L, Chen DB, Yan X, She S, Yang Y, Zhang X, Liao W, Chen H. Bridging the Gap Between Imaging and Molecular Characterization: Current Understanding of Radiomics and Radiogenomics in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:2359-2372. [PMID: 39619602 PMCID: PMC11608547 DOI: 10.2147/jhc.s423549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignancy worldwide and the third leading cause of cancer-related deaths. Imaging plays a crucial role in the screening, diagnosis, and monitoring of HCC; however, the potential mechanism regarding phenotypes or molecular subtyping remains underexplored. Radiomics significantly expands the selection of features available by extracting quantitative features from imaging data. Radiogenomics bridges the gap between imaging and genetic/transcriptomic information by associating imaging features with critical genes and pathways, thereby providing biological annotations to these features. Despite challenges in interpreting these connections, assessing their universality, and considering the diversity in HCC etiology and genetic information across different populations, radiomics and radiogenomics offer new perspectives for precision treatment in HCC. This article provides an up-to-date summary of the advancements in radiomics and radiogenomics throughout the HCC care continuum, focusing on the clinical applications, advantages, and limitations of current techniques and offering prospects. Future research should aim to overcome these challenges to improve the prognosis of HCC patients and leverage imaging information for patient benefit.
Collapse
Affiliation(s)
- Liying Ren
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Dong Bo Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Xuanzhi Yan
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People’s Republic of China
| | - Shaoping She
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Yao Yang
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Xue Zhang
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People’s Republic of China
| | - Hongsong Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| |
Collapse
|
3
|
Hu Y, Zhang L, Qi Q, Ren S, Wang S, Yang L, Zhang J, Liu Y, Li X, Cai X, Duan S, Zhang L. Machine learning-based ultrasomics for predicting response to tyrosine kinase inhibitor in combination with anti-PD-1 antibody immunotherapy in hepatocellular carcinoma: a two-center study. Front Oncol 2024; 14:1464735. [PMID: 39610931 PMCID: PMC11602396 DOI: 10.3389/fonc.2024.1464735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Objective The objective of this study is to build and verify the performance of machine learning-based ultrasomics in predicting the objective response to combination therapy involving a tyrosine kinase inhibitor (TKI) and anti-PD-1 antibody for individuals with unresectable hepatocellular carcinoma (HCC). Radiomic features can reflect the internal heterogeneity of the tumor and changes in its microenvironment. These features are closely related to pathological changes observed in histology, such as cellular necrosis and fibrosis, providing crucial non-invasive biomarkers to predict patient treatment response and prognosis. Methods Clinical, pathological, and pre-treatment ultrasound image data of 134 patients with recurrent unresectable or advanced HCC who treated with a combination of TKI and anti-PD-1 antibody therapy at Henan Provincial People's Hospital and the First Affiliated Hospital of Zhengzhou University between December 2019 and November 2023 were collected and retrospectively analyzed. Using stratified random sampling, patients from the two hospitals were assigned to training cohort (n = 93) and validation cohort (n = 41) at a 7:3 ratio. After preprocessing the ultrasound images, regions of interest (ROIs) were delineated. Ultrasomic features were extracted from the images for dimensionality reduction and feature selection. By utilizing the extreme gradient boosting (XGBoost) algorithm, three models were developed: a clinical model, an ultrasomic model, and a combined model. By analyzing the area under the receiver operating characteristic (ROC) curve (AUC), specificity, sensitivity, and accuracy, the predicted performance of the models was evaluated. In addition, we identified the optimal cutoff for the radiomic score using the Youden index and applied it to stratify patients. The Kaplan-Meier (KM) survival curves were used to examine differences in progression-free survival (PFS) between the two groups. Results Twenty ultrasomic features were selected for the construction of the ultrasomic model. The AUC of the ultrasomic model for the training cohort and validation cohort were 0.999 (95%CI: 0.997-1.000) and 0.828 (95%CI: 0.690-0.966), which compared significant favorably to those of the clinical model [AUC = 0.876 (95%CI: 0.815-0.936) for the training cohort, 0.766 (95%CI: 0.597-0.935) for the validation cohort]. Compared to the ultrasomic model, the combined model demonstrated comparable performance within the training cohort (AUC = 0.977, 95%CI: 0.957-0.998) but higher performance in the validation cohort (AUC = 0.881, 95%CI: 0.758-1.000). However, there was no statistically significant difference (p > 0.05). Furthermore, ultrasomic features were associated with PFS, which was significantly different between patients with radiomic scores (Rad-score) greater than 0.057 and those with Rad-score less than 0.057 in both the training (HR = 0.488, 95% CI: 0.299-0.796, p = 0.003) and validation cohorts (HR = 0.451, 95% CI: 0.229-0.887, p = 0.02). Conclusion The ultrasomic features demonstrates excellent performance in accurately predicting the objective response to TKI in combination with anti-PD-1 antibody immunotherapy among patients with unresectable or advanced HCC.
Collapse
Affiliation(s)
- Yiwen Hu
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Linlin Zhang
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qinghua Qi
- Department of Ultrasound, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanshan Ren
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Simeng Wang
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Lanling Yang
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Juan Zhang
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yuanyuan Liu
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xiaoxiao Li
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xiguo Cai
- Henan Rehabilitation Clinical Medical Research Center, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Shaobo Duan
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Key Laboratory of Ultrasound Imaging and Artificial Intelligence in Medicine, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Health Management, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Lianzhong Zhang
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Rehabilitation Clinical Medical Research Center, Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Key Laboratory of Ultrasound Imaging and Artificial Intelligence in Medicine, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
4
|
Xu Y, Zhang B, Zhou F, Yi YP, Yang XL, Ouyang X, Hu H. Development of machine learning-based personalized predictive models for risk evaluation of hepatocellular carcinoma in hepatitis B virus-related cirrhosis patients with low levels of serum alpha-fetoprotein. Ann Hepatol 2024; 29:101540. [PMID: 39151891 DOI: 10.1016/j.aohep.2024.101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/31/2024] [Accepted: 06/05/2024] [Indexed: 08/19/2024]
Abstract
INTRODUCTION AND OBJECTIVES The increasing incidence of hepatocellular carcinoma (HCC) in China is an urgent issue, necessitating early diagnosis and treatment. This study aimed to develop personalized predictive models by combining machine learning (ML) technology with a demographic, medical history, and noninvasive biomarker data. These models can enhance the decision-making capabilities of physicians for HCC in hepatitis B virus (HBV)-related cirrhosis patients with low serum alpha-fetoprotein (AFP) levels. PATIENTS AND METHODS A total of 6,980 patients treated between January 2012 and December 2018 were included. Pre-treatment laboratory tests and clinical data were obtained. The significant risk factors for HCC were identified, and the relative risk of each variable affecting its diagnosis was calculated using ML and univariate regression analysis. The data set was then randomly partitioned into validation (20 %) and training sets (80 %) to develop the ML models. RESULTS Twelve independent risk factors for HCC were identified using Gaussian naïve Bayes, extreme gradient boosting (XGBoost), random forest, and least absolute shrinkage and selection operation regression models. Multivariate analysis revealed that male sex, age >60 years, alkaline phosphate >150 U/L, AFP >25 ng/mL, carcinoembryonic antigen >5 ng/mL, and fibrinogen >4 g/L were the risk factors, whereas hypertension, calcium <2.25 mmol/L, potassium ≤3.5 mmol/L, direct bilirubin >6.8 μmol/L, hemoglobin <110 g/L, and glutamic-pyruvic transaminase >40 U/L were the protective factors in HCC patients. Based on these factors, a nomogram was constructed, showing an area under the curve (AUC) of 0.746 (sensitivity = 0.710, specificity=0.646), which was significantly higher than AFP AUC of 0.658 (sensitivity = 0.462, specificity=0.766). Compared with several ML algorithms, the XGBoost model had an AUC of 0.832 (sensitivity = 0.745, specificity=0.766) and an independent validation AUC of 0.829 (sensitivity = 0.766, specificity = 0.737), making it the top-performing model in both sets. The external validation results have proven the accuracy of the XGBoost model. CONCLUSIONS The proposed XGBoost demonstrated a promising ability for individualized prediction of HCC in HBV-related cirrhosis patients with low-level AFP.
Collapse
Affiliation(s)
- Yuan Xu
- Medical Big Data Center, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Bei Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Fan Zhou
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Ying-Ping Yi
- Medical Big Data Center, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Xin-Lei Yang
- Medical Big Data Center, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Xiao Ouyang
- Quiclinic Technology Co., Ltd., Nanchang, PR China
| | - Hui Hu
- Medical Big Data Center, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China.
| |
Collapse
|
5
|
Wang L, Fatemi M, Alizad A. Artificial intelligence techniques in liver cancer. Front Oncol 2024; 14:1415859. [PMID: 39290245 PMCID: PMC11405163 DOI: 10.3389/fonc.2024.1415859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular Carcinoma (HCC), the most common primary liver cancer, is a significant contributor to worldwide cancer-related deaths. Various medical imaging techniques, including computed tomography, magnetic resonance imaging, and ultrasound, play a crucial role in accurately evaluating HCC and formulating effective treatment plans. Artificial Intelligence (AI) technologies have demonstrated potential in supporting physicians by providing more accurate and consistent medical diagnoses. Recent advancements have led to the development of AI-based multi-modal prediction systems. These systems integrate medical imaging with other modalities, such as electronic health record reports and clinical parameters, to enhance the accuracy of predicting biological characteristics and prognosis, including those associated with HCC. These multi-modal prediction systems pave the way for predicting the response to transarterial chemoembolization and microvascular invasion treatments and can assist clinicians in identifying the optimal patients with HCC who could benefit from interventional therapy. This paper provides an overview of the latest AI-based medical imaging models developed for diagnosing and predicting HCC. It also explores the challenges and potential future directions related to the clinical application of AI techniques.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Engineering, School of Technology, Reykjavık University, Reykjavík, Iceland
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
6
|
Su HZ, Hong LC, Su YM, Chen XS, Zhang ZB, Zhang XD. A Nomogram Based on Conventional Ultrasound Radiomics for Differentiating Between Radial Scar and Invasive Ductal Carcinoma of the Breast. Ultrasound Q 2024; 40:e00685. [PMID: 38889436 DOI: 10.1097/ruq.0000000000000685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
ABSTRACT We aimed to develop and validate a nomogram based on conventional ultrasound (CUS) radiomics model to differentiate radial scar (RS) from invasive ductal carcinoma (IDC) of the breast. In total, 208 patients with histopathologically diagnosed RS or IDC of the breast were enrolled. They were randomly divided in a 7:3 ratio into a training cohort (n = 145) and a validation cohort (n = 63). Overall, 1316 radiomics features were extracted from CUS images. Then a radiomics score was constructed by filtering unstable features and using the maximum relevance minimum redundancy algorithm and the least absolute shrinkage and selection operator logistic regression algorithm. Two models were developed using data from the training cohort: one using clinical and CUS characteristics (Clin + CUS model) and one using clinical information, CUS characteristics, and the radiomics score (radiomics model). The usefulness of nomogram was assessed based on their differentiating ability and clinical utility. Nine features from CUS images were used to build the radiomics score. The radiomics nomogram showed a favorable predictive value for differentiating RS from IDC, with areas under the curve of 0.953 and 0.922 for the training and validation cohorts, respectively. Decision curve analysis indicated that this model outperformed the Clin + CUS model and the radiomics score in terms of clinical usefulness. The results of this study may provide a novel method for noninvasively distinguish RS from IDC.
Collapse
Affiliation(s)
- Huan-Zhong Su
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Long-Cheng Hong
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | | | - Xiao-Shuang Chen
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zuo-Bing Zhang
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao-Dong Zhang
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Salehi MA, Harandi H, Mohammadi S, Shahrabi Farahani M, Shojaei S, Saleh RR. Diagnostic Performance of Artificial Intelligence in Detection of Hepatocellular Carcinoma: A Meta-analysis. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1297-1311. [PMID: 38438694 PMCID: PMC11300422 DOI: 10.1007/s10278-024-01058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Due to the increasing interest in the use of artificial intelligence (AI) algorithms in hepatocellular carcinoma detection, we performed a systematic review and meta-analysis to pool the data on diagnostic performance metrics of AI and to compare them with clinicians' performance. A search in PubMed and Scopus was performed in January 2024 to find studies that evaluated and/or validated an AI algorithm for the detection of HCC. We performed a meta-analysis to pool the data on the metrics of diagnostic performance. Subgroup analysis based on the modality of imaging and meta-regression based on multiple parameters were performed to find potential sources of heterogeneity. The risk of bias was assessed using Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) and Prediction Model Study Risk of Bias Assessment Tool (PROBAST) reporting guidelines. Out of 3177 studies screened, 44 eligible studies were included. The pooled sensitivity and specificity for internally validated AI algorithms were 84% (95% CI: 81,87) and 92% (95% CI: 90,94), respectively. Externally validated AI algorithms had a pooled sensitivity of 85% (95% CI: 78,89) and specificity of 84% (95% CI: 72,91). When clinicians were internally validated, their pooled sensitivity was 70% (95% CI: 60,78), while their pooled specificity was 85% (95% CI: 77,90). This study implies that AI can perform as a diagnostic supplement for clinicians and radiologists by screening images and highlighting regions of interest, thus improving workflow.
Collapse
Affiliation(s)
| | - Hamid Harandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Shayan Shojaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramy R Saleh
- Department of Oncology, McGill University, Montreal, QC, H3A 0G4, Canada
- Division of Medical Oncology, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| |
Collapse
|
8
|
Cappuccio M, Bianco P, Rotondo M, Spiezia S, D'Ambrosio M, Menegon Tasselli F, Guerra G, Avella P. Current use of artificial intelligence in the diagnosis and management of acute appendicitis. Minerva Surg 2024; 79:326-338. [PMID: 38477067 DOI: 10.23736/s2724-5691.23.10156-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
INTRODUCTION Acute appendicitis is a common and time-sensitive surgical emergency, requiring rapid and accurate diagnosis and management to prevent complications. Artificial intelligence (AI) has emerged as a transformative tool in healthcare, offering significant potential to improve the diagnosis and management of acute appendicitis. This review provides an overview of the evolving role of AI in the diagnosis and management of acute appendicitis, highlighting its benefits, challenges, and future perspectives. EVIDENCE ACQUISITION We performed a literature search on articles published from 2018 to September 2023. We included only original articles. EVIDENCE SYNTHESIS Overall, 121 studies were examined. We included 32 studies: 23 studies addressed the diagnosis, five the differentiation between complicated and uncomplicated appendicitis, and 4 studies the management of acute appendicitis. CONCLUSIONS AI is poised to revolutionize the diagnosis and management of acute appendicitis by improving accuracy, speed and consistency. It could potentially reduce healthcare costs. As AI technologies continue to evolve, further research and collaboration are needed to fully realize their potential in the diagnosis and management of acute appendicitis.
Collapse
Affiliation(s)
- Micaela Cappuccio
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Paolo Bianco
- Hepatobiliary and Pancreatic Surgery Unit, Pineta Grande Hospital, Castel Volturno, Caserta, Italy
| | - Marco Rotondo
- V. Tiberio Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Salvatore Spiezia
- V. Tiberio Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Marco D'Ambrosio
- V. Tiberio Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Germano Guerra
- V. Tiberio Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Pasquale Avella
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy -
- Hepatobiliary and Pancreatic Surgery Unit, Pineta Grande Hospital, Castel Volturno, Caserta, Italy
| |
Collapse
|
9
|
Wang S, Wang X, Yin X, Lv X, Cai J. Differentiating HCC from ICC and prediction of ICC grade based on MRI deep-radiomics: Using lesions and their extended regions. Phys Med 2024; 120:103322. [PMID: 38452430 DOI: 10.1016/j.ejmp.2024.103322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 01/29/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024] Open
Abstract
PURPOSE This study aimed to evaluate the ability of MRI-based intratumoral and peritumoral radiomics features of liver tumors to differentiate between hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) and to predict ICC differentiation. METHODS This study retrospectively collected 87 HCC patients and 75 ICC patients who were confirmed pathologically. The standard region of interest (ROI) of the lesion drawn by the radiologist manually shrank inward and expanded outward to form multiple ROI extended regions. A three-step feature selection method was used to select important radiomics features and convolution features from extended regions. The predictive performance of several machine learning classifiers on dominant feature sets was compared. The extended region performance was assessed by area under the curve (AUC), specificity, sensitivity, F1-score and accuracy. RESULTS The performance of the model is further improved by incorporating convolution features. Compared with the standard ROI, the extended region obtained better prediction performance, among which 6 mm extended region had the best prediction ability (Classification: AUC = 0.96, F1-score = 0.94, Accuracy: 0.94; Grading: AUC = 0.94, F1-score = 0.93, Accuracy = 0.89). CONCLUSION Larger extended region and fusion features can improve tumor predictive performance and have potential value in tumor radiology.
Collapse
Affiliation(s)
- Shuping Wang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; College of Electronic and Information Engineering, Hebei University, Baoding 071002, China
| | - Xuehu Wang
- College of Electronic and Information Engineering, Hebei University, Baoding 071002, China; Research Center of Machine Vision Engineering & Technology of Hebei Province, Baoding 071002, China; Key Laboratory of Digital Medical Engineering of Hebei Province, Baoding 071002, China.
| | - Xiaoping Yin
- Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Xiaoyan Lv
- Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jianming Cai
- Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
10
|
Huang J, Bai X, Qiu Y, He X. Application of AI on cholangiocarcinoma. Front Oncol 2024; 14:1324222. [PMID: 38347839 PMCID: PMC10859478 DOI: 10.3389/fonc.2024.1324222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Cholangiocarcinoma, classified as intrahepatic, perihilar, and extrahepatic, is considered a deadly malignancy of the hepatobiliary system. Most cases of cholangiocarcinoma are asymptomatic. Therefore, early detection of cholangiocarcinoma is significant but still challenging. The routine screening of a tumor lacks specificity and accuracy. With the application of AI, high-risk patients can be easily found by analyzing their clinical characteristics, serum biomarkers, and medical images. Moreover, AI can be used to predict the prognosis including recurrence risk and metastasis. Although they have some limitations, AI algorithms will still significantly improve many aspects of cholangiocarcinoma in the medical field with the development of computing power and technology.
Collapse
Affiliation(s)
| | | | | | - Xiaodong He
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Wu Y, Xia C, Chen J, Qin Q, Ye Z, Song B. Diagnostic performance of magnetic resonance imaging and contrast-enhanced ultrasound in differentiating intrahepatic cholangiocarcinoma from hepatocellular carcinoma: a meta-analysis. Abdom Radiol (NY) 2024; 49:34-48. [PMID: 37823913 DOI: 10.1007/s00261-023-04064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE To compare the diagnostic ability between magnetic resonance imaging (MRI) and contrast-enhanced ultrasound (CEUS) in distinguishing intrahepatic cholangiocarcinoma (ICC) from hepatocellular carcinoma (HCC). METHODS Original studies reporting the diagnostic accuracy of MRI and CEUS in differentiating ICC from HCC were identified in PubMed and EMBASE databases. Histopathological examination was used as the reference standard for tumor diagnosis. Study quality was assessed using QUADAS-2 scale. Data were extracted to calculate the pooled diagnostic sensitivity, specificity, and diagnostic odds ratio (DOR) using a bivariate random-effects model, as well as the area under the curve (AUC). Sensitivity analysis, subgroup analysis, meta-regression, and investigation of publication bias were also performed. RESULTS A total of 26 studies with 28 data subsets (18 on MRI, 10 on CEUS) were included, consisting of 4169 patients with 1422 ICC lesions and 2747 HCC lesions. Most MRI studies were performed at 3T with hepatobiliary agents, and most CEUS studies used SonoVue as the contrast agent. In MRI, the pooled sensitivity, specificity, DOR, and AUC in distinguishing ICC from HCC were 0.81 (0.79, 0.84), 0.90 (0.88, 0.91), 41.47 (24.07, 71.44), and 0.93 (0.90, 0.96), respectively. The pooled sensitivity, specificity, DOR, and AUC of CEUS were 0.88 (0.84, 0.90), 0.80 (0.78, 0.83), 42.06 (12.38, 133.23), and 0.93 (0.87, 0.99), respectively. Subgroup analysis and meta-regression analysis demonstrated significant heterogeneity among the studies associated with the type of contrast agent in MRI studies. No publication bias was found. CONCLUSION Both MRI and CEUS showed excellent diagnostic performance in differentiating ICC from HCC. CEUS showed higher pooled sensitivity and MRI showed higher pooled specificity.
Collapse
Affiliation(s)
- Yingyi Wu
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Jie Chen
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Qin Qin
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Zheng Ye
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China.
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China.
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China.
| |
Collapse
|
12
|
Liu N, Wu Y, Tao Y, Zheng J, Huang X, Yang L, Zhang X. Differentiation of Hepatocellular Carcinoma from Intrahepatic Cholangiocarcinoma through MRI Radiomics. Cancers (Basel) 2023; 15:5373. [PMID: 38001633 PMCID: PMC10670473 DOI: 10.3390/cancers15225373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The purpose of this study was to investigate the efficacy of magnetic resonance imaging (MRI) radiomics in differentiating hepatocellular carcinoma (HCC) from intrahepatic cholangiocarcinoma (ICC). The clinical and MRI data of 129 pathologically confirmed HCC patients and 48 ICC patients treated at the Affiliated Hospital of North Sichuan Medical College between April 2016 and December 2021 were retrospectively analyzed. The patients were randomly divided at a ratio of 7:3 into a training group of 124 patients (90 with HCC and 34 with ICC) and a validation group of 53 patients (39 with HCC and 14 with ICC). Radiomic features were extracted from axial fat suppression T2-weighted imaging (FS-T2WI) and axial arterial-phase (AP) and portal-venous-phase (PVP) dynamic-contrast-enhanced MRI (DCE-MRI) sequences, and the corresponding datasets were generated. The least absolute shrinkage and selection operator (LASSO) method was used to select the best radiomic features. Logistic regression was used to establish radiomic models for each sequence (FS-T2WI, AP and PVP models), a clinical model for optimal clinical variables (C model) and a joint radiomics model (JR model) integrating the radiomics features of all the sequences as well as a radiomics-clinical model combining optimal radiomic features and clinical risk factors (RC model). The performance of each model was evaluated using the area under the receiver operating characteristic curve (AUC). The AUCs of the FS-T2WI, AP, PVP, JR, C and RC models for distinguishing HCC from ICC were 0.693, 0.863, 0.818, 0.914, 0.936 and 0.977 in the training group and 0.690, 0.784, 0.727, 0.802, 0.860 and 0.877 in the validation group, respectively. The results of this study suggest that MRI-based radiomics may help noninvasively differentiate HCC from ICC. The model integrating the radiomics features and clinical risk factors showed a further improvement in performance.
Collapse
Affiliation(s)
- Ning Liu
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
- Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.), Chengdu 610041, China
| | - Yaokun Wu
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| | - Yunyun Tao
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| | - Jing Zheng
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| | - Xiaohua Huang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| | - Xiaoming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| |
Collapse
|
13
|
Li X, Bao H, Shi Y, Zhu W, Peng Z, Yan L, Chen J, Shu X. Machine learning methods for accurately predicting survival and guiding treatment in stage I and II hepatocellular carcinoma. Medicine (Baltimore) 2023; 102:e35892. [PMID: 37960763 PMCID: PMC10637529 DOI: 10.1097/md.0000000000035892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Accurately predicting survival in patients with early hepatocellular carcinoma (HCC) is essential for making informed decisions about treatment and prognosis. Herein, we have developed a machine learning (ML) model that can predict patient survival and guide treatment decisions. We obtained patient demographic information, tumor characteristics, and treatment details from the SEER database. To analyze the data, we employed a Cox proportional hazards (CoxPH) model as well as 3 ML algorithms: neural network multitask logistic regression (N-MLTR), DeepSurv, and random survival forest (RSF). Our evaluation relied on the concordance index (C-index) and Integrated Brier Score (IBS). Additionally, we provided personalized treatment recommendations regarding surgery and chemotherapy choices and validated models' efficacy. A total of 1136 patients with early-stage (I, II) hepatocellular carcinoma (HCC) who underwent liver resection or transplantation were randomly divided into training and validation cohorts at a ratio of 3:7. Feature selection was conducted using Cox regression analyses. The ML models (NMLTR: C-index = 0.6793; DeepSurv: C-index = 0.7028; RSF: C-index = 0.6890) showed better discrimination in predicting survival than the standard CoxPH model (C-index = 0.6696). Patients who received recommended treatments had higher survival rates than those who received unrecommended treatments. ML-based surgery treatment recommendations yielded higher hazard ratios (HRs): NMTLR HR = 0.36 (95% CI: 0.25-0.51, P < .001), DeepSurv HR = 0.34 (95% CI: 0.24-0.49, P < .001), and RSF HR = 0.37 (95% CI: 0.26-0.52, P = <.001). Chemotherapy treatment recommendations were associated with significantly improved survival for DeepSurv (HR: 0.57; 95% CI: 0.4-0.82, P = .002) and RSF (HR: 0.66; 95% CI: 0.46-0.94, P = .020). The ML survival model has the potential to benefit prognostic evaluation and treatment of HCC. This novel analytical approach could provide reliable information on individual survival and treatment recommendations.
Collapse
Affiliation(s)
- Xianguo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haijun Bao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongping Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhong Zhu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zuojie Peng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lizhao Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinhuang Chen
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaogang Shu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Feng S, Wang J, Wang L, Qiu Q, Chen D, Su H, Li X, Xiao Y, Lin C. Current Status and Analysis of Machine Learning in Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:1184-1191. [PMID: 37577233 PMCID: PMC10412715 DOI: 10.14218/jcth.2022.00077s] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 02/21/2023] [Indexed: 07/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common tumor. Although the diagnosis and treatment of HCC have made great progress, the overall prognosis remains poor. As the core component of artificial intelligence, machine learning (ML) has developed rapidly in the past decade. In particular, ML has become widely used in the medical field, and it has helped in the diagnosis and treatment of cancer. Different algorithms of ML have different roles in diagnosis, treatment, and prognosis. This article reviews recent research, explains the application of different ML models in HCC, and provides suggestions for follow-up research.
Collapse
Affiliation(s)
- Sijia Feng
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Jianhua Wang
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Liheng Wang
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Qixuan Qiu
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Dongdong Chen
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Huo Su
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Xiaoli Li
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Yao Xiao
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Chiayen Lin
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
15
|
Xu M, Yang H, Yang Q, Teng P, Hao H, Liu C, Yu S, Liu G. Radiomics nomogram based on digital breast tomosynthesis: preoperative evaluation of axillary lymph node metastasis in breast carcinoma. J Cancer Res Clin Oncol 2023; 149:9317-9328. [PMID: 37208454 DOI: 10.1007/s00432-023-04859-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/13/2023] [Indexed: 05/21/2023]
Abstract
PURPOSE This study aimed to establish a radiomics nomogram model based on digital breast tomosynthesis (DBT) images, to predict the status of axillary lymph nodes (ALN) in patients with breast carcinoma. METHODS The data of 120 patients with confirmed breast carcinoma, including 49 cases with axillary lymph node metastasis (ALNM), were retrospectively analyzed in this study. The dataset was randomly divided into a training group consisting of 84 patients (37 with ALNM) and a validation group comprising 36 patients (12 with ALNM). Clinical information was collected for all cases, and radiomics features were extracted from DBT images. Feature selection was performed to develop the Radscore model. Univariate and multivariate logistic regression analysis were employed to identify independent risk factors for constructing both the clinical model and nomogram model. To evaluate the performance of these models, receiver operating characteristic (ROC) curve analysis, calibration curve, decision curve analysis (DCA), net reclassification improvement (NRI), and integrated discriminatory improvement (IDI) were conducted. RESULTS The clinical model identified tumor margin and DBT_reported_LNM as independent risk factors, while the Radscore model was constructed using 9 selected radiomics features. Incorporating tumor margin, DBT_reported_LNM, and Radscore, the radiomics nomogram model exhibited superior performance with AUC values of 0.933 and 0.920 in both datasets, respectively. The NRI and IDI showed a significant improvement, suggesting that the Radscore may serve as a useful biomarker for predicting ALN status. CONCLUSION The radiomics nomogram based on DBT demonstrated effective preoperative prediction performance for ALNM in patients with breast cancer.
Collapse
Affiliation(s)
- Maolin Xu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun, 130033, China
| | - Huimin Yang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun, 130033, China
| | - Qi Yang
- Department of Radiology, The First Hospital of Jilin University, No.71 Xinmin Street, Changchun, 130012, China.
| | - Peihong Teng
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun, 130033, China
| | - Haifeng Hao
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun, 130033, China
| | - Chang Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun, 130033, China
| | - Shaonan Yu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun, 130033, China.
| | - Guifeng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun, 130033, China.
| |
Collapse
|
16
|
Vetter M, Waldner MJ, Zundler S, Klett D, Bocklitz T, Neurath MF, Adler W, Jesper D. Artificial intelligence for the classification of focal liver lesions in ultrasound - a systematic review. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2023; 44:395-407. [PMID: 37001563 DOI: 10.1055/a-2066-9372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Focal liver lesions are detected in about 15% of abdominal ultrasound examinations. The diagnosis of frequent benign lesions can be determined reliably based on the characteristic B-mode appearance of cysts, hemangiomas, or typical focal fatty changes. In the case of focal liver lesions which remain unclear on B-mode ultrasound, contrast-enhanced ultrasound (CEUS) increases diagnostic accuracy for the distinction between benign and malignant liver lesions. Artificial intelligence describes applications that try to emulate human intelligence, at least in subfields such as the classification of images. Since ultrasound is considered to be a particularly examiner-dependent technique, the application of artificial intelligence could be an interesting approach for an objective and accurate diagnosis. In this systematic review we analyzed how artificial intelligence can be used to classify the benign or malignant nature and entity of focal liver lesions on the basis of B-mode or CEUS data. In a structured search on Scopus, Web of Science, PubMed, and IEEE, we found 52 studies that met the inclusion criteria. Studies showed good diagnostic performance for both the classification as benign or malignant and the differentiation of individual tumor entities. The results could be improved by inclusion of clinical parameters and were comparable to those of experienced investigators in terms of diagnostic accuracy. However, due to the limited spectrum of lesions included in the studies and a lack of independent validation cohorts, the transfer of the results into clinical practice is limited.
Collapse
Affiliation(s)
- Marcel Vetter
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Maximilian J Waldner
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Sebastian Zundler
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Daniel Klett
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Thomas Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universitat Jena, Jena, Germany
- Leibniz-Institute of Photonic Technology, Friedrich Schiller University Jena, Jena, Germany
| | - Markus F Neurath
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Werner Adler
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Daniel Jesper
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| |
Collapse
|
17
|
Zhang L, Duan S, Qi Q, Li Q, Ren S, Liu S, Mao B, Zhang Y, Wang S, Yang L, Liu R, Liu L, Li Y, Li N, Zhang L. Noninvasive Prediction of Ki-67 Expression in Hepatocellular Carcinoma Using Machine Learning-Based Ultrasomics: A Multicenter Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:1113-1122. [PMID: 36412932 DOI: 10.1002/jum.16126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES To investigate the ability of ultrasomics to predict Ki-67 expression in hepatocellular carcinoma (HCC). METHODS A total of 244 patients from three hospitals were retrospectively recruited (training dataset, n = 168; test dataset, n = 43; and validation dataset, n = 33). Lesion segmentation of the ultrasound images was performed manually by two radiologists. In total, 1409 ultrasomics features were extracted. Feature selection was conducted using the intra-class correlation coefficient, variance threshold, mutual information, and recursive feature elimination plus eXtreme Gradient Boosting. The support vector machine was combined with the learning curve and grid search parameter tuning to construct the clinical, ultrasomics, and combined models. The predictive performance of the models was assessed using the area under the receiver operating characteristic curve (AUC), sensitivity, specificity and accuracy. RESULTS The ultrasomics model performed well on the training, test, and validation datasets. The AUC (95% confidence interval [CI]) for these datasets were 0.955 (0.912-0.981), 0.861 (0.721-0.947), and 0.665 (0.480-0.819), respectively. The combination of ultrasomics and clinical features significantly improved model performance on all three datasets. The AUC (95% CI), sensitivity, specificity, and accuracy were 0.986 (0.955-0.998), 0.973, 0.840, and 0.869 on the training dataset; 0.871 (0.734-0.954), 0.750, 0.829, and 0.814 on the test dataset; and 0.742 (0.560-0.878), 0.714, 0.808, and 0.788 on the validation dataset, respectively. CONCLUSIONS Ultrasomics was proved to be a potential noninvasive method to predict Ki-67 expression in HCC.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Ultrasound, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Shaobo Duan
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Health Management, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Qinghua Qi
- Department of Ultrasound, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Li
- Department of Ultrasound, Henan Provincial Cancer Hospital, Zhengzhou, China
| | - Shanshan Ren
- Department of Ultrasound, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Shunhua Liu
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Bing Mao
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Ye Zhang
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Health Management, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Simeng Wang
- Department of Ultrasound, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Long Yang
- Department of Ultrasound, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Ruiqing Liu
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Luwen Liu
- Department of Ultrasound, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Yaqiong Li
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Na Li
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Lianzhong Zhang
- Department of Ultrasound, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| |
Collapse
|
18
|
Brunese MC, Fantozzi MR, Fusco R, De Muzio F, Gabelloni M, Danti G, Borgheresi A, Palumbo P, Bruno F, Gandolfo N, Giovagnoni A, Miele V, Barile A, Granata V. Update on the Applications of Radiomics in Diagnosis, Staging, and Recurrence of Intrahepatic Cholangiocarcinoma. Diagnostics (Basel) 2023; 13:diagnostics13081488. [PMID: 37189589 DOI: 10.3390/diagnostics13081488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND This paper offers an assessment of radiomics tools in the evaluation of intrahepatic cholangiocarcinoma. METHODS The PubMed database was searched for papers published in the English language no earlier than October 2022. RESULTS We found 236 studies, and 37 satisfied our research criteria. Several studies addressed multidisciplinary topics, especially diagnosis, prognosis, response to therapy, and prediction of staging (TNM) or pathomorphological patterns. In this review, we have covered diagnostic tools developed through machine learning, deep learning, and neural network for the recurrence and prediction of biological characteristics. The majority of the studies were retrospective. CONCLUSIONS It is possible to conclude that many performing models have been developed to make differential diagnosis easier for radiologists to predict recurrence and genomic patterns. However, all the studies were retrospective, lacking further external validation in prospective and multicentric cohorts. Furthermore, the radiomics models and the expression of results should be standardized and automatized to be applicable in clinical practice.
Collapse
Affiliation(s)
- Maria Chiara Brunese
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | | | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Michela Gabelloni
- Nuclear Medicine Unit, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
| | - Ginevra Danti
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Alessandra Borgheresi
- Department of Radiology, University Hospital "Azienda Ospedaliera Universitaria delle Marche", 60121 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Pierpaolo Palumbo
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L'Aquila, Italy
| | - Federico Bruno
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L'Aquila, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, 16149 Genoa, Italy
| | - Andrea Giovagnoni
- Department of Radiology, University Hospital "Azienda Ospedaliera Universitaria delle Marche", 60121 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131 Naples, Italy
| |
Collapse
|
19
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
20
|
Chen P, Yang Z, Zhang H, Huang G, Li Q, Ning P, Yu H. Personalized intrahepatic cholangiocarcinoma prognosis prediction using radiomics: Application and development trend. Front Oncol 2023; 13:1133867. [PMID: 37035147 PMCID: PMC10076873 DOI: 10.3389/fonc.2023.1133867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Radiomics was proposed by Lambin et al. in 2012 and since then there has been an explosion of related research. There has been significant interest in developing high-throughput methods that can automatically extract a large number of quantitative image features from medical images for better diagnostic or predictive performance. There have also been numerous radiomics investigations on intrahepatic cholangiocarcinoma in recent years, but no pertinent review materials are readily available. This work discusses the modeling analysis of radiomics for the prediction of lymph node metastasis, microvascular invasion, and early recurrence of intrahepatic cholangiocarcinoma, as well as the use of deep learning. This paper briefly reviews the current status of radiomics research to provide a reference for future studies.
Collapse
Affiliation(s)
- Pengyu Chen
- Department of Hepatobiliary Surgery, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Zhenwei Yang
- Department of Hepatobiliary Surgery, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Haofeng Zhang
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Guan Huang
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingshan Li
- Department of Hepatobiliary Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Peigang Ning
- Department of Radiology, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Haibo Yu
- Department of Hepatobiliary Surgery, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Department of Hepatobiliary Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
- *Correspondence: Haibo Yu,
| |
Collapse
|
21
|
Artificial intelligence: A review of current applications in hepatocellular carcinoma imaging. Diagn Interv Imaging 2023; 104:24-36. [PMID: 36272931 DOI: 10.1016/j.diii.2022.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 01/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and currently the third-leading cause of cancer-related death worldwide. Recently, artificial intelligence (AI) has emerged as an important tool to improve clinical management of HCC, including for diagnosis, prognostication and evaluation of treatment response. Different AI approaches, such as machine learning and deep learning, are both based on the concept of developing prediction algorithms from large amounts of data, or big data. The era of digital medicine has led to a rapidly expanding amount of routinely collected health data which can be leveraged for the development of AI models. Various studies have constructed AI models by using features extracted from ultrasound imaging, computed tomography imaging and magnetic resonance imaging. Most of these models have used convolutional neural networks. These tools have shown promising results for HCC detection, characterization of liver lesions and liver/tumor segmentation. Regarding treatment, studies have outlined a role for AI in evaluation of treatment response and improvement of pre-treatment planning. Several challenges remain to fully integrate AI models in clinical practice. Future research is still needed to robustly evaluate AI algorithms in prospective trials, and improve interpretability, generalizability and transparency. If such challenges can be overcome, AI has the potential to profoundly change the management of patients with HCC. The purpose of this review was to sum up current evidence on AI approaches using imaging for the clinical management of HCC.
Collapse
|
22
|
Xu ML, Zeng SE, Li F, Cui XW, Liu GF. Preoperative prediction of lymphovascular invasion in patients with T1 breast invasive ductal carcinoma based on radiomics nomogram using grayscale ultrasound. Front Oncol 2022; 12:1071677. [PMID: 36568215 PMCID: PMC9770991 DOI: 10.3389/fonc.2022.1071677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose The aim of this study was to develop a radiomics nomogram based on grayscale ultrasound (US) for preoperatively predicting Lymphovascular invasion (LVI) in patients with pathologically confirmed T1 (pT1) breast invasive ductal carcinoma (IDC). Methods One hundred and ninety-two patients with pT1 IDC between September 2020 and August 2022 were analyzed retrospectively. Study population was randomly divided in a 7: 3 ratio into a training dataset of 134 patients (37 patients with LVI-positive) and a validation dataset of 58 patients (19 patients with LVI-positive). Clinical information and conventional US (CUS) features (called clinic_CUS features) were recorded and evaluated to predict LVI. In the training dataset, independent predictors of clinic_CUS features were obtained by univariate and multivariate logistic regression analyses and incorporated into a clinic_CUS prediction model. In addition, radiomics features were extracted from the grayscale US images, and the radiomics score (Radscore) was constructed after radiomics feature selection. Subsequent multivariate logistic regression analysis was also performed for Radscore and the independent predictors of clinic_CUS features, and a radiomics nomogram was developed. The performance of the nomogram model was evaluated via its discrimination, calibration, and clinical usefulness. Results The US reported axillary lymph node metastasis (LNM) (US_LNM) status and tumor margin were determined as independent risk factors, which were combined for the construction of clinic_CUS prediction model for LVI in pT1 IDC. Moreover, tumor margin, US_LNM status and Radscore were independent predictors, incorporated as the radiomics nomogram model, which achieved a superior discrimination to the clinic_CUS model in the training dataset (AUC: 0.849 vs. 0.747; P < 0.001) and validation dataset (AUC: 0.854 vs. 0.713; P = 0.001). Calibration curve for the radiomic nomogram showed good concordance between predicted and actual probability. Furthermore, decision curve analysis (DCA) confirmed that the radiomics nomogram had higher clinical net benefit than the clinic_CUS model. Conclusion The US-based radiomics nomogram, incorporating tumor margin, US_LNM status and Radscore, showed a satisfactory preoperative prediction of LVI in pT1 IDC patients.
Collapse
Affiliation(s)
- Mao-Lin Xu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shu-E Zeng
- Department of Ultrasound, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Li
- Department of Ultrasound, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Fang Li, ; Xin-Wu Cui, ; Gui-Feng Liu,
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Fang Li, ; Xin-Wu Cui, ; Gui-Feng Liu,
| | - Gui-Feng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Fang Li, ; Xin-Wu Cui, ; Gui-Feng Liu,
| |
Collapse
|
23
|
Ma L, Wang R, He Q, Huang L, Wei X, Lu X, Du Y, Luo J, Liao H. Artificial intelligence-based ultrasound imaging technologies for hepatic diseases. ILIVER 2022; 1:252-264. [DOI: 10.1016/j.iliver.2022.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
Zhang L, Qi Q, Li Q, Ren S, Liu S, Mao B, Li X, Wu Y, Yang L, Liu L, Li Y, Duan S, Zhang L. Ultrasomics prediction for cytokeratin 19 expression in hepatocellular carcinoma: A multicenter study. Front Oncol 2022; 12:994456. [PMID: 36119507 PMCID: PMC9478580 DOI: 10.3389/fonc.2022.994456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Objective The purpose of this study was to investigate the preoperative prediction of Cytokeratin (CK) 19 expression in patients with hepatocellular carcinoma (HCC) by machine learning-based ultrasomics. Methods We retrospectively analyzed 214 patients with pathologically confirmed HCC who received CK19 immunohistochemical staining. Through random stratified sampling (ratio, 8:2), patients from institutions I and II were divided into training dataset (n = 143) and test dataset (n = 36), and patients from institution III served as external validation dataset (n = 35). All gray-scale ultrasound images were preprocessed, and then the regions of interest were then manually segmented by two sonographers. A total of 1409 ultrasomics features were extracted from the original and derived images. Next, the intraclass correlation coefficient, variance threshold, mutual information, and embedded method were applied to feature dimension reduction. Finally, the clinical model, ultrasonics model, and combined model were constructed by eXtreme Gradient Boosting algorithm. Model performance was assessed by area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy. Results A total of 12 ultrasomics signatures were used to construct the ultrasomics models. In addition, 21 clinical features were used to construct the clinical model, including gender, age, Child-Pugh classification, hepatitis B surface antigen/hepatitis C virus antibody (positive/negative), cirrhosis (yes/no), splenomegaly (yes/no), tumor location, tumor maximum diameter, tumor number, alpha-fetoprotein, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, glutamyl-transpeptidase, albumin, total bilirubin, conjugated bilirubin, creatinine, prothrombin time, fibrinogen, and international normalized ratio. The AUC of the ultrasomics model was 0.789 (0.621 – 0.907) and 0.787 (0.616 – 0.907) in the test and validation datasets, respectively. However, the performance of the combined model covering clinical features and ultrasomics signatures improved significantly. Additionally, the AUC (95% CI), sensitivity, specificity, and accuracy were 0.867 (0.712 – 0.957), 0.750, 0.875, 0.861, and 0.862 (0.703 – 0.955), 0.833, 0.862, and 0.857 in the test dataset and external validation dataset, respectively. Conclusion Ultrasomics signatures could be used to predict the expression of CK19 in HCC patients. The combination of clinical features and ultrasomics signatures showed excellent effects, which significantly improved prediction accuracy and robustness.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Qinghua Qi
- Department of Ultrasound, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Li
- Department of Ultrasound, Henan Provincial Cancer Hospital, Zhengzhou, China
| | - Shanshan Ren
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shunhua Liu
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bing Mao
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xin Li
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yuejin Wu
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Lanling Yang
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Luwen Liu
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yaqiong Li
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shaobo Duan
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Health Management, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- *Correspondence: Lianzhong Zhang, ; Shaobo Duan,
| | - Lianzhong Zhang
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
- *Correspondence: Lianzhong Zhang, ; Shaobo Duan,
| |
Collapse
|
25
|
Granata V, Fusco R, Belli A, Borzillo V, Palumbo P, Bruno F, Grassi R, Ottaiano A, Nasti G, Pilone V, Petrillo A, Izzo F. Conventional, functional and radiomics assessment for intrahepatic cholangiocarcinoma. Infect Agent Cancer 2022; 17:13. [PMID: 35346300 PMCID: PMC8961950 DOI: 10.1186/s13027-022-00429-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023] Open
Abstract
Background This paper offers an assessment of diagnostic tools in the evaluation of Intrahepatic Cholangiocarcinoma (ICC). Methods Several electronic datasets were analysed to search papers on morphological and functional evaluation in ICC patients. Papers published in English language has been scheduled from January 2010 to December 2021.
Results We found that 88 clinical studies satisfied our research criteria. Several functional parameters and morphological elements allow a truthful ICC diagnosis. The contrast medium evaluation, during the different phases of contrast studies, support the recognition of several distinctive features of ICC. The imaging tool to employed and the type of contrast medium in magnetic resonance imaging, extracellular or hepatobiliary, should change considering patient, departement, and regional features. Also, Radiomics is an emerging area in the evaluation of ICCs. Post treatment studies are required to evaluate the efficacy and the safety of therapies so as the patient surveillance. Conclusions Several morphological and functional data obtained during Imaging studies allow a truthful ICC diagnosis.
Collapse
|
26
|
Granata V, Fusco R, Setola SV, Simonetti I, Cozzi D, Grazzini G, Grassi F, Belli A, Miele V, Izzo F, Petrillo A. An update on radiomics techniques in primary liver cancers. Infect Agent Cancer 2022; 17:6. [PMID: 35246207 PMCID: PMC8897888 DOI: 10.1186/s13027-022-00422-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Radiomics is a progressing field of research that deals with the extraction of quantitative metrics from medical images. Radiomic features detention indirectly tissue features such as heterogeneity and shape and can, alone or in combination with demographic, histological, genomic, or proteomic data, be used for decision support system in clinical setting. METHODS This article is a narrative review on Radiomics in Primary Liver Cancers. Particularly, limitations and future perspectives are discussed. RESULTS In oncology, assessment of tissue heterogeneity is of particular interest: genomic analysis have demonstrated that the degree of tumour heterogeneity is a prognostic determinant of survival and an obstacle to cancer control. Therefore, that Radiomics could support cancer detection, diagnosis, evaluation of prognosis and response to treatment, so as could supervise disease status in hepatocellular carcinoma (HCC) and Intrahepatic Cholangiocarcinoma (ICC) patients. Radiomic analysis is a convenient radiological image analysis technique used to support clinical decisions as it is able to provide prognostic and / or predictive biomarkers that allow a fast, objective and repeatable tool for disease monitoring. CONCLUSIONS Although several studies have shown that this analysis is very promising, there is little standardization and generalization of the results, which limits the translation of this method into the clinical context. The limitations are mainly related to the evaluation of data quality, repeatability, reproducibility, overfitting of the model. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy.
| | | | - Sergio Venazio Setola
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy
| | - Igino Simonetti
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy
| | - Diletta Cozzi
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122, Milan, Italy
| | - Giulia Grazzini
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122, Milan, Italy
| | - Francesca Grassi
- Division of Radiology, "Università Degli Studi Della Campania Luigi Vanvitelli", Naples, Italy
| | - Andrea Belli
- Division of Hepatobiliary Surgical Oncology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", 80131, Naples, Italy
| | - Vittorio Miele
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122, Milan, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", 80131, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy
| |
Collapse
|