1
|
Contreras L, Rodríguez-Gil A, Muntané J, de la Cruz J. Sorafenib-associated translation reprogramming in hepatocellular carcinoma cells. RNA Biol 2025; 22:1-11. [PMID: 40116042 PMCID: PMC11934173 DOI: 10.1080/15476286.2025.2483484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025] Open
Abstract
Sorafenib (Sfb) is a multikinase inhibitor regularly used for the management of patients with advanced hepatocellular carcinoma (HCC) that has been shown to increase very modestly life expectancy. We have shown that Sfb inhibits protein synthesis at the level of initiation in cancer cells. However, the global snapshot of mRNA translation following Sorafenib-treatment has not been explored so far. In this study, we performed a genome-wide polysome profiling analysis in Sfb-treated HCC cells and demonstrated that, despite global translation repression, a set of different genes remain efficiently translated or are even translationally induced. We reveal that, in response to Sfb inhibition, translation is tuned, which strongly correlates with the presence of established mRNA cis-acting elements and the corresponding protein factors that recognize them, including DAP5 and ARE-binding proteins. At the level of biological processes, Sfb leads to the translational down-regulation of key cellular activities, such as those related to the mitochondrial metabolism and the collagen synthesis, and the translational up-regulation of pathways associated with the adaptation and survival of cells in response to the Sfb-induced stress. Our findings indicate that Sfb induces an adaptive reprogramming of translation and provides valuable information that can facilitate the analysis of other drugs for the development of novel combined treatment strategies based on Sfb therapy.
Collapse
Affiliation(s)
- Laura Contreras
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Jordi Muntané
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
2
|
Lin LW, Jang HS, Song Z, Ebrahimi A, Yang J, Nguyen BD, O'Donnell EF, Hendrix DA, Maier CS, Kolluri SK. Suppression of global protein synthesis and hepatocellular carcinoma cell growth by Benzimidazoisoquinoline, 4,11-Dichloro-BBQ. Biochem Pharmacol 2025; 236:116896. [PMID: 40157458 DOI: 10.1016/j.bcp.2025.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/15/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor best known for mediating biological responses to a wide range of xenobiotics, such as dioxins and polycyclic aromatic hydrocarbons. Recently, AhR has emerged as an important player in cancer biology, with the potential for therapeutic applications through targeted modulation of its activity in specific cancer types. In this study, we report that 4,11-dichloro-BBQ (DiCl-BBQ), a benzimidazoisoquinoline, exhibits AhR-mediated antiproliferative activity in HepG2 hepatocellular carcinoma cells. DiCl-BBQ was found to decrease cell growth at nanomolar concentrations, and this antiproliferative effect persisted even after the compound's removal. Using inducible shRNA expression system, we demonstrated that the inhibitory effect of DiCl-BBQ was significantly reduced following AhR knockdown. Flow cytometric analysis revealed that DiCl-BBQ halted cell division and induced G1 cell cycle arrest in an AhR-dependent manner. Proteomic profiling identified the top four enriched pathways following DiCl-BBQ exposure: metabolism of RNA, translation, ribonucleoprotein complex biogenesis, and carboxylic acid metabolic processes. Notably, DiCl-BBQ caused a dramatic downregulation of translation-associated proteins, with this response diminished in AhR-depleted cells. Consistently, global protein synthesis was significantly repressed in DiCl-BBQ-treated cells. Together, these results indicate that DiCl-BBQ effectively inhibits HepG2 cells growth by inducing G1 cell cycle arrest and downregulating the protein translation machinery in an AhR-dependent manner.
Collapse
Affiliation(s)
- Lo-Wei Lin
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Hyo Sang Jang
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Zifeng Song
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Arpa Ebrahimi
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Jun Yang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Bach D Nguyen
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Edmond F O'Donnell
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - David A Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA; School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Siva K Kolluri
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
3
|
Yu J, Li Y, Yang Y, Guo H, Chen Y, Yi P. PD-1 inhibitors improve the efficacy of tyrosine kinase inhibitors combined with transcatheter arterial chemoembolization in advanced hepatocellular carcinoma: a meta-analysis and trial sequential analysis. Scand J Gastroenterol 2025; 60:472-484. [PMID: 40152031 DOI: 10.1080/00365521.2025.2479193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/21/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND This meta-analysis and trial sequential analysis (TSA) aimed to evaluate the efficacy and safety of triple therapy with tyrosine kinase inhibitors (TKIs) combined with transcatheter arterial chemoembolization (TACE) plus programmed death 1 (PD-1) inhibitors (T-T-P) and dual therapy with TKIs combined with TACE (T-T) for the treatment of advanced unresectable hepatocellular carcinoma (uHCC). METHODS Literature related to the efficacy of TKIs combined with TACE plus PD-1 inhibitors in uHCC was searched using the Embase, PubMed, and Cocrane libraries. TSA was used to reduce false positive results due to random error. RESULTS Seventeen articles were included in this meta-analysis, including 2,561 patients. In the T-T-P group, OS [HR 0.45, 95% confidence interval (CI) 0.39-0.52; p = 0.000], PFS [HR 0.43, 95% CI 0.38 - 0.48; p = 0.000], were significantly prolonged compared to those in the T-T group; ORR (RR 1.59 [95% CI 1.39-1.81]; p = 0.000) and DCR (RR 1.26 [95% CI 1.15-1.37]; p = 0.000) were significantly higher. TSA analysis showed early results without further testing. Prognostic factor analysis demonstrated that portal vein tumor thrombus (PVTT) and extrahepatic metastasis were common independent risk factors for OS and PFS. Regarding grade 3/4 adverse events results showed no statistically significant differences in any of them. CONCLUSIONS Compared with T-T treatment group, the T-T-P treatment group exhibited a notable improvement in OS and PFS, particularly in cases of PVTT and extrahepatic metastasis. Furthermore, it can markedly enhance the ORR and DCR in patients with uHCC.
Collapse
Affiliation(s)
- Jiahui Yu
- Department of hepato-biliary-pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, P. R. China
| | - Yong Li
- Department of hepato-biliary-pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, P. R. China
| | - Yuting Yang
- Department of Educational Technology, Institute of Education, China West Normal University, Nanchong, Sichuan, P. R. China
| | - Hao Guo
- Department of hepato-biliary-pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, P. R. China
| | - Yimiao Chen
- Department of hepato-biliary-pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, P. R. China
| | - Pengsheng Yi
- Department of hepato-biliary-pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, P. R. China
| |
Collapse
|
4
|
Jiang X, Ge X, Huang Y, Xie F, Chen C, Wang Z, Tao W, Zeng S, Lv L, Zhan Y, Bao L. Drug resistance in TKI therapy for hepatocellular carcinoma: Mechanisms and strategies. Cancer Lett 2025; 613:217472. [PMID: 39832650 DOI: 10.1016/j.canlet.2025.217472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Tyrosine kinase inhibitors (TKIs) are such as sorafenib the first-line therapeutic drugs for patients with advanced hepatocellular carcinoma. However, patients with TKI-resistant advanced liver cancer are insensitive to TKI treatment, resulting in limited survival benefits. This paper comprehensively reviewed the mechanisms underlying TKI resistance in hepatocytes, investigating activation of tumor signaling pathways, epigenetic regulation, tumor microenvironment, and metabolic reprogramming. Based on resistance mechanisms, it also reviews preclinical and clinical studies of drug resistance strategies and summarizes targeted therapy combined with immunotherapy currently in investigational clinical trials. Understanding the interactions and clinical studies of these resistance mechanisms offers new hope for improving and prolonging patient survival.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Xiaoying Ge
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Yueying Huang
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Fangyuan Xie
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Chun Chen
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Zijun Wang
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Wanru Tao
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Sailiang Zeng
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Lei Lv
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Yangyang Zhan
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Leilei Bao
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| |
Collapse
|
5
|
Sha M, Wang J, Cao J, Zou ZH, Qu XY, Xi ZF, Shen C, Tong Y, Zhang JJ, Jeong S, Xia Q. Criteria and prognostic models for patients with hepatocellular carcinoma undergoing liver transplantation. Clin Mol Hepatol 2025; 31:S285-S300. [PMID: 39159949 PMCID: PMC11925443 DOI: 10.3350/cmh.2024.0323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC.
Collapse
Affiliation(s)
- Meng Sha
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Cao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Hui Zou
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai, China
| | - Xiao-ye Qu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-feng Xi
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuan Shen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Tong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-jun Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Seogsong Jeong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Cherradi S, Roux S, Dupuy M, Tabone-Eglinger S, Tuaillon E, Ziol M, Assenat E, Duong HT. Modelling hepatocellular carcinoma microenvironment phenotype to evaluate drug efficacy. Sci Rep 2025; 15:1179. [PMID: 39774014 PMCID: PMC11706984 DOI: 10.1038/s41598-024-84304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death worldwide. Treating HCC is challenging because of the poor drug effectiveness and the lack of tools to predict patient responses. To resolve these issues, we established a patient-centric spheroid model using HepG2, TWNT-1, and THP-1 co-culture, that mimics HCC phenotype. We developed a target-independent cell killing (TICK) exclusion strategy to monitor the therapeutic response. We demonstrated that our model reproduced the Barcelona Clinic Liver Cancer (BCLC) molecular classification, displayed known alterations of epigenetic players, and responded to tyrosine kinase inhibitors (TKIs) such as sorafenib, cabozantinib, and lenvatinib in a patient-dependent manner. Importantly, we reported for the first time that our model correctly predicted 34 clinical outcomes to TKIs out of 37 case studies on 32 HCC patients confirming that patient-centric spheroids, combined with our TICK exclusion strategy, are valuable models for drug discovery and opening a near perspective to personalized care.
Collapse
Affiliation(s)
- Sara Cherradi
- PredictCan Biotechnologies SAS, Biopôle Euromédecine, Grabels, France
| | - Salomé Roux
- PredictCan Biotechnologies SAS, Biopôle Euromédecine, Grabels, France
| | - Marie Dupuy
- Service d'Oncologie Médicale, Hôpital Saint Eloi, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Séverine Tabone-Eglinger
- Plateforme de Gestion des Echantillons Biologiques, Centre Léon Bérard, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Edouard Tuaillon
- Centre de Ressources Biologiques (CRB), Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Marianne Ziol
- Centre de Ressources Biologiques du Groupe hospitalier Paris Seine Saint-Denis, Paris, France
| | - Eric Assenat
- Service d'Oncologie Médicale, Hôpital Saint Eloi, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Hong Tuan Duong
- PredictCan Biotechnologies SAS, Biopôle Euromédecine, Grabels, France.
| |
Collapse
|
7
|
Zuo M, Wei R, Li D, Li W, An C. The AFCRPLITY score for predicting the prognosis of immunotherapy combined with local-regional therapy in unresectable hepatocellular carcinoma. Ther Adv Med Oncol 2024; 16:17588359241297080. [PMID: 39563715 PMCID: PMC11574904 DOI: 10.1177/17588359241297080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Immunotherapy combined with intra-arterial therapy (IAT) has shown great potential in the treatment of unresectable hepatocellular carcinoma (uHCC). However, there are currently no available biomarkers that can predict the prognosis of immune-based combined therapy. OBJECTIVES To establish a scoring method to predict prognosis in uHCC patients undergoing IAT plus immunotherapy. METHODS Between March 2019 and August 2022, uHCC patients undergoing IAT in combination with programmed cell death (ligand) 1 (PD-1)/PD-L1-based immunotherapy were retrospectively analyzed. RESULTS Among 1046 patients included, 780 patients were enrolled into hepatic arterial infusion chemotherapy immunotherapy cohorts (training set: n = 546, one center; external testing set: n = 234, three centers) and 266 patients were treated with trans-arterial chemoembolization (TACE) plus immunotherapy were enrolled into TACE immunotherapy cohort (validation set: n = 266). We developed the easy-to-apply alpha-fetoprotein (AFP), C-reactive protein (CRP), and platelet-to-lymphocyte ratio (PLR) in immunotherapy (AFCRPLITY) score and investigated the prognostic value of baseline variables on the disease control rate (DCR) and progression-free survival (PFS). HCC patients with low AFCRPLITY scores would have better PFS and DCRs than patients with high AFCRPLITY scores (AFCRPLITY 0: vs AFCRPLITY 1: vs AFCRPLITY 2: vs AFCRPLITY 3: p < 0.001 for PFS, p = 0.001 for DCRs) in the training set, which was confirmed in the external testing set and validation set. The highest level of CD8+ T cells was in the AFCRPLITY score = 0 group than the other two groups. CONCLUSION The AFCRPLITY score is associated with PFS and DCR in uHCC patients receiving IATs plus immunotherapy. This score may be helpful for counseling, but prospective validation is needed. DESIGN A retrospective, multi-institutional study. TRIAL REGISTRATION The study has been retrospectively registered at the Chinese Clinical Trial Registry (https://www.chictr.org.cn/, ChiCTR2300075828).
Collapse
Affiliation(s)
- Mengxuan Zuo
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, P.R. China
| | - Ran Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Da Li
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, P.R. China
| | - Wang Li
- State Key Laboratory of Oncology in South China, Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P.R. China
| | - Chao An
- State Key Laboratory of Oncology in South China, Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P.R. China
| |
Collapse
|
8
|
Shen LS, Chen JW, Gong RH, Lin Z, Lin YS, Qiao XF, Hu QM, Yang Y, Chen S, Chen GQ. β,β-Dimethylacrylalkannin, a key component of Zicao, induces cell cycle arrest and necrosis in hepatocellular carcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155959. [PMID: 39178682 DOI: 10.1016/j.phymed.2024.155959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND β,β-Dimethylacrylalkannin (DMAKN), a natural naphthoquinone found in Zicao, a traditional Chinese medicine (TCM), serves as the designated quantitative marker in the Chinese Pharmacopoeia. Despite its established role in assessing Zicao quality, DMAKN's biological potential remains underexplored in research. METHODS We investigated DMAKN's involvement in Zicao's anti-hepatocellular carcinoma (HCC) properties using a combination of HPLC content analysis and comprehensive bioinformatics. Subsequently, both in vitro and in vivo experiments were conducted to evaluate DMAKN's efficacy against HCC. Mechanistic investigations focused on elucidating DMAKN's impact on cell cycle regulation and induction of cell death. RESULTS Integrated HPLC analysis and bioinformatics identified DMAKN as the primary active compound responsible for Zicao's anti-HCC activity. In vitro and in vivo studies confirmed DMAKN's potent efficacy against HCC. Notably, DMAKN demonstrated dual effects on HCC cells: inhibiting proliferation at lower doses and inducing rapid cell death at higher doses. Mechanistic insights revealed that low-dose DMAKN induced G2/M phase cell cycle arrest through modulation of CDK1 and Cdc25C phosphorylation, while high-dose DMAKN triggered necrosis. Importantly, high-dose DMAKN caused a sharp increase in intracellular ROS levels in a short time, while low-dose DMAKN gradually increased ROS levels over a long period. Additionally, low-dose DMAKN-induced ROS activated the JNK pathway, crucial for cell cycle arrest, whereas high-dose DMAKN-induced necrosis was ROS-dependent but JNK-independent. CONCLUSION This study underscores DMAKN's pivotal role as the principal anti-HCC compound in Zicao, delineating its differential effects and underlying mechanisms. These results demonstrate the potential of DMAKN as a therapeutic agent for the treatment of HCC, providing important information for further study and advancement in cancer therapy.
Collapse
Affiliation(s)
- Li-Sha Shen
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, PR China; Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, PR China
| | - Jia-Wen Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, PR China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Rui-Hong Gong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., PR China
| | - Zesi Lin
- Southern Medical University Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Southern Medical University, Guangzhou 510315, PR China
| | - Yu-Shan Lin
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, PR China
| | - Xing-Fang Qiao
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, PR China; Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, PR China
| | - Qian-Mei Hu
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, PR China; Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, PR China
| | - Yong Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, PR China; Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, PR China.
| | - Sibao Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, PR China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., PR China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., PR China.
| | - Guo-Qing Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, PR China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., PR China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., PR China.
| |
Collapse
|
9
|
Yu B, Ma W. Biomarker discovery in hepatocellular carcinoma (HCC) for personalized treatment and enhanced prognosis. Cytokine Growth Factor Rev 2024; 79:29-38. [PMID: 39191624 DOI: 10.1016/j.cytogfr.2024.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading contributor to cancer-related deaths worldwide and presents significant challenges in diagnosis and treatment due to its heterogeneous nature. The discovery of biomarkers has become crucial in addressing these challenges, promising early detection, precise diagnosis, and personalized treatment plans. Key biomarkers, such as alpha fetoprotein (AFP) glypican 3 (GPC3) and des gamma carboxy prothrombin (DCP) have shown potential in improving clinical results. Progress in proteomic technologies, including next-generation sequencing (NGS), mass spectrometry, and liquid biopsies detecting circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), has deepened our understanding of HCC's molecular landscape. Immunological markers, like PD-L1 expression and tumor-infiltrating lymphocytes (TILs), also play a crucial role in guiding immunotherapy decisions. Despite these advancements, challenges remain in biomarker validation, standardization, integration into clinical practice, and cost-related barriers. Emerging technologies like single-cell sequencing and machine learning offer promising avenues for further exploration. Continued investment in research and collaboration among researchers, healthcare providers, and policymakers is vital to harness the potential of biomarkers fully, ultimately revolutionizing HCC management and improving patient outcomes through personalized treatment approaches.
Collapse
Affiliation(s)
- Baofa Yu
- Taimei Baofa Cancer Hospital, Dongping, Shandong 271500, China; Jinan Baofa Cancer Hospital, Jinan, Shandong 250000, China; Beijing Baofa Cancer Hospital, Beijing, 100010, China; Immune Oncology Systems, Inc, San Diego, CA 92102, USA.
| | - Wenxue Ma
- Department of Medicine, Sanford Stem Cell Institute, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Jiang J, Yang P, Xu X, Yuan H, Zhu H. Donafenib inhibits PARP1 expression and induces DNA damage, in combination with PARP1 inhibitors promotes apoptosis in liver cancer cells. Anticancer Drugs 2024; 35:789-805. [PMID: 38940933 DOI: 10.1097/cad.0000000000001631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Liver cancer is a prevalent malignant tumor globally. The newly approved first-line drug, donafenib, is a novel oral small molecule multi-tyrosine kinase inhibitor that has significant antitumor effects on liver cancer. This study aims to investigate the antitumor effects of donafenib on liver cancer and to explore its potential mechanisms. Donafenib significantly inhibited the viability of Huh-7 and HCCLM3 cells, inhibited malignant cell proliferation, and promoted cell apoptosis, as demonstrated by CCK-8, EdU, and Calcein/PI (propidium iodide) staining experiments. The results of DNA damage detection experiments and western blot analysis indicate that donafenib caused considerable DNA damage in liver cancer cells. The analysis of poly (ADP-ribose) polymerase 1 (PARP1) in liver cancer patients using online bioinformatics data websites such as TIMER2.0, GEPIA, UALCAN, cBioPortal, Kaplan-Meier Plotter, and HPA revealed a high expression of PARP1, which is associated with poor prognosis. Molecular docking and western blot analysis demonstrated that donafenib can directly target and downregulate the protein expression of PARP1, a DNA damage repair protein, thereby promoting DNA damage in liver cancer cells. Western blot and immunofluorescence detection showed that the group treated with donafenib combined with PARP1 inhibitor had significantly higher expression of γ-H2AX and 8-OHdG compared to the groups treated with donafenib or PARP1 inhibitors alone, the combined treatment suppresses the expression of the antiapoptotic protein Bcl2 and enhances the protein expression level of the proapoptotic protein Bcl-2-associated X protein (BAX). These data suggest that the combination of donafenib and a PARP1 inhibitor results in more significant DNA damage in cells and promotes cell apoptosis. Thus, the combination of donafenib and PARP1 inhibitors has the potential to be a treatment option for liver cancer.
Collapse
Affiliation(s)
| | - Pingping Yang
- Department of Laboratory Medicine, People's Hospital of Qiannan Prefecture, Guizhou
| | - Xinyu Xu
- School of Clinical Medicine, Guizhou Medical University
| | - Huixiong Yuan
- Affiliated Hospital of Youjiang Medical University for Nationalities; Key Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases of Baise, Guangxi
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| |
Collapse
|
11
|
Senapedis W, Gallagher KM, Figueroa E, Farelli JD, Lyng R, Hodgson JG, O'Donnell CW, Newman JV, Pacaro M, Siecinski SK, Chen J, McCauley TG. Targeted transcriptional downregulation of MYC using epigenomic controllers demonstrates antitumor activity in hepatocellular carcinoma models. Nat Commun 2024; 15:7875. [PMID: 39285180 PMCID: PMC11405918 DOI: 10.1038/s41467-024-52202-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Dysregulation of master regulator c-MYC (MYC) plays a central role in hepatocellular carcinoma (HCC) and other cancers but remains an elusive target for therapeutic intervention. MYC expression is epigenetically modulated within naturally occurring DNA loop structures, Insulated Genomic Domains (IGDs). We present a therapeutic approach using an epigenomic controller (EC), a programmable epigenomic mRNA medicine, to precisely modify MYC IGD sub-elements, leading to methylation of MYC regulatory elements and durable downregulation of MYC mRNA transcription. Significant antitumor activity is observed in preclinical models of HCC treated with the MYC-targeted EC, as monotherapy or in combination with tyrosine kinase or immune checkpoint inhibitors. These findings pave the way for clinical development of MYC-targeting epigenomic controllers in HCC patients and provide a framework for programmable epigenomic mRNA therapeutics for cancer and other diseases.
Collapse
Affiliation(s)
| | | | - Elmer Figueroa
- Omega Therapeutics, Cambridge, MA, USA
- Flagship Pioneering, Cambridge, MA, USA
| | | | - Robert Lyng
- Omega Therapeutics, Cambridge, MA, USA
- SalioGen Therapeutics, Lexington, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hossain MA. Targeting the RAS upstream and downstream signaling pathway for cancer treatment. Eur J Pharmacol 2024; 979:176727. [PMID: 38866361 DOI: 10.1016/j.ejphar.2024.176727] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Cancer often involves the overactivation of RAS/RAF/MEK/ERK (MAPK) and PI3K-Akt-mTOR pathways due to mutations in genes like RAS, RAF, PTEN, and PIK3CA. Various strategies are employed to address the overactivation of these pathways, among which targeted therapy emerges as a promising approach. Directly targeting specific proteins, leads to encouraging results in cancer treatment. For instance, RTK inhibitors such as imatinib and afatinib selectively target these receptors, hindering ligand binding and reducing signaling initiation. These inhibitors have shown potent efficacy against Non-Small Cell Lung Cancer. Other inhibitors, like lonafarnib targeting Farnesyltransferase and GGTI 2418 targeting geranylgeranyl Transferase, disrupt post-translational modifications of proteins. Additionally, inhibition of proteins like SOS, SH2 domain, and Ras demonstrate promising anti-tumor activity both in vivo and in vitro. Targeting downstream components with RAF inhibitors such as vemurafenib, dabrafenib, and sorafenib, along with MEK inhibitors like trametinib and binimetinib, has shown promising outcomes in treating cancers with BRAF-V600E mutations, including myeloma, colorectal, and thyroid cancers. Furthermore, inhibitors of PI3K (e.g., apitolisib, copanlisib), AKT (e.g., ipatasertib, perifosine), and mTOR (e.g., sirolimus, temsirolimus) exhibit promising efficacy against various cancers such as Invasive Breast Cancer, Lymphoma, Neoplasms, and Hematological malignancies. This review offers an overview of small molecule inhibitors targeting specific proteins within the RAS upstream and downstream signaling pathways in cancer.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
13
|
Zuo MX, An C, Cao YZ, Pan JY, Xie LP, Yang XJ, Li W, Wu PH. Camrelizumab, apatinib and hepatic artery infusion chemotherapy combined with microwave ablation for advanced hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:3481-3495. [PMID: 39171171 PMCID: PMC11334027 DOI: 10.4251/wjgo.v16.i8.3481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/01/2024] [Accepted: 06/12/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Hepatic arterial infusion chemotherapy and camrelizumab plus apatinib (TRIPLET protocol) is promising for advanced hepatocellular carcinoma (Ad-HCC). However, the usefulness of microwave ablation (MWA) after TRIPLET is still controversial. AIM To compare the efficacy and safety of TRIPLET alone (T-A) vs TRIPLET-MWA (T-M) for Ad-HCC. METHODS From January 2018 to March 2022, 217 Ad-HCC patients were retrospectively enrolled. Among them, 122 were included in the T-A group, and 95 were included in the T-M group. A propensity score matching (PSM) was applied to balance bias. Overall survival (OS) was compared using the Kaplan-Meier curve with the log-rank test. The overall objective response rate (ORR) and major complications were also assessed. RESULTS After PSM, 82 patients were included both the T-A group and the T-M group. The ORR (85.4%) in the T-M group was significantly higher than that (65.9%) in the T-A group (P < 0.001). The cumulative 1-, 2-, and 3-year OS rates were 98.7%, 93.4%, and 82.0% in the T-M group and 85.1%, 63.1%, and 55.0% in the T-A group (hazard ratio = 0.22; 95% confidence interval: 0.10-0.49; P < 0.001). The incidence of major complications was 4.9% (6/122) in the T-A group and 5.3% (5/95) in the T-M group, which were not significantly different (P = 1.000). CONCLUSION T-M can provide better survival outcomes and comparable safety for Ad-HCC than T-A.
Collapse
Affiliation(s)
- Meng-Xuan Zuo
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Chao An
- Department of Interventional Ultrasound, Chinese General PLA Hospital, Beijing 100853, China
| | - Yu-Zhe Cao
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Jia-Yu Pan
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Lu-Ping Xie
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Xin-Jing Yang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Wang Li
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Pei-Hong Wu
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
14
|
Yu J, Yan D, Wei S, Yang L, Yi P. Efficacy and safety of TACE combined with tyrosine kinase inhibitors and camrelizumab for unresectable hepatocellular carcinoma: A systematic review and meta‑analysis. Oncol Lett 2024; 28:401. [PMID: 38979553 PMCID: PMC11228926 DOI: 10.3892/ol.2024.14534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/10/2024] [Indexed: 07/10/2024] Open
Abstract
Transcatheter arterial chemoembolization (TACE) combined with tyrosine kinase inhibitors (TKIs) and camrelizumab (collectively: T-T-C) is a novel treatment strategy for unresectable hepatocellular carcinoma (HCC). The present systematic review and meta-analysis aimed to evaluate the efficacy and safety of T-T-C compared with TACE combined with TKIs only (T-T) in the treatment of patients with unresectable HCC. A systematic literature search was conducted on T-T and T-T-C using PubMed, Embase and the Cochrane Library. Data regarding the clinical outcome, including overall survival (OS), progression-free survival (PFS), tumor response and adverse events (AEs), were independently extracted and analyzed by two researchers using standardized protocols. In total, 7 cohort studies, including 1,798 patients (T-T-C, 838; T-T, 960), were included in the meta-analysis. The results of the present study demonstrated that the T-T-C group had significantly prolonged OS [hazard ratio (HR), 0.38; 95% confidence interval (CI), 0.29-0.50; I2=61.5%; P=0.016)] and PFS (HR, 0.37; 95% CI, 0.30-0.46; I2=44.5%; P=0.109), and showed significantly higher objective response rates [risk ratio (RR), 0.82; 95% CI, 0.69-0.96; I2=25.1%; P=0.237)] and slightly higher disease control rates without a significant difference (RR, 0.96; 95% CI, 0.89-1.03; I2=0.0%; P=0.969). In addition, grade 3/4 AEs were more common in the T-T group, including hypertension (RR, 1.15; 95% CI, 0.85-1.56), vomiting or nausea (RR, 0.88; 95% CI, 0.44-1.76) and pain (RR, 0.74; 95% CI, 0.45-1.21); however, these results were not statistically significant. In conclusion, compared with T-T combination therapy, T-T-C demonstrated a notable advantage in terms of OS, PFS, ORR and DCR in patients with unresectable HCC. For manageable AEs, although the results were not statistically significant, the incidence of AEs in the T-T group was higher than that in the T-T-C group in terms of event probability.
Collapse
Affiliation(s)
- Jiahui Yu
- Department of Hepato-Biliary-Pancreas II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Duan Yan
- Department of Hepato-Biliary-Pancreas II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Song Wei
- Department of Hepato-Biliary-Pancreas II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Linfeng Yang
- Department of Hepato-Biliary-Pancreas II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Pengsheng Yi
- Department of Hepato-Biliary-Pancreas II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
15
|
Li Y, Liu X, Liu J, Yang L, Wei S, Li J, Gan H, Ma T, Yi P. Lenvatinib in combination with transarterial chemoembolization vs. sorafenib in combination with transarterial chemoembolization for unresectable hepatocellular carcinoma: A network meta‑analysis. Oncol Lett 2024; 28:347. [PMID: 38872858 PMCID: PMC11170262 DOI: 10.3892/ol.2024.14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
The use of tyrosine kinase inhibitors combined with transarterial chemoembolization (TACE) is considered the standard therapy for patients with unresectable hepatocellular carcinoma (uHCC). However, information regarding the efficacy of lenvatinib or sorafenib in combination with TACE for patients with uHCC is limited. The present study involved a systematic search for randomized controlled trials on the PubMed, Embase, Web of Science and the Cochrane Library online databases to compare the use of TACE combined with either lenvatinib or sorafenib, and monotherapy using either lenvatinib or sorafenib for patients with uHCC. The network meta-analysis of the present study included eight randomized controlled trials involving 2,929 patients. The random-effects model was used, and hazard ratios and risk ratios with 95% CIs were calculated. Lenvatinib in combination with TACE provided the maximal overall survival (97.92%), progression-free survival (87.8%), objective response (96.68%) and disease control (96.27%) rates. The results of the present study indicated that, in the treatment of patients with uHCC, lenvatinib in combination with TACE showed a significantly improved efficacy when compared with sorafenib and TACE. Therefore, in the future, combination therapy of lenvatinib with TACE could be potentially prioritized over sorafenib with TACE for the treatment of patients with uHCC.
Collapse
Affiliation(s)
- Yong Li
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xingyu Liu
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Junning Liu
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Linfeng Yang
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Song Wei
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jijiang Li
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Huixin Gan
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Ting Ma
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Pengsheng Yi
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
16
|
Qin Y, Han S, Yu Y, Qi D, Ran M, Yang M, Liu Y, Li Y, Lu L, Liu Y, Li Y. Lenvatinib in hepatocellular carcinoma: Resistance mechanisms and strategies for improved efficacy. Liver Int 2024; 44:1808-1831. [PMID: 38700443 DOI: 10.1111/liv.15953] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Hepatocellular carcinoma (HCC), one of the most prevalent and destructive causes of cancer-related deaths worldwide, approximately 70% of patients with HCC exhibit advanced disease at diagnosis, limiting the potential for radical treatment. For such patients, lenvatinib, a long-awaited alternative to sorafenib for first-line targeted therapy, has become a key treatment. Unfortunately, despite some progress, the prognosis for advanced HCC remains poor because of drug resistance development. However, the molecular mechanisms underlying lenvatinib resistance and ways to relief drug resistance in HCC are largely unknown and lack of systematic summary; thus, this review not only aims to explore factors contributing to lenvatinib resistance in HCC, but more importantly, summary potential methods to conquer or mitigate the resistance. The results suggest that abnormal activation of pathways, drug transport, epigenetics, tumour microenvironment, cancer stem cells, regulated cell death, epithelial-mesenchymal transition, and other mechanisms are involved in the development of lenvatinib resistance in HCC and subsequent HCC progression. To improve the therapeutic outcomes of lenvatinib, inhibiting acquired resistance, combined therapies, and nano-delivery carriers may be possible approaches.
Collapse
Affiliation(s)
- Yongqing Qin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Shisong Han
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yahan Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Ding Qi
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Mengnan Ran
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Mingqi Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yunyi Li
- Department of Nephrology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yu Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yong Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| |
Collapse
|
17
|
Liu J, Xia S, Zhang B, Mohammed DM, Yang X, Zhu Y, Jiang X. Small molecule tyrosine kinase inhibitors approved for systemic therapy of advanced hepatocellular carcinoma: recent advances and future perspectives. Discov Oncol 2024; 15:259. [PMID: 38960980 PMCID: PMC11222362 DOI: 10.1007/s12672-024-01110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
Liver cancer is the sixth most commonly diagnosed cancer and the third leading cause of cancer death in the world, and hepatocellular carcinoma (HCC) is the most common form of liver cancer. More than half of the HCC patients are diagnosed at an advanced stage and often require systemic therapy. Dysregulation of the activity of receptor tyrosine kinases (RTKs) is involved in the development and progress of HCC, RTKs are therefore the potential targets for systemic therapy of advanced HCC (aHCC). Currently, a total of six small molecule tyrosine kinase inhibitors (TKIs) have been approved for aHCC, including first-line sorafenib, lenvatinib, and donafenib, and second-line regorafenib, cabozantinib, and apatinib. These TKIs improved patients survival, which are associated with disease stage, etiology, liver function, tumor burden, baseline levels of alpha-fetoprotein, and treatment history. This review focuses on the clinical outcomes of these TKIs in key clinical trials, retrospective and real-world studies and discusses the future perspectives of TKIs for aHCC, with an aim to provide up-to-date evidence for decision-making in the treatment of aHCC.
Collapse
Affiliation(s)
- Jianzhong Liu
- Clinical Laboratory, Wuhan No.7 Hospital, Zhong Nan 2nd Road, Wuhan, 430071, China
| | - Shuai Xia
- Department of Biochemistry and Molecular Biology, Jining Medical University, Jining, 272067, Shandong, China
| | - Baoyi Zhang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Yanhong Zhu
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Xinnong Jiang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
18
|
Yang M, Mu Y, Yu X, Gao D, Zhang W, Li Y, Liu J, Sun C, Zhuang J. Survival strategies: How tumor hypoxia microenvironment orchestrates angiogenesis. Biomed Pharmacother 2024; 176:116783. [PMID: 38796970 DOI: 10.1016/j.biopha.2024.116783] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
During tumor development, the tumor itself must continuously generate new blood vessels to meet their growth needs while also allowing for tumor invasion and metastasis. One of the most common features of tumors is hypoxia, which drives the process of tumor angiogenesis by regulating the tumor microenvironment, thus adversely affecting the prognosis of patients. In addition, to overcome unsuitable environments for growth, such as hypoxia, nutrient deficiency, hyperacidity, and immunosuppression, the tumor microenvironment (TME) coordinates angiogenesis in several ways to restore the supply of oxygen and nutrients and to remove metabolic wastes. A growing body of research suggests that tumor angiogenesis and hypoxia interact through a complex interplay of crosstalk, which is inextricably linked to the TME. Here, we review the TME's positive contribution to angiogenesis from an angiogenesis-centric perspective while considering the objective impact of hypoxic phenotypes and the status and limitations of current angiogenic therapies.
Collapse
Affiliation(s)
- Mengrui Yang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yufeng Mu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Dandan Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Wenfeng Zhang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Jingyang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
19
|
Hou X, Xu Q, Liu R. CREB3 facilitates Donafenib resistance in hepatocellular carcinoma cells via the LSD1/CoREST/p65 axis by transcriptionally activating long noncoding RNA ZFAS1. Transl Oncol 2024; 44:101684. [PMID: 38641372 PMCID: PMC11391036 DOI: 10.1016/j.tranon.2023.101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 04/21/2024] Open
Abstract
OBJECTIVE Drug resistance greatly limits the therapeutic effect of a drug. This study aimed to explore the role of long noncoding RNA ZFAS1 in Donafenib resistance of hepatocellular carcinoma (HCC) cells. METHODS The expression of CREB3, ZFAS1, and p65 in HCC cell lines was measured by RT-qPCR and western blotting. After transfection with sh-ZFAS1, sh-CREB3, or sh-CREB3 + oe-p65 in Donafenib-resistent (DR) HCC cell lines, the transfection efficiency was evaluated by RT-qPCR and western blotting. The proliferation and IC50 to Donafenib of HCC cell lines was examined by MTT assay. Cell proliferation and apoptosis were examined by colony formation and flow cytometry assays. Then, the correlation amongst CREB3, ZFAS1, LSD1/CoREST, and p65 was analysed by ChIP, dual-luciferase reporter gene, and RIP assays. RESULTS ZFAS1, CREB3, and p65 were upregulated in HepG2-DR and Huh7-DR cells. Silencing of ZFAS1 or CREB3 enhanced the sensitivity of HCC cells to Donafenib, inhibited cell proliferation and IC50, and increased cell apoptosis, which were reversed by p65 overexpression. Mechanistically, CREB3 bound to ZFAS1 promoter to augment ZFAS1 transcriptional expression, and ZFAS1 recruited LSD1/CoREST to the p65 promoter region to decrease H3K4 methylation and elevate p65 transcriptional expression. CONCLUSION CREB3 overexpression contributed to Donafenib resistance in HCC cells by activating the ZFAS1/p65 axis.
Collapse
Affiliation(s)
- Xunbo Hou
- Department of Interventional, Harbin Medical University Cancer Hospital, No. 150, Haping Rd, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Qiannan Xu
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Ruibao Liu
- Department of Interventional, Harbin Medical University Cancer Hospital, No. 150, Haping Rd, Nangang District, Harbin, Heilongjiang 150081, PR China.
| |
Collapse
|
20
|
Saleh Y, Abu Hejleh T, Abdelrahim M, Shamseddine A, Chehade L, Alawabdeh T, Mohamad I, Sammour M, Turfa R. Hepatocellular Carcinoma: The Evolving Role of Systemic Therapies as a Bridging Treatment to Liver Transplantation. Cancers (Basel) 2024; 16:2081. [PMID: 38893200 PMCID: PMC11171314 DOI: 10.3390/cancers16112081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths. Classically, liver transplantation (LT) can be curative for HCC tumors within the Milan criteria. Bridging strategies to reduce the dropouts from LT waiting lists and/or to downstage patients who are beyond the Milan criteria are widely utilized. We conducted a literature-based review to evaluate the role of systemic therapies as a bridging treatment to liver transplantation (LT) in HCC patients. Tyrosine kinase inhibitors (TKIs) can be used as a systemic bridging therapy to LT in patients with contraindications for locoregional liver-directed therapies. Immune checkpoint inhibitor (ICI) treatment can be utilized either as a monotherapy or as a combination therapy with bevacizumab or TKIs prior to LT. Acute rejection after liver transplantation is a concern in the context of ICI treatment. Thus, a safe ICI washout period before LT and cautious post-LT immunosuppression strategies are required to reduce post-LT rejections and to optimize clinical outcomes. Nevertheless, prospective clinical trials are needed to establish definitive conclusions about the utility of systemic therapy as a bridging modality prior to LT in HCC patients.
Collapse
Affiliation(s)
- Yacob Saleh
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (T.A.H.); (T.A.); (M.S.)
| | - Taher Abu Hejleh
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (T.A.H.); (T.A.); (M.S.)
| | - Maen Abdelrahim
- Section of GI Oncology, Houston Methodist Neal Cancer Center, Houston, TX 77030, USA;
| | - Ali Shamseddine
- Division of Hematology and Oncology, Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut P.O. Box 11-0236, Lebanon; (A.S.); (L.C.)
| | - Laudy Chehade
- Division of Hematology and Oncology, Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut P.O. Box 11-0236, Lebanon; (A.S.); (L.C.)
| | - Tala Alawabdeh
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (T.A.H.); (T.A.); (M.S.)
| | - Issa Mohamad
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan;
| | - Mohammad Sammour
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (T.A.H.); (T.A.); (M.S.)
| | - Rim Turfa
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (T.A.H.); (T.A.); (M.S.)
| |
Collapse
|
21
|
Mittal A, Mahala N, Dhanawade NH, Dubey SK, Dubey US. Evaluation of the cytotoxic activity of sorafenib-loaded camel milk casein nanoparticles against hepatocarcinoma cells. Biotechnol J 2024; 19:e2300449. [PMID: 38472095 DOI: 10.1002/biot.202300449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/23/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024]
Abstract
Sorafenib, a multikinase inhibitor is used to treat hepatocellular and renal carcinoma. However, a low solubility impedes its bioavailability and thus, effectiveness. This study aims to enhance its effectiveness by using novel camel milk casein nanoparticles as a delivery system. This study evaluates the cytotoxicity of sorafenib encapsulated in camel milk casein nanoparticles against human hepatocarcinoma cells (HepG2 cells) in vitro. Optimal drug loaded nanoparticles were stable for 1 month, had encapsulation efficiency of 96%, exhibited a particle size of 230 nm, zeta potential of -14.4 and poly disparity index of 0.261. Treatment with it led to cell morphology and DNA fragmentation as a characteristic of apoptosis. Flow cytometry showed G1 phase arrest of cell cycle and 26% increased apoptotic cells population upon treatment as compared to control. Sorafenib-loaded casein nanoparticles showed 6-fold increased ROS production in HepG2 cells as compared to 4-fold increase shown by the free drug. Gene and protein expression studies done by qPCR and western blotting depicted upregulation of tumor suppressor gene p53, pro-apoptotic Bax, and caspase-3 along with downregulated anti-apoptotic Bcl-2 gene and protein expression which further emphasized death by apoptosis. It is concluded regarding the feasibility of these casein nanoparticles as a delivery system with enhanced therapeutic outcomes against hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Aastha Mittal
- Department of Biological Sciences, Birla Institute of Technology of Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - Neelam Mahala
- Department of Biological Sciences, Birla Institute of Technology of Science (BITS), Pilani Campus, Pilani, Rajasthan, India
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, Gujarat, India
| | - Nikhil Hanamant Dhanawade
- Department of Biological Sciences, Birla Institute of Technology of Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | | | - Uma S Dubey
- Department of Biological Sciences, Birla Institute of Technology of Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|
22
|
Buttell A, Qiu W. The action and resistance mechanisms of Lenvatinib in liver cancer. Mol Carcinog 2023; 62:1918-1934. [PMID: 37671815 PMCID: PMC10840925 DOI: 10.1002/mc.23625] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/07/2023]
Abstract
Lenvatinib is a tyrosine kinase inhibitor that prevents the formation of new blood vessels namely by inhibiting tyrosine kinase enzymes as the name suggests. Specifically, Lenvatinib acts on vascular endothelial growth factor receptors 1-3 (VEGFR1-3), fibroblast growth factor receptors 1-4 (FGFR1-4), platelet-derived growth factor receptor-alpha (PDGFRα), tyrosine-kinase receptor (KIT), and rearranged during transfection receptor (RET). Inhibition of these receptors works to inhibit tumor proliferation. It is through these inhibition mechanisms that Lenvatinib was tested to be noninferior to Sorafenib. However, resistance to Lenvatinib is common, making the positive effects of Lenvatinib on a patient's survival null after resistance is acquired. Therefore, it is crucial to understand mechanisms related to Lenvatinib resistance. This review aims to piece together various mechanisms involved in Lenvatinib resistance and summarizes the research done so far investigating it.
Collapse
Affiliation(s)
- Anna Buttell
- Departments of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Departments of Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| | - Wei Qiu
- Departments of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Departments of Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| |
Collapse
|
23
|
Stokes ME, Calvo V, Fujisawa S, Dudgeon C, Huang S, Ballal N, Shen L, Gasparek J, Betzenhauser M, Taylor SJ, Staschke KA, Rigby AC, Mulvihill MJ, Bose N, Lightcap ES, Surguladze D. PERK Inhibition by HC-5404 Sensitizes Renal Cell Carcinoma Tumor Models to Antiangiogenic Tyrosine Kinase Inhibitors. Clin Cancer Res 2023; 29:4870-4882. [PMID: 37733811 PMCID: PMC10690095 DOI: 10.1158/1078-0432.ccr-23-1182] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/28/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE Tumors activate protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK, also called EIF2AK3) in response to hypoxia and nutrient deprivation as a stress-mitigation strategy. Here, we tested the hypothesis that inhibiting PERK with HC-5404 enhances the antitumor efficacy of standard-of-care VEGF receptor tyrosine kinase inhibitors (VEGFR-TKI). EXPERIMENTAL DESIGN HC-5404 was characterized as a potent and selective PERK inhibitor, with favorable in vivo properties. Multiple renal cell carcinoma (RCC) tumor models were then cotreated with both HC-5404 and VEGFR-TKI in vivo, measuring tumor volume across time and evaluating tumor response by protein analysis and IHC. RESULTS VEGFR-TKI including axitinib, cabozantinib, lenvatinib, and sunitinib induce PERK activation in 786-O RCC xenografts. Cotreatment with HC-5404 inhibited PERK in tumors and significantly increased antitumor effects of VEGFR-TKI across multiple RCC models, resulting in tumor stasis or regression. Analysis of tumor sections revealed that HC-5404 enhanced the antiangiogenic effects of axitinib and lenvatinib by inhibiting both new vasculature and mature tumor blood vessels. Xenografts that progress on axitinib monotherapy remain sensitive to the combination treatment, resulting in ∼20% tumor regression in the combination group. When tested across a panel of 18 RCC patient-derived xenograft (PDX) models, the combination induced greater antitumor effects relative to monotherapies. In this single animal study, nine out of 18 models responded with ≥50% tumor regression from baseline in the combination group. CONCLUSIONS By disrupting an adaptive stress response evoked by VEGFR-TKI, HC-5404 presents a clinical opportunity to improve the antitumor effects of well-established standard-of-care therapies in RCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leyi Shen
- HiberCell, Inc., New York City, New York
| | | | | | - Simon J. Taylor
- Drug Discovery, Pharmaron UK Ltd., Hoddesdon, Herts, United Kingdom
| | - Kirk A. Staschke
- Indiana University School of Medicine, Indianapolis, Indiana
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | | | | | | | | | | |
Collapse
|
24
|
Liu J, Wei S, Yang L, Yu J, Yan D, Yi P. Efficacy and safety of transarterial chemoembolization plus lenvatinib with or without programmed death-1 inhibitors in the treatment of unresectable hepatocellular carcinoma: a systematic review and meta-analysis. J Cancer Res Clin Oncol 2023; 149:14451-14461. [PMID: 37563417 DOI: 10.1007/s00432-023-05231-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Programmed death-1 inhibitors plus lenvatinib and transarterial chemoembolization (TACE) (P-L-T) is a novel combination strategy. This systematic review and meta-analysis aimed to evaluate the efficacy and safety of P-L-T compared with lenvatinib and TACE (L-T) therapy in patients with unresectable hepatocellular carcinoma. METHODS A systematic literature search of the PubMed, Embase, Web of Science and Cochrane Library databases for studies investigating P-L-T therapy was performed. Data regarding outcome data, including overall survival (OS), progression-free survival (PFS), tumor response, and adverse events (AEs), were independently extracted by two authors using a standardized protocol. RESULTS Eight cohort studies comprising 847 patients (P-L-T: 416, L-T: 431) were included in the meta-analysis. The P-L-T group exhibited significantly longer OS (hazard ratio (Page et al.) 0.51 [95% confidence interval (CI) 0.42-0.62]; I2 = 9.8%; p = 0.354] and PFS (HR 0.51 [95% CI 0.43-0.61]; I2 = 0%; p = 0.824), and higher objective response rate (risk ratio [RR] 1.54 [95% CI 1.33-1.78]; I2 = 0%, p = 0.858]) and disease control rate (RR 1.27 [95% CI 1.17-1.38]; I2 = 17.3%; p = 0.467). Grade 3/4 AEs were more prevalent in the P-L-T group, including hypertension (RR 1.91 [95% CI 1.16-3.15]), vomiting or nausea (RR 2.29 [95% CI 1.01-5.19]), and hypothyroidism (RR 12.21 [95% CI 1.63-91.23]). CONCLUSION Compared with L-T combination therapy, P-L-T demonstrated a significant advantage in terms of OS, PFS, objective response rate, disease control rate, and manageable AEs.
Collapse
Affiliation(s)
- Junning Liu
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Song Wei
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Linfeng Yang
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Jiahui Yu
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Duan Yan
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Pengsheng Yi
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
25
|
Hussain Y, Singh J, Meena A, Sinha RA, Luqman S. Escin enhanced the efficacy of sorafenib by autophagy-mediated apoptosis in lung cancer cells. Phytother Res 2023; 37:4819-4837. [PMID: 37468281 DOI: 10.1002/ptr.7948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023]
Abstract
Combining anti-cancer drugs has been exploited as promising treatment strategy to target lung cancer. Synergistic chemotherapies increase anti-cancer effect and reduce effective drug doses and side effects. In this study, therapeutic potential of escin in combination with sorafenib has been explored. 3-(4,5-Dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide assay was used to calculate IC50 values. The synergy was evaluated using Chou-Talaly algorithm. Cellular reactive oxygen species, mitochondrial membrane potential, annexin V, and cell-cycle studies were done by flow-cytometer, and autophagy biomarkers expression were determined using western blotting. Moreover, autophagy was knocked down using ATG5 siRNA to confirm its role, diethylnitrosamine-induced lung cancer model was used to check the synergy of sorafenib/escin. Escin significantly reduced the IC50 of sorafenib in A549 and NCIH460 cells. The combination of sorafenib/escin produced a 2.95 and 5.45 dose reduction index for sorafenib in A549 and NCI-H460 cells. The combination of over-expressed p62 and LC3-II reflects autophagy block-mediated late apoptosis. This phenomenon was reconfirmed by ATG5 knockdown. This combination also selectively targeted G0/G1 phase of cancer cells. In in vivo study, the combination reduced tumour load and lower elevated serum biochemical parameters. The combination of sorafenib/escin synergistically inhibits autophagy to induce late apoptosis in lung cancer cells' G0/G1 phase.
Collapse
Affiliation(s)
- Yusuf Hussain
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Jyoti Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
26
|
Ahmed K, Jha S. Oncoviruses: How do they hijack their host and current treatment regimes. Biochim Biophys Acta Rev Cancer 2023; 1878:188960. [PMID: 37507056 DOI: 10.1016/j.bbcan.2023.188960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Viruses have the ability to modulate the cellular machinery of their host to ensure their survival. While humans encounter numerous viruses daily, only a select few can lead to disease progression. Some of these viruses can amplify cancer-related traits, particularly when coupled with factors like immunosuppression and co-carcinogens. The global burden of cancer development resulting from viral infections is approximately 12%, and it arises as an unfortunate consequence of persistent infections that cause chronic inflammation, genomic instability from viral genome integration, and dysregulation of tumor suppressor genes and host oncogenes involved in normal cell growth. This review provides an in-depth discussion of oncoviruses and their strategies for hijacking the host's cellular machinery to induce cancer. It delves into how viral oncogenes drive tumorigenesis by targeting key cell signaling pathways. Additionally, the review discusses current therapeutic approaches that have been approved or are undergoing clinical trials to combat malignancies induced by oncoviruses. Understanding the intricate interactions between viruses and host cells can lead to the development of more effective treatments for virus-induced cancers.
Collapse
Affiliation(s)
- Kainat Ahmed
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sudhakar Jha
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
27
|
Jiang H, Zhou S, Li G. Novel biomarkers used for early diagnosis and tyrosine kinase inhibitors as targeted therapies in colorectal cancer. Front Pharmacol 2023; 14:1189799. [PMID: 37719843 PMCID: PMC10502318 DOI: 10.3389/fphar.2023.1189799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common and second most lethal type of cancer worldwide, presenting major health risks as well as economic costs to both people and society. CRC survival chances are significantly higher if the cancer is diagnosed and treated early. With the development of molecular biology, numerous initiatives have been undertaken to identify novel biomarkers for the early diagnosis of CRC. Pathological disorders can be diagnosed at a lower cost with the help of biomarkers, which can be detected in stool, blood, and tissue samples. Several lines of evidence suggest that the gut microbiota could be used as a biomarker for CRC screening and treatment. CRC treatment choices include surgical resection, chemotherapy, immunotherapy, gene therapy, and combination therapies. Targeted therapies are a relatively new and promising modality of treatment that has been shown to increase patients' overall survival (OS) rates and can inhibit cancer cell development. Several small-molecule tyrosine kinase inhibitors (TKIs) are being investigated as potential treatments due to our increasing awareness of CRC's molecular causes and oncogenic signaling. These compounds may inhibit critical enzymes in controlling signaling pathways, which are crucial for CRC cells' development, differentiation, proliferation, and survival. On the other hand, only one of the approximately 42 TKIs that demonstrated anti-tumor effects in pre-clinical studies has been licensed for clinical usage in CRC. A significant knowledge gap exists when bringing these tailored medicines into the clinic. As a result, the emphasis of this review is placed on recently discovered biomarkers for early diagnosis as well as tyrosine kinase inhibitors as possible therapy options for CRC.
Collapse
|
28
|
Zhou J, Tu D, Peng R, Tang Y, Deng Q, Su B, Wang S, Tang H, Jin S, Jiang G, Wang Q, Jin X, Zhang C, Cao J, Bai D. RNF173 suppresses RAF/MEK/ERK signaling to regulate invasion and metastasis via GRB2 ubiquitination in Hepatocellular Carcinoma. Cell Commun Signal 2023; 21:224. [PMID: 37626338 PMCID: PMC10464048 DOI: 10.1186/s12964-023-01241-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The role of the membrane-associated RING-CH (MARCH) family in carcinogenesis has been widely studied, but the member of this family, RNF173, has not yet been thoroughly explored in the context of hepatocellular carcinoma (HCC). METHODS With the use of an HCC tissue microarray and IHC staining, we aim to determine the differential expression of RNF173 in HCC patients and its clinical significance. The biological role of RNF173 is investigated through in vitro and in vivo experiments. RNA sequencing, mass spectrometry, and immunoprecipitation are performed to uncover the underlying mechanism of RNF173's impact on the development of HCC. RESULTS The mRNA and protein levels of RNF173 were significantly lower in HCC tissues than in normal tissues. HCC patients with low RNF173 expression had shorter overall survival and recurrence-free survival, and RNF173 was significantly correlated with tumor number, tumor capsule, tumor differentiation, and BCLC stage. In addition, in vitro and in vivo experiments showed that RNF173 downregulation exacerbated tumor progression, including migration, invasion, and proliferation. GRB2 is a key molecule in the RAF/MEK/ERK pathway. RNF173 inhibits the RAF/MEK/ERK signaling by ubiquitinating and degrading GRB2, thereby suppressing HCC cell proliferation, invasion and migration. Combining clinical samples, we found that HCC patients with high RNF173 and low GRB2 expression had the best prognosis. CONCLUSION RNF173 inhibits the invasion and metastasis of HCC by ubiquitinating and degrading GRB2, thereby suppressing the RAF/MEK/ERK signaling pathway. RNF173 is an independent risk factor for the survival and recurrence of HCC patients. RNF173 may serve as a novel prognostic molecule and potential therapeutic target for HCC. Video Abstract Graphical abstract Model of RNF173 on RAF/MEK/ERK signaling. RNF173 knockdown resulted in impaired ubiquitination and degradation of GRB2, leading to the activation of the RAF/MEK/ERK signaling pathway and promotion of invasion and metastasis in HCC cells.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Daoyuan Tu
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Rui Peng
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Yuhong Tang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Qiangwei Deng
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Bingbing Su
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Shunyi Wang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Hao Tang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Shengjie Jin
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Qian Wang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Xin Jin
- Biobank, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China.
- Subei People's Hospital Hepatobiliary Surgery. Institute of General Surgery, Yangzhou, 225001, China.
| | - Jun Cao
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China.
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, China.
- Subei People's Hospital Hepatobiliary Surgery. Institute of General Surgery, Yangzhou, 225001, China.
| |
Collapse
|
29
|
Koelsch N, Mirshahi F, Aqbi HF, Saneshaw M, Idowu MO, Olex AL, Sanyal AJ, Manjili MH. The crosstalking immune cells network creates a collective function beyond the function of each cellular constituent during the progression of hepatocellular carcinoma. Sci Rep 2023; 13:12630. [PMID: 37537225 PMCID: PMC10400568 DOI: 10.1038/s41598-023-39020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
Abundance of data on the role of inflammatory immune responses in the progression or inhibition of hepatocellular carcinoma (HCC) has failed to offer a curative immunotherapy for HCC. This is largely because of focusing on detailed specific cell types and missing the collective function of the hepatic immune system. To discover the collective immune function, we take systems immunology approach by performing high-throughput analysis of snRNAseq data collected from the liver of DIAMOND mice during the progression of nonalcoholic fatty liver disease (NAFLD) to HCC. We report that mutual signaling interactions of the hepatic immune cells in a dominant-subdominant manner, as well as their interaction with structural cells shape the immunological pattern manifesting a collective function beyond the function of the cellular constituents. Such pattern discovery approach recognized direct role of the innate immune cells in the progression of NASH and HCC. These data suggest that discovery of the immune pattern not only detects the immunological mechanism of HCC in spite of dynamic changes in immune cells during the course of disease but also offers immune modulatory interventions for the treatment of NAFLD and HCC.
Collapse
Affiliation(s)
- Nicholas Koelsch
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| | - Faridoddin Mirshahi
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA, 23298, USA
| | - Hussein F Aqbi
- College of Science, Mustansiriyah University, P.O. Box 14022, Baghdad, Iraq
| | - Mulugeta Saneshaw
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA, 23298, USA
| | - Michael O Idowu
- Department of Pathology, VCU School of Medicine, Richmond, VA, 23298, USA
- Department of Microbiology & Immunology, VCU Massey Cancer Center, 401 College Street, Box 980035, Richmond, VA, 23298, USA
| | - Amy L Olex
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, USA
| | - Arun J Sanyal
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA, 23298, USA.
- Department of Microbiology & Immunology, VCU Massey Cancer Center, 401 College Street, Box 980035, Richmond, VA, 23298, USA.
| | - Masoud H Manjili
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
- Department of Microbiology & Immunology, VCU Massey Cancer Center, 401 College Street, Box 980035, Richmond, VA, 23298, USA.
| |
Collapse
|
30
|
Gordan JD, Keenan BP, Lim HC, Yarchoan M, Kelley RK. New Opportunities to Individualize Frontline Therapy in Advanced Stages of Hepatocellular Carcinoma. Drugs 2023; 83:1091-1109. [PMID: 37402062 DOI: 10.1007/s40265-023-01907-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 07/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death globally and is rising in incidence. Until recently, treatment options for patients with advanced stages of HCC have been limited to antiangiogenic therapies with modest improvements in overall survival. The emerging role of immunotherapy with immune checkpoint inhibitors (ICI) in oncology has led to a rapid expansion in treatment options and improvements in outcomes for patients with advanced stages of HCC. Recent clinical trials have shown meaningful survival improvement in patients treated with the combination of bevacizumab and atezolizumab, as well as with the combination of tremelimumab with durvalumab, resulting in regulatory approvals of these regimens as frontline therapy. Beyond improvements in overall survival, ICI-based combination regimens achieve higher rates of durable treatment response than multikinase inhibitors and have favorable side effect profiles. With the emergence of doublet anti-angiogenic and immune checkpoint inhibitor (ICI) and dual ICI combinations, individualized therapy is now possible for patients based on co-morbidity profiles and other factors. These more potent systemic therapies are also being tested in earlier stages of disease and in combination with loco-regional therapies such as trans-arterial chemoembolization and stereotactic body radiotherapy. We summarize these advances and emerging therapeutic combinations currently in clinical trials.
Collapse
Affiliation(s)
- John D Gordan
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, UC San Francisco, San Francisco, CA, USA.
| | - Bridget P Keenan
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA
- Cancer Immunotherapy Program, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA
| | - Huat Chye Lim
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, UC San Francisco, San Francisco, CA, USA
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R Katie Kelley
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA
- Cancer Immunotherapy Program, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA
| |
Collapse
|
31
|
Lee S, Kang E, Lee U, Cho S. Role of pelitinib in the regulation of migration and invasion of hepatocellular carcinoma cells via inhibition of Twist1. BMC Cancer 2023; 23:703. [PMID: 37495969 PMCID: PMC10373356 DOI: 10.1186/s12885-023-11217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Overexpression of Twist1, one of the epithelial-mesenchymal transition-transcription factors (EMT-TFs), is associated with hepatocellular carcinoma (HCC) metastasis. Pelitinib is known to be an irreversible epidermal growth factor receptor tyrosine kinase inhibitor that is used in clinical trials for colorectal and lung cancers, but the role of pelitinib in cancer metastasis has not been studied. This study aimed to investigate the anti-migration and anti-invasion activities of pelitinib in HCC cell lines. METHODS Using three HCC cell lines (Huh7, Hep3B, and SNU449 cells), the effects of pelitinib on cell cytotoxicity, invasion, and migration were determined by cell viability, wound healing, transwell invasion, and spheroid invasion assays. The activities of MMP-2 and -9 were examined through gelatin zymography. Through immunoblotting analyses, the expression levels of EMT-TFs (Snail1, Twist1, and ZEB1) and EMT-related signaling pathways such as mitogen-activated protein kinases (MAPKs) and Akt signaling pathways were measured. The activity and expression levels of target genes were analyzed by reporter assay, RT-PCR, quantitative RT-PCR, and immunoblotting analysis. Statistical analysis was performed using one-way ANOVA with Dunnett's Multiple comparison tests in Prism 3.0 to assess differences between experimental conditions. RESULTS In this study, pelitinib treatment significantly inhibited wound closure in various HCC cell lines, including Huh7, Hep3B, and SNU449. Additionally, pelitinib was found to inhibit multicellular cancer spheroid invasion and metalloprotease activities in Huh7 cells. Further investigation revealed that pelitinib treatment inhibited the migration and invasion of Huh7 cells by inducing Twist1 degradation through the inhibition of MAPK and Akt signaling pathways. We also confirmed that the inhibition of cell motility by Twist1 siRNA was similar to that observed in pelitinib-treated group. Furthermore, pelitinib treatment regulated the expression of target genes associated with EMT, as demonstrated by the upregulation of E-cadherin and downregulation of N-cadherin. CONCLUSION Based on our novel finding of pelitinib from the perspective of EMT, pelitinib has the ability to inhibit EMT activity of HCC cells via inhibition of Twist1, and this may be the potential mechanism of pelitinib on the suppression of migration and invasion of HCC cells. Therefore, pelitinib could be developed as a potential anti-cancer drug for HCC.
Collapse
Affiliation(s)
- Sewoong Lee
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eunjeong Kang
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Unju Lee
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
32
|
Duan R, Gong F, Wang Y, Huang C, Wu J, Hu L, Liu M, Qiu S, Lu L, Lin Y. Transarterial chemoembolization (TACE) plus tyrosine kinase inhibitors versus TACE in patients with hepatocellular carcinoma: a systematic review and meta-analysis. World J Surg Oncol 2023; 21:120. [PMID: 37004052 PMCID: PMC10064711 DOI: 10.1186/s12957-023-02961-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/22/2023] [Indexed: 04/03/2023] Open
Abstract
PURPOSE Transarterial chemoembolization (TACE) with tyrosine kinase inhibitors (TKIs) has been increasingly used to treat unresectable hepatocellular carcinoma (uHCC). However, the superiority of combination therapy to TACE monotherapy remains controversial. Therefore, here we performed a meta-analysis to evaluate the efficacy and safety of TACE plus TKIs in patients with uHCC. METHODS We searched four databases for eligible studies. The primary outcome was time to progression (TTP), while the secondary outcomes were overall survival (OS), tumor response rates, and adverse events (AEs). Pooled hazard ratios (HRs) with 95% confidence intervals (95% CIs) were collected for TTP and OS, and the data were analyzed using random-effects meta-analysis models in STATA software. OR and 95% CIs were used to estimate dichotomous variables (complete remission[CR], partial remission[PR], stable disease[SD], progressive disease[PD], objective response rate[ORR], disease control rate[DCR], and AEs) using RStudio's random-effects model. Quality assessments were performed using the Newcastle-Ottawa scale (NOS) for observational studies and the Cochrane risk of bias tool for randomized controlled trials (RCTs). RESULTS The meta-analysis included 30 studies (9 RCTs, 21 observational studies) with 8246 patients. We judged the risk of bias as low in 44.4% (4/9) of the RCTs and high in 55.6% (5/9) of the RCTs. All observational studies were considered of high quality, with a NOS score of at least 6. Compared with TACE alone or TACE plus placebo, TACE combined with TKIs was superior in prolonging TTP (combined HR 0.72, 95% CI 0.65-0.80), OS (combined HR 0.57, 95% CI 0.49-0.67), and objective response rate (OR 2.13, 95% CI 1.23-3.67) in patients with uHCC. However, TACE plus TKIs caused a higher incidence of AEs, especially hand-foot skin reactions (OR 87.17%, 95%CI 42.88-177.23), diarrhea (OR 18.13%, 95%CI 9.32-35.27), and hypertension (OR 12.24%, 95%CI 5.89-25.42). CONCLUSIONS Our meta-analysis found that TACE plus TKIs may be beneficial for patients with uHCC in terms of TTP, OS, and tumor response rates. However, combination therapy is also associated with a significantly increased risk of adverse reactions. Therefore, we must evaluate the clinical benefits and risks of combination therapy. Further well-designed RCTs are needed to confirm our findings. TRIAL REGISTRATION PROSPERO registration number: CRD42022298003.
Collapse
Affiliation(s)
- Ruihua Duan
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fen Gong
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Wang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Caixia Huang
- Medical Examination Center, Huizhou Central People's Hospital, Huizhou, Guangdong, China
| | - Jiaming Wu
- Zhongshan Affiliated Hospital, Guangzhou University of Chinese Medicine, Zhongshan, China
| | - Leihao Hu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, 16 Jichang Road, Guangzhou, China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Liming Lu
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yisheng Lin
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China.
- Department of Interventional Radiology, Huizhou Municipal Central Hospital, Huizhou Guangdong, China.
| |
Collapse
|
33
|
Proto-Oncogene FAM50A Can Regulate the Immune Microenvironment and Development of Hepatocellular Carcinoma In Vitro and In Vivo. Int J Mol Sci 2023; 24:ijms24043217. [PMID: 36834630 PMCID: PMC9966472 DOI: 10.3390/ijms24043217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a vital global health problem. The characteristics are high morbidity, high mortality, difficulty in early diagnosis and insensitivity to chemotherapy. The main therapeutic schemes for treating HCC mainly include Tyrosine kinase inhibitors represented by sorafenib and lenvatinib. In recent years, immunotherapy for HCC has also achieved certain results. However, a great number of patients failed to benefit from systemic therapies. FAM50A belongs to the FAM50 family and can be used as a DNA-binding protein or transcription factor. It may take part in the splicing of RNA precursors. In studies of cancer, FAM50A has been demonstrated to participate in the progression of myeloid breast cancer and chronic lymphocytic leukemia. However, the effect of FAM50A on HCC is still unknown. In this study, we have demonstrated the cancer-promoting effects and diagnostic value of FAM50A in HCC using multiple databases and surgical samples. We identified the role of FAM50A in the tumor immune microenvironment (TIME) and immunotherapy efficacy in HCC. We also proved the effects of FAM50A on the malignancy of HCC in vitro and in vivo. In conclusion, we confirmed that FAM50A is an important proto-oncogene in HCC. FAM50A acts as a diagnostic marker, immunomodulator and therapeutic target for HCC.
Collapse
|
34
|
Pang K, Wang W, Qin J, Shi Z, Hao L, Ma Y, Xu H, Wu Z, Pan D, Chen Z, Han C. Role of protein phosphorylation in cell signaling, disease, and the intervention therapy. MedComm (Beijing) 2022; 3:e175. [PMID: 36349142 PMCID: PMC9632491 DOI: 10.1002/mco2.175] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is an important post-transcriptional modification involving an extremely wide range of intracellular signaling transduction pathways, making it an important therapeutic target for disease intervention. At present, numerous drugs targeting protein phosphorylation have been developed for the treatment of various diseases including malignant tumors, neurological diseases, infectious diseases, and immune diseases. In this review article, we analyzed 303 small-molecule protein phosphorylation kinase inhibitors (PKIs) registered and participated in clinical research obtained in a database named Protein Kinase Inhibitor Database (PKIDB), including 68 drugs approved by the Food and Drug Administration of the United States. Based on previous classifications of kinases, we divided these human protein phosphorylation kinases into eight groups and nearly 50 families, and delineated their main regulatory pathways, upstream and downstream targets. These groups include: protein kinase A, G, and C (AGC) and receptor guanylate cyclase (RGC) group, calmodulin-dependent protein kinase (CaMK) group, CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group, sterile (STE)-MAPKs group, tyrosine kinases (TK) group, tyrosine kinase-like (TKL) group, atypical group, and other groups. Different groups and families of inhibitors stimulate or inhibit others, forming an intricate molecular signaling regulatory network. This review takes newly developed new PKIs as breakthrough point, aiming to clarify the regulatory network and relationship of each pathway, as well as their roles in disease intervention, and provide a direction for future drug development.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Wei Wang
- Department of Medical CollegeSoutheast UniversityNanjingJiangsuChina
| | - Jia‐Xin Qin
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Zhen‐Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Yu‐Yang Ma
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Hao Xu
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhuo‐Xun Wu
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Deng Pan
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Cong‐Hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| |
Collapse
|
35
|
Filippi L, Bagni O, Notarianni E, Saltarelli A, Ambrogi C, Schillaci O. PET/CT with 18F-choline or 18F-FDG in Hepatocellular Carcinoma Submitted to 90Y-TARE: A Real-World Study. Biomedicines 2022; 10:biomedicines10112996. [PMID: 36428565 PMCID: PMC9687226 DOI: 10.3390/biomedicines10112996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Our aim was to assess the role of positron emission computed tomography (PET/CT) with 18F-choline (18F-FCH) or 18F-fluorodeoxyglucose (18F-FDG) in hepatocellular carcinoma (HCC) submitted to 90Y-radioembolization (90Y-TARE). We retrospectively analyzed clinical records of 21 HCC patients submitted to PET/CT with 18F-fluorocholine (18F-FCH) or 18F-fluodeoxyglucose (18F-FDG) before and 8 weeks after 90Y-TARE. On pre-treatment PET/CT, 13 subjects (61.9%) were 18F-FCH-positive, while 8 (38.1%) resulted 18F-FCH-negative and 18F-FDG-positive. At 8-weeks post 90Y-TARE PET/CT, 13 subjects showed partial metabolic response and 8 resulted non-responders, with a higher response rate among 18F-FCH-positive with respect to 18F-FDG-positive patients (i.e., 76.9% vs. 37.5%, p = 0.46). Post-treatment PET/CT influenced patients’ clinical management in 10 cases (47.6%); in 8 subjects it provided indication for a second 90Y-TARE targeting metabolically active HCC remnant, while in 2 patients it led to a PET-guided radiotherapy on metastatic nodes. By Kaplan−Meier analysis, patients’ age (≤69 y) and post 90Y-TARE PET/CT’s impact on clinical management significantly correlated with overall survival (OS). In Cox multivariate analysis, PET/CT’s impact on clinical management remained the only predictor of patients’ OS (p < 0.001). In our real-world study, PET/CT with 18F-FCH or 18F-FDG influenced clinical management and affected the final outcome for HCC patients treated with 90Y-TARE.
Collapse
Affiliation(s)
- Luca Filippi
- Nuclear Medicine Unit, “Santa Maria Goretti” Hospital, Via Antonio Canova, 04100 Latina, Italy
- Correspondence: ; Tel.: +39-07736553591
| | - Oreste Bagni
- Nuclear Medicine Unit, “Santa Maria Goretti” Hospital, Via Antonio Canova, 04100 Latina, Italy
| | - Ermanno Notarianni
- Diagnostic and Interventional Unit, “Santa Maria Goretti” Hospital, Via Antonio Canova, 04100 Latina, Italy
| | - Adelchi Saltarelli
- Diagnostic and Interventional Unit, “Santa Maria Goretti” Hospital, Via Antonio Canova, 04100 Latina, Italy
| | - Cesare Ambrogi
- Diagnostic and Interventional Unit, “Santa Maria Goretti” Hospital, Via Antonio Canova, 04100 Latina, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| |
Collapse
|
36
|
The use of machine learning modeling, virtual screening, molecular docking, and molecular dynamics simulations to identify potential VEGFR2 kinase inhibitors. Sci Rep 2022; 12:18825. [PMID: 36335233 PMCID: PMC9637137 DOI: 10.1038/s41598-022-22992-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022] Open
Abstract
Targeting the signaling pathway of the Vascular endothelial growth factor receptor-2 is a promising approach that has drawn attention in the quest to develop novel anti-cancer drugs and cardiovascular disease treatments. We construct a screening pipeline using machine learning classification integrated with similarity checks of approved drugs to find new inhibitors. The statistical metrics reveal that the random forest approach has slightly better performance. By further similarity screening against several approved drugs, two candidates are selected. Analysis of absorption, distribution, metabolism, excretion, and toxicity, along with molecular docking and dynamics are performed for the two candidates with regorafenib as a reference. The binding energies of molecule1, molecule2, and regorafenib are - 89.1, - 95.3, and - 87.4 (kJ/mol), respectively which suggest candidate compounds have strong binding to the target. Meanwhile, the median lethal dose and maximum tolerated dose for regorafenib, molecule1, and molecule2 are predicted to be 800, 1600, and 393 mg/kg, and 0.257, 0.527, and 0.428 log mg/kg/day, respectively. Also, the inhibitory activity of these compounds is predicted to be 7.23 and 7.31, which is comparable with the activity of pazopanib and sorafenib drugs. In light of these findings, the two compounds could be further investigated as potential candidates for anti-angiogenesis therapy.
Collapse
|
37
|
Differential Response to Sorafenib Administration for Advanced Hepatocellular Carcinoma. Biomedicines 2022; 10:biomedicines10092277. [PMID: 36140381 PMCID: PMC9496215 DOI: 10.3390/biomedicines10092277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 01/27/2023] Open
Abstract
Sorafenib has been used to treat advanced hepatocellular carcinoma (aHCC). However, there is no evidence for a response of different target lesions to sorafenib administration. Therefore, we aimed to evaluate the effect of sorafenib on various aHCC target lesions. The outcomes of sorafenib treatment on aHCC, i.e., treatment response for all Child A status patients receiving the drug, were analyzed. Of 377 aHCC patients, 73 (19.3%) had complete/partial response to sorafenib, while 134 (35.4%) and 171 (45.2) had a stable or progressive disease, respectively, in the first six months. Of the evaluated metastatic lesions, 149 (39.4%), 48 (12.7%), 123 (32.5%), 98 (25.9%), 83 (22.0%), and 45 (11.9%) were present in liver, bone, lung, portal/hepatic vein thrombus, lymph nodes, and peritoneum, respectively. The overall survival and duration of treatment were 16.9 ± 18.3 and 8.1 ± 10.5 months (with median times of 11.4 and 4.6, respectively). Our analysis showed poor outcomes in macroscopic venous thrombus and bone, higher AFP, and multiple target lesions. ALBI grade A had a better outcome. Sorafenib administration showed good treatment outcomes in selected situations. PD patients with thrombus or multiple metastases should be considered for sorafenib second-line treatment. The ALBI liver function test should be selected as a treatment criterion.
Collapse
|
38
|
Du F, Sun H, Sun F, Yang S, Tan H, Li X, Chai Y, Jiang Q, Han D. Knockdown of TANK-Binding Kinase 1 Enhances the Sensitivity of Hepatocellular Carcinoma Cells to Molecular-Targeted Drugs. Front Pharmacol 2022; 13:924523. [PMID: 35747750 PMCID: PMC9209752 DOI: 10.3389/fphar.2022.924523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
The protein kinase, TANK-binding kinase 1 (TBK1), not only regulates various biological processes but also functions as an important regulator of human oncogenesis. However, the detailed function and molecular mechanisms of TBK1 in hepatocellular carcinoma (HCC), especially the resistance of HCC cells to molecular-targeted drugs, are almost unknown. In the present work, the role of TBK1 in regulating the sensitivity of HCC cells to molecular-targeted drugs was measured by multiple assays. The high expression of TBK1 was identified in HCC clinical specimens compared with paired non-tumor tissues. The high level of TBK1 in advanced HCC was associated with a poor prognosis in patients with advanced HCC who received the molecular-targeted drug, sorafenib, compared to patients with advanced HCC patients and a low level of TBK1. Overexpression of TBK1 in HCC cells induced their resistance to molecular-targeted drugs, whereas knockdown of TBK1 enhanced the cells’ sensitivity to molecular-targeted dugs. Regarding the mechanism, although overexpression of TBK1 enhanced expression levels of drug-resistance and pro-survival-/anti-apoptosis-related factors, knockdown of TBK1 repressed the expression of these factors in HCC cells. Therefore, TBK1 is a promising therapeutic target for HCC treatment and knockdown of TBK1 enhanced sensitivity of HCC cells to molecular-targeted drugs.
Collapse
Affiliation(s)
- Fengxia Du
- Department of Pharmacy, Medical Support Center of PLA General Hospital, Beijing, China
| | - Huiwei Sun
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
| | - Fang Sun
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
| | - Shiwei Yang
- Organ Transplant Center and Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Haidong Tan
- Organ Transplant Center and Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xiaojuan Li
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
| | - Yantao Chai
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
| | - Qiyu Jiang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
- *Correspondence: Dongdong Han, ; Qiyu Jiang,
| | - Dongdong Han
- Organ Transplant Center and Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Dongdong Han, ; Qiyu Jiang,
| |
Collapse
|
39
|
Yang C, Mai Z, Liu C, Yin S, Cai Y, Xia C. Natural Products in Preventing Tumor Drug Resistance and Related Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113513. [PMID: 35684449 PMCID: PMC9181879 DOI: 10.3390/molecules27113513] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022]
Abstract
Drug resistance is still an obstacle in cancer therapy, leading to the failure of tumor treatment. The emergence of tumor drug resistance has always been a main concern of oncologists. Therefore, overcoming tumor drug resistance and looking for new strategies for tumor treatment is a major focus in the field of tumor research. Natural products serve as effective substances against drug resistance because of their diverse chemical structures and pharmacological effects. We reviewed the signaling pathways involved in the development of tumor drug resistance, including Epidermal growth factor receptor (EGFR), Renin-angiotensin system (Ras), Phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), Wnt, Notch, Transforming growth factor-beta (TGF-β), and their specific signaling pathway inhibitors derived from natural products. This can provide new ideas for the prevention of drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Chuansheng Yang
- Department of Head-Neck and Breast Surgery, Yuebei People’s Hospital of Shantou University, Shaoguan 512027, China;
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yantao Cai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- Correspondence: (Y.C.); (C.X.)
| | - Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence: (Y.C.); (C.X.)
| |
Collapse
|
40
|
Matrone A, Gambale C, Prete A, Elisei R. Sporadic Medullary Thyroid Carcinoma: Towards a Precision Medicine. Front Endocrinol (Lausanne) 2022; 13:864253. [PMID: 35422765 PMCID: PMC9004483 DOI: 10.3389/fendo.2022.864253] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) is a neuroendocrine malignant tumor originating from parafollicular C-cells producing calcitonin. Most of cases (75%) are sporadic while the remaining (25%) are hereditary. In these latter cases medullary thyroid carcinoma can be associated (multiple endocrine neoplasia type IIA and IIB) or not (familial medullary thyroid carcinoma), with other endocrine diseases such as pheochromocytoma and/or hyperparathyroidism. RET gene point mutation is the main molecular alteration involved in MTC tumorigenesis, both in sporadic and in hereditary cases. Total thyroidectomy with prophylactic/therapeutic central compartment lymph nodes dissection is the initial treatment of choice. Further treatments are needed according to tumor burden and rate of progression. Surgical treatments and local therapies are advocated in the case of single or few local or distant metastasis and slow rate of progression. Conversely, systemic treatments should be initiated in cases with large metastatic and rapidly progressive disease. In this review, we discuss the details of systemic treatments in advanced and metastatic sporadic MTC, focusing on multikinase inhibitors, both those already used in clinical practice and under investigation, and on emerging treatments such as highly selective RET inhibitors and radionuclide therapy.
Collapse
Affiliation(s)
| | | | | | - Rossella Elisei
- Department of Clinical and Experimental Medicine, Endocrine Unit, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
41
|
Zheng H, Zheng WJ, Wang ZG, Tao YP, Huang ZP, Yang L, Ouyang L, Duan ZQ, Zhang YN, Chen BN, Xiang DM, Jin G, Fang L, Zhou F, Liang B. Decreased Expression of Programmed Death Ligand-L1 by Seven in Absentia Homolog 2 in Cholangiocarcinoma Enhances T-Cell-Mediated Antitumor Activity. Front Immunol 2022; 13:845193. [PMID: 35154166 PMCID: PMC8828655 DOI: 10.3389/fimmu.2022.845193] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 01/03/2023] Open
Abstract
N6-methyladenosine (m6A) has been reported as an important mechanism of post-transcriptional regulation. Programmed death ligand 1 (PD-L1) is a primary immune inhibitory molecule expressed on tumor cells that promotes immune evasion. In addition, seven in absentia homolog 2 (Siah2), a RING E3 ubiquitin ligase, has been involved in tumorigenesis and cancer progression. However, the role of m6A-METTL14-Siah2-PD-L1 axis in immunotherapy remains to be elucidated. In this study, we showed that METTL14, a component of the m6A methyltransferase complex, induced Siah2 expression in cholangiocarcinoma (CCA). METTL14 was shown to enrich m6A modifications in the 3'UTR region of the Siah2 mRNA, thereby promoting its degradation in an YTHDF2-dependent manner. Furthermore, co-immunoprecipitation experiments demonstrated that Siah2 interacted with PD-L1 by promoting its K63-linked ubiquitination. We also observed that in vitro and in vivo Siah2 knockdown inhibited T cells expansion and cytotoxicity by sustaining tumor cell PD-L1 expression. The METTL14-Siah2-PD-L1-regulating axis was further confirmed in human CCA specimens. Analysis of specimens from patients receiving anti-PD1 immunotherapy suggested that tumors with low Siah2 levels were more sensitive to anti-PD1 immunotherapy. Taken together, our results evidenced a new regulatory mechanism of Siah2 by METTL14-induced mRNA epigenetic modification and the potential role of Siah2 in cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Zheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Department of Reproductive Heredity Center, Changhai Hospital, Second Military Medical University, Shanghai, China,Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, China,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, China
| | - Wen-juan Zheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen-guang Wang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, China,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, China
| | - Yuan-ping Tao
- National Liver Tissue Bank, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhi-ping Huang
- Department of Hepatobiliary Surgery, General Hospital of Southern Theatre Command, Guangzhou, China
| | - Le Yang
- National Liver Tissue Bank, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Liu Ouyang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital of Second Military Medical University, Shanghai, China
| | - Zhi-qing Duan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi-nuo Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bo-ning Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dai-min Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital of Second Military Medical University, Shanghai, China
| | - Lu Fang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Lu Fang, ; Fan Zhou, ; Bo Liang,
| | - Fan Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Lu Fang, ; Fan Zhou, ; Bo Liang,
| | - Bo Liang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Lu Fang, ; Fan Zhou, ; Bo Liang,
| |
Collapse
|