1
|
Nama ASA, Sandeepa GM, Buddolla V, Mastan A. Advances in understanding therapeutic mechanisms of probiotics in cancer management, with special emphasis on breast cancer: A comprehensive review. Eur J Pharmacol 2025; 995:177410. [PMID: 39986595 DOI: 10.1016/j.ejphar.2025.177410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/01/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
The increasing global prevalence of cancer, particularly breast cancer, necessitates the development of innovative therapeutic strategies. Probiotics, proficient in promoting gut health, have emerged as promising candidates for cancer treatment due to their immunomodulatory and potential anticancer properties. This review focuses on the therapeutic mechanisms of probiotics in breast cancer, examining their anticancer efficacy through metabolic, immune, and molecular mechanisms. Probiotics enhance cancer therapies, minimize side effects, and offer new adjuvant approaches in oncology. Recent advancements discussed in the review include the utilization of probiotics as oncolytic gene expression systems and drug delivery vectors, as well as personalized probiotic interventions aimed at optimizing cancer therapy. Clinical studies are critically evaluated, highlighting both the outcomes and limitations of probiotic use in cancer patients, particularly those suffering from breast cancer. Additionally, the review explores factors influencing anticancer effects of probiotics, focusing on their role in modulating the tumor microenvironment. Challenges in translating preclinical findings to clinical practice are discussed, along with future research directions, focusing on the relationship between probiotics, the microbiome, and cancer treatment. Ultimately, this review advocates for further investigation into the therapeutic potential of probiotics in breast cancer, aiming to harness their benefits in oncology.
Collapse
Affiliation(s)
- A S Angel Nama
- Department of Biotechnology, Vikrama Simhapuri University, Nellore, 524320, India
| | - G Mary Sandeepa
- Department of Biotechnology, Vikrama Simhapuri University, Nellore, 524320, India.
| | - Viswanath Buddolla
- Dr.Buddolla's Institute of Life Sciences (A unit of Dr. Buddolla's Research and Educational Society), Tirupati, 517506, India
| | - Anthati Mastan
- Dr.Buddolla's Institute of Life Sciences (A unit of Dr. Buddolla's Research and Educational Society), Tirupati, 517506, India.
| |
Collapse
|
2
|
Sun W, Ma S, Meng D, Wang C, Zhang J. Advances in research on the intestinal microbiota in the mechanism and prevention of colorectal cancer (Review). Mol Med Rep 2025; 31:133. [PMID: 40116116 PMCID: PMC11948985 DOI: 10.3892/mmr.2025.13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025] Open
Abstract
The intestinal microbiota represents a diverse population that serves a key role in colorectal cancer (CRC) and its treatment outcomes. Advancements in sequencing have revealed notable shifts in microbial composition and diversity among individuals with CRC. Concurrently, animal models have elucidated the involvement of specific microbes such as Lactobacillus fragilis, Escherichia coli and Fusobacterium nucleatum in the progression of CRC. The present review aimed to highlight contributions of intestinal microbiota to the pathogenesis of CRC, the effects of traditional treatments on intestinal microbiota and the potential for microbiota modulation as a therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Weitong Sun
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Shize Ma
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Dongdong Meng
- Department of Medical Services, Xuzhou Morning Star Women's and Children's Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Chaoxing Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Jinbo Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| |
Collapse
|
3
|
Nakashima M, Fukumoto A, Matsuda S. Beneficial Probiotics with New Cancer Therapies for Improved Treatment of Hepatocellular Carcinoma. Diseases 2025; 13:111. [PMID: 40277821 PMCID: PMC12025462 DOI: 10.3390/diseases13040111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant form of primary liver cancer. Intricate networks linked to the host immune system may be associated with the pathogenesis of HCC. A huge amount of interdisciplinary medical information for the treatment of HCC has been accumulated over recent years. For example, advances in new immunotherapy have improved the results of treatment for HCC. This approach can be advantageously combined with standard conventional treatments such as surgical resection to improve the therapeutic effect. However, several toxic effects of treatments may pose a significant threat to human health. Now, a shift in mindset is important for achieving superior cancer therapy, where probiotic therapy may be considered, at least within the bounds of safety. The interplay between the gut microbiota and immune system could affect the efficacy of several anticancer treatments, including of immune checkpoint therapy via the alteration of Th17 cell function against various malignant tumors. Here, some recent anticancer techniques are discussed, whereby the growth of HCC may be effectively and safely repressed by probiotic therapy.
Collapse
Affiliation(s)
| | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
4
|
McDonnell KJ. Operationalizing Team Science at the Academic Cancer Center Network to Unveil the Structure and Function of the Gut Microbiome. J Clin Med 2025; 14:2040. [PMID: 40142848 PMCID: PMC11943358 DOI: 10.3390/jcm14062040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Oncologists increasingly recognize the microbiome as an important facilitator of health as well as a contributor to disease, including, specifically, cancer. Our knowledge of the etiologies, mechanisms, and modulation of microbiome states that ameliorate or promote cancer continues to evolve. The progressive refinement and adoption of "omic" technologies (genomics, transcriptomics, proteomics, and metabolomics) and utilization of advanced computational methods accelerate this evolution. The academic cancer center network, with its immediate access to extensive, multidisciplinary expertise and scientific resources, has the potential to catalyze microbiome research. Here, we review our current understanding of the role of the gut microbiome in cancer prevention, predisposition, and response to therapy. We underscore the promise of operationalizing the academic cancer center network to uncover the structure and function of the gut microbiome; we highlight the unique microbiome-related expert resources available at the City of Hope of Comprehensive Cancer Center as an example of the potential of team science to achieve novel scientific and clinical discovery.
Collapse
Affiliation(s)
- Kevin J McDonnell
- Center for Precision Medicine, Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
5
|
Berretta M, Quagliariello V, Ottaiano A, Santorsola M, Di Francia R, Carroccio P, Maurea N, Buonomo OC, Facchini G, Di Mauro G, Montopoli M, Toscano E, Gelsomino C, Picone A, Franchina T, Muscolino P, Bignucolo A, Vanni G, Ciappina G, Montella L. Multidisciplinary Integrative Medicine Approach for Cancer Patients: A Multicenter Retrospective Study. Nutrients 2025; 17:1012. [PMID: 40290037 PMCID: PMC11945461 DOI: 10.3390/nu17061012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND The use of complementary integrative medicine (CIM) by cancer patients is currently very common. The main reasons why patients turn to CIM are to improve quality of life (QoL) and support the immune system. Unfortunately, many patients rely on CIM self-prescription, neglecting the risk of interactions with anticancer treatments (ACTs). The primary objective is to demonstrate the feasibility of combining CIM and ACT in a multidisciplinary approach to improve the QoL of cancer patients and to reduce ACT's adverse events. METHODS Cancer patients were treated with CIM by expert physicians. CIM mainly consisted of vitamins C and D, the medicinal mushrooms blend U-CARE, and probiotics administered alone or in combination. The patients were followed-up by physicians and data were recorded in a detailed shared file. RESULTS A total of 54 cancer patients were treated with an integrative approach, especially during ACTs. The combination showed a good safety profile. No adverse events occurred in 92.6% of patients, whereas only 7.4% of patients experienced gastrointestinal or liver toxicity from the CIM approach. The main benefit of the CIM approach was improved fatigue and QoL, and this was mainly achieved by the concomitant use of polytherapy-based complementary medicine (PCM) and U-CARE. The toxicity improvement was mainly associated with the use of solely U-CARE. CONCLUSIONS These results highlight the feasibility of the CIM approach in cancer patients addressed by a multidisciplinary team of experts in the field. The patient-centered and evidence-based approach of CIM is an example of the comprehensive and coordinated strategy pursued by the EU in its programmatic document against cancer aiming to focus on the QoL of patients and to avoid potentially harmful CIM self-prescription.
Collapse
Affiliation(s)
- Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.B.)
- Integrative Medicine Research Group (IMRG), Noceto, 43015 Parma, Italy; (M.M.)
- Division of Medical Oncology, Policlinico “G. Martino” Hospital, University of Messina, 98125 Messina, Italy; (A.P.); (T.F.); (G.C.)
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori, Fondazione “G. Pascale”, 80131 Naples, Italy; (V.Q.); (N.M.)
| | - Alessandro Ottaiano
- SSD-Innovative Therapies for Abdominal Metastases, IRCCS “G. Pascale”, Istituto Nazionale Tumori di Napoli, Via M. Semmola, 80131 Naples, Italy; (A.O.); (M.S.)
| | - Mariachiara Santorsola
- SSD-Innovative Therapies for Abdominal Metastases, IRCCS “G. Pascale”, Istituto Nazionale Tumori di Napoli, Via M. Semmola, 80131 Naples, Italy; (A.O.); (M.S.)
| | - Raffaele Di Francia
- Gruppo Oncologico Ricercatori Italiani (GORI-Onlus), 33170 Pordenone, Italy; (R.D.F.)
| | - Patrizia Carroccio
- School of Specialization in Medical Oncology, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy; (P.C.); (G.D.M.); (E.T.); (C.G.); (P.M.)
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori, Fondazione “G. Pascale”, 80131 Naples, Italy; (V.Q.); (N.M.)
| | - Oreste Claudio Buonomo
- Breast Unit, Department of Surgical Science, PTV Policlinico Tor Vergata University, 00133 Rome, Italy; (O.C.B.); (G.V.)
- Dipartimento di Scienze della Salute, University of Basilicata, Via Nazario Sauro, 85, 85100 Potenza, Italy
| | - Gaetano Facchini
- Division of Medical Oncology, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (G.F.); (L.M.)
| | - Giordana Di Mauro
- School of Specialization in Medical Oncology, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy; (P.C.); (G.D.M.); (E.T.); (C.G.); (P.M.)
| | - Monica Montopoli
- Integrative Medicine Research Group (IMRG), Noceto, 43015 Parma, Italy; (M.M.)
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Enrica Toscano
- School of Specialization in Medical Oncology, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy; (P.C.); (G.D.M.); (E.T.); (C.G.); (P.M.)
| | - Claudia Gelsomino
- School of Specialization in Medical Oncology, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy; (P.C.); (G.D.M.); (E.T.); (C.G.); (P.M.)
| | - Antonio Picone
- Division of Medical Oncology, Policlinico “G. Martino” Hospital, University of Messina, 98125 Messina, Italy; (A.P.); (T.F.); (G.C.)
| | - Tindara Franchina
- Division of Medical Oncology, Policlinico “G. Martino” Hospital, University of Messina, 98125 Messina, Italy; (A.P.); (T.F.); (G.C.)
| | - Paola Muscolino
- School of Specialization in Medical Oncology, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy; (P.C.); (G.D.M.); (E.T.); (C.G.); (P.M.)
| | - Alessia Bignucolo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.B.)
| | - Gianluca Vanni
- Breast Unit, Department of Surgical Science, PTV Policlinico Tor Vergata University, 00133 Rome, Italy; (O.C.B.); (G.V.)
| | - Giuliana Ciappina
- Division of Medical Oncology, Policlinico “G. Martino” Hospital, University of Messina, 98125 Messina, Italy; (A.P.); (T.F.); (G.C.)
| | - Liliana Montella
- Division of Medical Oncology, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (G.F.); (L.M.)
| |
Collapse
|
6
|
Palkovsky M, Modrackova N, Neuzil-Bunesova V, Liberko M, Soumarova R. The Bidirectional Impact of Cancer Radiotherapy and Human Microbiome: Microbiome as Potential Anti-tumor Treatment Efficacy and Toxicity Modulator. In Vivo 2025; 39:37-54. [PMID: 39740900 PMCID: PMC11705129 DOI: 10.21873/invivo.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 01/02/2025]
Abstract
Microbiome and radiotherapy represent bidirectionally interacting entities. The human microbiome has emerged as a pivotal modulator of the efficacy and toxicity of radiotherapy; however, a reciprocal effect of radiotherapy on microbiome composition alterations has also been observed. This review explores the relationship between the microbiome and extracranial solid tumors, particularly focusing on the bidirectional impact of radiotherapy on organ-specific microbiome. This article aims to provide a systematic review on the radiotherapy-induced microbial alteration in-field as well as in distant microbiomes. In this review, particular focus is directed to the oral and gut microbiome, its role in the development and progression of cancer, and how it is altered throughout radiotherapy. This review concludes with recommendations for future research, such as exploring microbiome modification to optimize radiotherapy-induced toxicities or enhance its anti-cancer effects.
Collapse
Affiliation(s)
- Martin Palkovsky
- Department of Oncology, University Hospital Kralovske Vinohrady, Prague, Czech Republic;
- Charles University, Third Faculty of Medicine, Department of Oncology, Prague, Czech Republic
| | - Nikol Modrackova
- Czech University of Life Sciences Prague, Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic
| | - Vera Neuzil-Bunesova
- Czech University of Life Sciences Prague, Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic
| | - Marian Liberko
- Department of Oncology, University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Charles University, Third Faculty of Medicine, Department of Oncology, Prague, Czech Republic
| | - Renata Soumarova
- Department of Oncology, University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Charles University, Third Faculty of Medicine, Department of Oncology, Prague, Czech Republic
| |
Collapse
|
7
|
Al-Asfour A, Bhardwaj RG, Karched M. Growth Suppression of Oral Squamous Cell Carcinoma Cells by Lactobacillus Acidophilus. Int Dent J 2024; 74:1151-1160. [PMID: 38679518 PMCID: PMC11561490 DOI: 10.1016/j.identj.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVES Oral squamous cell carcinoma (OSCC) is a highly aggressive form of oral cancer. Probiotic lactobacilli have demonstrated anticancer effects, whilst their interaction with Streptococcus mutans in this context remains unexplored. The objective of this study was to investigate the antiproliferative effect of Lactobacillus acidophilus on OSCC and to understand the effect of S mutans on OSCCs and whether it affects the antiproliferative potential of L acidophilus when co-exposed to OSCC. METHODS The human head and neck squamous cell carcinoma cells of the oral cavity (HNO97 cell line) were exposed to cultures of L acidophilus and S mutans separately and in combination. Further, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to assess the viability of HNO97 cells. Bacterial adhesion to HNO97 cells was examined by confocal microscopy and apoptosis by Nexin staining. To understand the underlying mechanism of apoptosis, expression of the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) gene and protein were determined by real-time polymerase chain reaction and quantitative enzyme-linked immunosorbent assay, respectively. RESULTS A significant decrease (53%-56%) in the viability of HNO97 cells on exposure to L acidophilus, S mutans, and the 2 species together demonstrated the antiproliferative activity of L acidophilus and S mutans. Both bacteria showed adhesion to HNO97 cells. The expression of the TRAIL gene increased 5-fold in HNO97 cells on treatment with L acidophilus and S mutans, which further increased to ∼17-fold with both species present. Expression levels of the TRAIL protein were significantly (P < .05) increased in bacteria-treated cell lysates. Further, bacteria-treated HNO97 cells exhibited lower live and intact cell percentages with higher proportions of cells in early and late apoptotic stages. CONCLUSIONS L acidophilus exhibits the antiproliferative activity against OSCC cells possibly partially via a TRAIL-induced mechanism of apoptosis, which is not affected by the presence of S mutans. These findings may encourage further investigation into the possible therapeutic application of probiotic L acidophilus in OSCC.
Collapse
Affiliation(s)
- Adel Al-Asfour
- Department of Surgical Sciences, College of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Kuwait City, Kuwait; Department of Biotechnology, School of Arts and Science, American International University, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Kuwait City, Kuwait.
| |
Collapse
|
8
|
Yang Z, Zhang S, Ying L, Zhang W, Chen X, Liang Y, Chen R, Yao K, Li C, Yu C, Jamilian P, Zarezadeh M, Kord-Varkaneh H, Wang J, Li H. The effect of probiotics supplementation on cancer-treatment complications: a critical umbrella review of interventional meta-analyses. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 39002141 DOI: 10.1080/10408398.2024.2372880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Cancer-related complications pose significant challenges in the management and treatment of patients with malignancies. Several meta-analyses have indicated improving effects of probiotics on cancer complications, while some studies have reported contentious findings. The purpose of the present study was to evaluate the efficacy of probiotics in addressing cancer complications, including diarrhea, mucositis, and infections, following chemotherapy, radiotherapy, and surgery. Relevant studies were searched in the PubMed, Scopus, Embase and Web of Science databases and Google Scholar up to September 2023. All meta-analyses addressing the effects of probiotics on all cancer treatments-induced complications including infection, diarrhea and oral mucositis were included. The pooled results were calculated using a random-effects model. Analyses of subgroups, sensitivity and publication bias were also conducted. The results revealed that the probiotics supplementation was effective on reduction of total cancer complications (OR:0.53; 95% CI: 0.44, 0.62, p < 0.001; I2=79.0%, p < 0.001), total infection rate (OR:0.47; 95%CI: 0.41, 0.52, p < 0.001; I2= 48.8%, p < 0.001); diarrhea (OR:0.50; 95%CI: 0.44, 0.57, p < 0.001; I2=44.4%, p = 0.023) and severe diarrhea (OR: 0.4; 95%CI: 0.27, 0.56, p < 0.001; I2=31.3%, p = 0.178), oral mucositis (OR: 0.76; 95%CI: 0.58, 0.94, p < 0.001; I2=95.5%, p < 0.001) and severe oral mucositis (OR:0.65, 95%CI: 0.58, 0.72 p < 0.001; I2=22.1%, p = 0.274). Multi strain probiotic (OR:0.49; 95%CI: 0.32, 0.65, p < 0.001; I2=90.7%, p < 0.001) were more efficacious than single strain (OR:0.73; 95%CI: 0.66, 0.81, p < 0.001; I2=0.00%, p = 0.786). The findings of the current umbrella meta-analysis provide strong evidence that probiotic supplementation can reduce cancer complications.
Collapse
Affiliation(s)
- Zhao Yang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, China
| | - Shijie Zhang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Xinchang Pharmaceutical Factory, Zhejiang Medicine Co., Ltd, Shaoxing, China
| | - Lu Ying
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, China
| | - Wenjing Zhang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Xiaoyang Chen
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Youfeng Liang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Ruolan Chen
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Keying Yao
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Chunhui Li
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Parmida Jamilian
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
| | - Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Kord-Varkaneh
- Department of Nutrition and Food Hygiene, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jianfeng Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Hanmin Li
- Institute of Liver Diseases, Hubei Provincial Hospital of Traditional Chinese Medicine (Hubei University of Traditional Chinese Medicine Affiliated Hospital), Wuhan, Hubei Province, China
- Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Key Laboratory, Wuhan, Hubei Province, China
| |
Collapse
|
9
|
Constantin M, Chifiriuc MC, Mihaescu G, Vrancianu CO, Dobre EG, Cristian RE, Bleotu C, Bertesteanu SV, Grigore R, Serban B, Cirstoiu C. Implications of oral dysbiosis and HPV infection in head and neck cancer: from molecular and cellular mechanisms to early diagnosis and therapy. Front Oncol 2023; 13:1273516. [PMID: 38179168 PMCID: PMC10765588 DOI: 10.3389/fonc.2023.1273516] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Head and neck cancer (HNC) is the sixth most common type of cancer, with more than half a million new cases annually. This review focuses on the role of oral dysbiosis and HPV infection in HNCs, presenting the involved taxons, molecular effectors and pathways, as well as the HPV-associated particularities of genetic and epigenetic changes and of the tumor microenvironment occurred in different stages of tumor development. Oral dysbiosis is associated with the evolution of HNCs, through multiple mechanisms such as inflammation, genotoxins release, modulation of the innate and acquired immune response, carcinogens and anticarcinogens production, generation of oxidative stress, induction of mutations. Thus, novel microbiome-derived biomarkers and interventions could significantly contribute to achieving the desideratum of personalized management of oncologic patients, regarding both early diagnosis and treatment. The results reported by different studies are not always congruent regarding the variations in the abundance of different taxons in HNCs. However, there is a consistent reporting of a higher abundance of Gram-negative species such as Fusobacterium, Leptotrichia, Treponema, Porphyromonas gingivalis, Prevotella, Bacteroidetes, Haemophilus, Veillonella, Pseudomonas, Enterobacterales, which are probably responsible of chronic inflammation and modulation of tumor microenvironment. Candida albicans is the dominant fungi found in oral carcinoma being also associated with shorter survival rate. Specific microbial signatures (e.g., F. nucleatum, Bacteroidetes and Peptostreptococcus) have been associated with later stages and larger tumor, suggesting their potential to be used as biomarkers for tumor stratification and prognosis. On the other hand, increased abundance of Corynebacterium, Kingella, Abiotrophia is associated with a reduced risk of HNC. Microbiome could also provide biomarkers for differentiating between oropharyngeal and hypopharyngeal cancers as well as between HPV-positive and HPV-negative tumors. Ongoing clinical trials aim to validate non-invasive tests for microbiome-derived biomarkers detection in oral and throat cancers, especially within high-risk populations. Oro-pharyngeal dysbiosis could also impact the HNCs therapy and associated side-effects of radiotherapy, chemotherapy, and immunotherapy. HPV-positive tumors harbor fewer mutations, as well as different DNA methylation pattern and tumor microenvironment. Therefore, elucidation of the molecular mechanisms by which oral microbiota and HPV infection influence the HNC initiation and progression, screening for HPV infection and vaccination against HPV, adopting a good oral hygiene, and preventing oral dysbiosis are important tools for advancing in the battle with this public health global challenge.
Collapse
Affiliation(s)
- Marian Constantin
- Department of Microbiology, Institute of Biology of Romanian Academy, Bucharest, Romania
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Life, Medical and Agricultural Sciences, Biological Sciences Section, Romanian Academy, Bucharest, Romania
| | - Grigore Mihaescu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Elena-Georgiana Dobre
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Immunology Department, “Victor Babes” National Institute of Pathology, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Cellular and Molecular Pathology Department, Ştefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Serban Vifor Bertesteanu
- Coltea Clinical Hospital, ENT, Head & Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Raluca Grigore
- Coltea Clinical Hospital, ENT, Head & Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan Serban
- University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Catalin Cirstoiu
- University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
10
|
Minervini G, Franco R, Marrapodi MM, Fiorillo L, Badnjević A, Cervino G, Cicciù M. Probiotics in the Treatment of Radiotherapy-Induced Oral Mucositis: Systematic Review with Meta-Analysis. Pharmaceuticals (Basel) 2023; 16:ph16050654. [PMID: 37242437 DOI: 10.3390/ph16050654] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The inflammatory injury of the mucous membranes lining the digestive tract, from the mouth to the anus, is called mucositis. One of the intriguing and compelling new therapeutic modalities that has emerged in recent decades due to advances in our understanding of this condition's pathophysiology is probiotics. The purpose of this meta-analysis is to evaluate the efficiency of probiotics in the treatment of chemotherapy-induced mucositis for head and neck malignancies; a literature search was performed on PubMed, Lilacs, and Web of Science, and articles published from 2000 to 31 January 2023 were considered, according to the keywords entered. The term "Probiotics" was combined with "oral mucositis" using the Boolean connector AND; at the end of the research, 189 studies were identified from the search on the three engines. Only three were used to draw up the present systematic study and metanalysis; this meta-analysis showed that the treatment of mucositis with probiotics is an effective method, and the analysis of the results of these studies showed that the use of probiotics promoted a decrease in the severity of mucositis symptoms.
Collapse
Affiliation(s)
- Giuseppe Minervini
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", 80121 Naples, Italy
| | - Rocco Franco
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00100 Rome, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80121 Naples, Italy
| | - Luca Fiorillo
- School of Dentistry, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Almir Badnjević
- Verlab Research Institute for Biomedical Engineering, Medical Devices and Artificial Intelligence, 71000 Sarajevo, Bosnia and Herzegovina
| | - Gabriele Cervino
- School of Dentistry, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Marco Cicciù
- Department of Biomedical and Surgical and Biomedical Sciences, Catania University, 95123 Catania, Italy
| |
Collapse
|