1
|
van der Linden LR, Vavliakis I, de Groot TM, Jutte PC, Doornberg JN, Lozano-Calderon SA, Groot OQ. Artificial Intelligence in bone Metastases: A systematic review in guideline adherence of 92 studies. J Bone Oncol 2025; 52:100682. [PMID: 40337637 PMCID: PMC12056386 DOI: 10.1016/j.jbo.2025.100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 02/09/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
Background The last decade has witnessed a surge in artificial intelligence (AI). With bone metastases becoming more prevalent, there is an increasing call for personalized treatment options, a domain where AI can greatly contribute. However, integrating AI into clinical settings has proven to be difficult. Therefore, we aimed to provide an overview of AI modalities for treating bone metastases and recommend implementation-worthy models based on TRIPOD, CLAIM, and UPM scores. Methods This systematic review included 92 studies on AI models in bone metastases between 2008 and 2024. Using three assessment tools we provided a reliable foundation for recommending AI modalities fit for clinical use (TRIPOD or CLAIM ≥ 70 % and UPM score ≥ 10). Results Most models focused on survival prediction (44/92;48%), followed by imaging studies (37/92;40%). Median TRIPOD completeness was 70% (IQR 64-81%), CLAIM completeness was 57% (IQR 48-67%), and UPM score was 7 (IQR 5-9). In total, 10% (9/92) AI modalities were deemed fit for clinical use. Conclusion Transparent reporting, utilizing the aforementioned three evaluation tools, is essential for effectively integrating AI models into clinical practice, as currently, only 10% of AI models for bone metastases are deemed fit for clinical use. Such transparency ensures that both patients and clinicians can benefit from clinically useful AI models, potentially enhancing AI-driven personalized cancer treatment.
Collapse
Affiliation(s)
- Lotte R. van der Linden
- Department of Orthopaedic Surgery, University Medical Center Groningen, Groningen, the Netherlands
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Ioannis Vavliakis
- Department of Orthopaedic Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | - Tom M. de Groot
- Department of Orthopaedic Surgery, University Medical Center Groningen, Groningen, the Netherlands
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Paul C. Jutte
- Department of Orthopaedic Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | - Job N. Doornberg
- Department of Orthopaedic Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Olivier Q. Groot
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA
- Department of Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
2
|
Piras A, Morelli I, Colciago RR, Boldrini L, D'Aviero A, De Felice F, Grassi R, Iorio GC, Longo S, Mastroleo F, Desideri I, Salvestrini V. The continuous improvement of digital assistance in the radiation oncologist's work: from web-based nomograms to the adoption of large-language models (LLMs). A systematic review by the young group of the Italian association of radiotherapy and clinical oncology (AIRO). LA RADIOLOGIA MEDICA 2024; 129:1720-1735. [PMID: 39397129 DOI: 10.1007/s11547-024-01891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE Recently, the availability of online medical resources for radiation oncologists and trainees has significantly expanded, alongside the development of numerous artificial intelligence (AI)-based tools. This review evaluates the impact of web-based clinical decision-making tools in the clinical practice of radiation oncology. MATERIAL AND METHODS We searched databases, including PubMed, EMBASE, and Scopus, using keywords related to web-based clinical decision-making tools and radiation oncology, adhering to PRISMA guidelines. RESULTS Out of 2161 identified manuscripts, 70 were ultimately included in our study. These papers all supported the evidence that web-based tools can be transversally integrated into multiple radiation oncology fields, with online applications available for dose and clinical calculations, staging and other multipurpose intents. Specifically, the possible benefit of web-based nomograms for educational purposes was investigated in 35 of the evaluated manuscripts. As regards to the applications of digital and AI-based tools to treatment planning, diagnosis, treatment strategy selection and follow-up adoption, a total of 35 articles were selected. More specifically, 19 articles investigated the role of these tools in heterogeneous cancer types, while nine and seven articles were related to breast and head & neck cancers, respectively. CONCLUSIONS Our analysis suggests that employing web-based and AI tools offers promising potential to enhance the personalization of cancer treatment.
Collapse
Affiliation(s)
- Antonio Piras
- UO Radioterapia Oncologica, Villa Santa Teresa, 90011, Bagheria, Palermo, Italy
- Ri.Med Foundation, 90133, Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127, Palermo, Italy
- Radiation Oncology, Mater Olbia Hospital, Olbia, Italy
| | - Ilaria Morelli
- Radiation Oncology Unit, Department of Experimental and Clinical Biomedical Sciences, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Riccardo Ray Colciago
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, 20133, Milan, Italy
| | - Luca Boldrini
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario IRCCS "A. Gemelli", Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea D'Aviero
- Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti, Chieti, Italy
- Department of Radiation Oncology, "S.S. Annunziata" Chieti Hospital, Chieti, Italy
| | - Francesca De Felice
- Radiation Oncology, Policlinico Umberto I, Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Silvia Longo
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario IRCCS "A. Gemelli", Rome, Italy
| | - Federico Mastroleo
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Isacco Desideri
- Radiation Oncology Unit, Department of Experimental and Clinical Biomedical Sciences, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Viola Salvestrini
- Radiation Oncology Unit, Department of Experimental and Clinical Biomedical Sciences, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Papalia GF, Brigato P, Sisca L, Maltese G, Faiella E, Santucci D, Pantano F, Vincenzi B, Tonini G, Papalia R, Denaro V. Artificial Intelligence in Detection, Management, and Prognosis of Bone Metastasis: A Systematic Review. Cancers (Basel) 2024; 16:2700. [PMID: 39123427 PMCID: PMC11311270 DOI: 10.3390/cancers16152700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Metastasis commonly occur in the bone tissue. Artificial intelligence (AI) has become increasingly prevalent in the medical sector as support in decision-making, diagnosis, and treatment processes. The objective of this systematic review was to assess the reliability of AI systems in clinical, radiological, and pathological aspects of bone metastases. METHODS We included studies that evaluated the use of AI applications in patients affected by bone metastases. Two reviewers performed a digital search on 31 December 2023 on PubMed, Scopus, and Cochrane library and extracted authors, AI method, interest area, main modalities used, and main objectives from the included studies. RESULTS We included 59 studies that analyzed the contribution of computational intelligence in diagnosing or forecasting outcomes in patients with bone metastasis. Six studies were specific for spine metastasis. The study involved nuclear medicine (44.1%), clinical research (28.8%), radiology (20.4%), or molecular biology (6.8%). When a primary tumor was reported, prostate cancer was the most common, followed by lung, breast, and kidney. CONCLUSIONS Appropriately trained AI models may be very useful in merging information to achieve an overall improved diagnostic accuracy and treatment for metastasis in the bone. Nevertheless, there are still concerns with the use of AI systems in medical settings. Ethical considerations and legal issues must be addressed to facilitate the safe and regulated adoption of AI technologies. The limitations of the study comprise a stronger emphasis on early detection rather than tumor management and prognosis as well as a high heterogeneity for type of tumor, AI technology and radiological techniques, pathology, or laboratory samples involved.
Collapse
Affiliation(s)
- Giuseppe Francesco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Paolo Brigato
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Luisana Sisca
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Girolamo Maltese
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Eliodoro Faiella
- Department of Radiology and Interventional Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
- Research Unit of Radiology and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Domiziana Santucci
- Department of Radiology and Interventional Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
| | - Francesco Pantano
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Giuseppe Tonini
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Rocco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
4
|
Rizk PA, Gonzalez MR, Galoaa BM, Girgis AG, Van Der Linden L, Chang CY, Lozano-Calderon SA. Machine Learning-Assisted Decision Making in Orthopaedic Oncology. JBJS Rev 2024; 12:01874474-202407000-00005. [PMID: 38991098 DOI: 10.2106/jbjs.rvw.24.00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
» Artificial intelligence is an umbrella term for computational calculations that are designed to mimic human intelligence and problem-solving capabilities, although in the future, this may become an incomplete definition. Machine learning (ML) encompasses the development of algorithms or predictive models that generate outputs without explicit instructions, assisting in clinical predictions based on large data sets. Deep learning is a subset of ML that utilizes layers of networks that use various inter-relational connections to define and generalize data.» ML algorithms can enhance radiomics techniques for improved image evaluation and diagnosis. While ML shows promise with the advent of radiomics, there are still obstacles to overcome.» Several calculators leveraging ML algorithms have been developed to predict survival in primary sarcomas and metastatic bone disease utilizing patient-specific data. While these models often report exceptionally accurate performance, it is crucial to evaluate their robustness using standardized guidelines.» While increased computing power suggests continuous improvement of ML algorithms, these advancements must be balanced against challenges such as diversifying data, addressing ethical concerns, and enhancing model interpretability.
Collapse
Affiliation(s)
- Paul A Rizk
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marcos R Gonzalez
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bishoy M Galoaa
- Interdisciplinary Science & Engineering Complex (ISEC), Northeastern University, Boston, Massachusetts
| | - Andrew G Girgis
- Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Lotte Van Der Linden
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Connie Y Chang
- Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Santiago A Lozano-Calderon
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Zhang L, Zhao S, Yang Z, Zheng H, Lei M. An Artificial Intelligence Platform to Stratify the Risk of Experiencing Sleep Disturbance in University Students After Analyzing Psychological Health, Lifestyle, and Sports: A Multicenter Externally Validated Study. Psychol Res Behav Manag 2024; 17:1057-1071. [PMID: 38505352 PMCID: PMC10949300 DOI: 10.2147/prbm.s448698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/10/2024] [Indexed: 03/21/2024] Open
Abstract
Background Sleep problems are prevalent among university students, yet there is a lack of effective models to assess the risk of sleep disturbance. Artificial intelligence (AI) provides an opportunity to develop a platform for evaluating the risk. This study aims to develop and validate an AI platform to stratify the risk of experiencing sleep disturbance for university students. Methods A total of 2243 university students were included, with 1882 students from five universities comprising the model derivation group and 361 students from two additional universities forming the external validation group. Six machine learning techniques, including extreme gradient boosting machine (eXGBM), decision tree (DT), k-nearest neighbor (KNN), random forest (RF), neural network (NN), and support vector machine (SVM), were employed to train models using the same set of features. The models' prediction performance was assessed based on discrimination and calibration, and feature importance was determined using Shapley Additive exPlanations (SHAP) analysis. Results The prevalence of sleep disturbance was 44.69% in the model derivation group and 49.58% in the external validation group. Among the developed models, eXGBM exhibited superior performance, surpassing other models in metrics such as area under the curve (0.779, 95% CI: 0.728-0.830), accuracy (0.710), precision (0.737), F1 score (0.692), Brier score (0.193), and log loss (0.569). Calibration and decision curve analyses demonstrated favorable calibration ability and clinical net benefits, respectively. SHAP analysis identified five key features: stress score, severity of depression, vegetable consumption, age, and sedentary time. The AI platform was made available online at https://sleepdisturbancestudents-xakgzwectsw85cagdgkax9.streamlit.app/, enabling users to calculate individualized risk of sleep disturbance. Conclusion Sleep disturbance is prevalent among university students. This study presents an AI model capable of identifying students at high risk for sleep disturbance. The AI platform offers a valuable resource to guide interventions and improve sleep outcomes for university students.
Collapse
Affiliation(s)
- Lirong Zhang
- Department of Physical Education, Xiamen University of Technology, Xiamen, Fujian, 361024, People’s Republic of China
| | - Shaocong Zhao
- Department of Physical Education, Xiamen University of Technology, Xiamen, Fujian, 361024, People’s Republic of China
| | - Zhongbing Yang
- School of Physical Education, Guizhou Normal University, Guizhou, 550025, People’s Republic of China
| | - Hua Zheng
- College of Physical Education and Health Sciences, Chongqing Normal University, Chongqing, 401331, People’s Republic of China
| | - Mingxing Lei
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100039, People’s Republic of China
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing, 100039, People’s Republic of China
| |
Collapse
|
6
|
Mondello A, Dal Bo M, Toffoli G, Polano M. Machine learning in onco-pharmacogenomics: a path to precision medicine with many challenges. Front Pharmacol 2024; 14:1260276. [PMID: 38264526 PMCID: PMC10803549 DOI: 10.3389/fphar.2023.1260276] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Over the past two decades, Next-Generation Sequencing (NGS) has revolutionized the approach to cancer research. Applications of NGS include the identification of tumor specific alterations that can influence tumor pathobiology and also impact diagnosis, prognosis and therapeutic options. Pharmacogenomics (PGx) studies the role of inheritance of individual genetic patterns in drug response and has taken advantage of NGS technology as it provides access to high-throughput data that can, however, be difficult to manage. Machine learning (ML) has recently been used in the life sciences to discover hidden patterns from complex NGS data and to solve various PGx problems. In this review, we provide a comprehensive overview of the NGS approaches that can be employed and the different PGx studies implicating the use of NGS data. We also provide an excursus of the ML algorithms that can exert a role as fundamental strategies in the PGx field to improve personalized medicine in cancer.
Collapse
Affiliation(s)
| | | | | | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|
7
|
Shi X, Cui Y, Wang S, Pan Y, Wang B, Lei M. Development and validation of a web-based artificial intelligence prediction model to assess massive intraoperative blood loss for metastatic spinal disease using machine learning techniques. Spine J 2024; 24:146-160. [PMID: 37704048 DOI: 10.1016/j.spinee.2023.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND CONTEXT Intraoperative blood loss is a significant concern in patients with metastatic spinal disease. Early identification of patients at high risk of experiencing massive intraoperative blood loss is crucial as it allows for the development of appropriate surgical plans and facilitates timely interventions. However, accurate prediction of intraoperative blood loss remains limited based on prior studies. PURPOSE The purpose of this study was to develop and validate a web-based artificial intelligence (AI) model to predict massive intraoperative blood loss during surgery for metastatic spinal disease. STUDY DESIGN/SETTING An observational cohort study. PATIENT SAMPLE Two hundred seventy-six patients with metastatic spinal tumors undergoing decompressive surgery from two hospitals were included for analysis. Of these, 200 patients were assigned to the derivation cohort for model development and internal validation, while the remaining 76 were allocated to the external validation cohort. OUTCOME MEASURES The primary outcome was massive intraoperative blood loss defined as an estimated blood loss of 2,500 cc or more. METHODS Data on patients' demographics, tumor conditions, oncological therapies, surgical strategies, and laboratory examinations were collected in the derivation cohort. SMOTETomek resampling (which is a combination of Synthetic Minority Oversampling Technique and Tomek Links Undersampling) was performed to balance the classes of the dataset and obtain an expanded dataset. The patients were randomly divided into two groups in a proportion of 7:3, with the most used for model development and the remaining for internal validation. External validation was performed in another cohort of 76 patients with metastatic spinal tumors undergoing decompressive surgery from a teaching hospital. The logistic regression (LR) model, and five machine learning models, including K-Nearest Neighbor (KNN), Decision Tree (DT), XGBoosting Machine (XGBM), Random Forest (RF), and Support Vector Machine (SVM), were used to develop prediction models. Model prediction performance was evaluated using area under the curve (AUC), recall, specificity, F1 score, Brier score, and log loss. A scoring system incorporating 10 evaluation metrics was developed to comprehensively evaluate the prediction performance. RESULTS The incidence of massive intraoperative blood loss was 23.50% (47/200). The model features were comprised of five clinical variables, including tumor type, smoking status, Eastern Cooperative Oncology Group (ECOG) score, surgical process, and preoperative platelet level. The XGBM model performed the best in AUC (0.857 [95% CI: 0.827, 0.877]), accuracy (0.771), recall (0.854), F1 score (0.787), Brier score (0.150), and log loss (0.461), and the RF model ranked second in AUC (0.826 [95% CI: 0.793, 0.861]) and precise (0.705), whereas the AUC of the LR model was only 0.710 (95% CI: 0.665, 0.771), the accuracy was 0.627, the recall was 0.610, and the F1 score was 0.617. According to the scoring system, the XGBM model obtained the highest total score of 55, which signifies the best predictive performance among the evaluated models. External validation showed that the AUC of the XGBM model was also up to 0.809 (95% CI: 0.778, 0.860) and the accuracy was 0.733. The XGBM model, was further deployed online, and can be freely accessed at https://starxueshu-massivebloodloss-main-iudy71.streamlit.app/. CONCLUSIONS The XGBM model may be a useful AI tool to assess the risk of intraoperative blood loss in patients with metastatic spinal disease undergoing decompressive surgery.
Collapse
Affiliation(s)
- Xuedong Shi
- Department of Orthopedic Surgery, Peking University First Hospital, No. 8 Xishiku St, Beijing, Xicheng District, 100032, China.
| | - Yunpeng Cui
- Department of Orthopedic Surgery, Peking University First Hospital, No. 8 Xishiku St, Beijing, Xicheng District, 100032, China
| | - Shengjie Wang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, No. 222 Huanhu West Third Road, Pudong New Area, Shanghai, 200233, China
| | - Yuanxing Pan
- Department of Orthopedic Surgery, Peking University First Hospital, No. 8 Xishiku St, Beijing, Xicheng District, 100032, China
| | - Bing Wang
- Department of Orthopedic Surgery, Peking University First Hospital, No. 8 Xishiku St, Beijing, Xicheng District, 100032, China
| | - Mingxing Lei
- Department of Orthopedic Surgery, Hainan Hospital of Chinese PLA General Hospital, No. 80 Jianglin Rd, Sanya, Haitang District, 572022, China; Department of Orthopedic Surgery, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, No. 28 Fuxing Road, Beijing, Haidian District, 100039, China; Department of Orthopedic Surgery, Chinese PLA General Hospital, No. 28 Fuxing Rd, Beijing, Haidian District, 100039, China.
| |
Collapse
|
8
|
Chai R, Zhao Y, Su Z, Liang W. Integrative analysis reveals a four-gene signature for predicting survival and immunotherapy response in colon cancer patients using bulk and single-cell RNA-seq data. Front Oncol 2023; 13:1277084. [PMID: 38023180 PMCID: PMC10644708 DOI: 10.3389/fonc.2023.1277084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background Colon cancer (CC) ranks as one of the leading causes of cancer-related mortality globally. Single-cell transcriptome sequencing (scRNA-seq) offers precise gene expression data for distinct cell types. This study aimed to utilize scRNA-seq and bulk transcriptome sequencing (bulk RNA-seq) data from CC samples to develop a novel prognostic model. Methods scRNA-seq data was downloaded from the GSE161277 database. R packages including "Seurat", "Harmony", and "singleR" were employed to categorize eight major cell types within normal and tumor tissues. By comparing tumor and normal samples, differentially expressed genes (DEGs) across these major cell types were identified. Gene Ontology (GO) enrichment analyses of DEGs for each cell type were conducted using "Metascape". DEGs-based signature construction involved Cox regression and least absolute shrinkage operator (LASSO) analyses, performed on The Cancer Genome Atlas (TCGA) training cohort. Validation occurred in the GSE39582 and GSE33382 datasets. The expression pattern of prognostic genes was verified using spatial transcriptome sequencing (ST-seq) data. Ultimately, an established prognostic nomogram based on the gene signature and age was established and calibrated. Sensitivity to chemotherapeutic drugs was predicted with the "oncoPredict" R package. Results Using scRNA-Seq data, we examined 33,213 cells, categorizing them into eight cell types within normal and tumor samples. GO enrichment analysis revealed various cancer-related pathways across DEGs in these cell types. Among the 55 DEGs identified via univariate Cox regression, four independent prognostic genes emerged: PTPN6, CXCL13, SPINK4, and NPDC1. Expression validation through ST-seq confirmed PTPN6 and CXCL13 predominance in immune cells, while SPINK4 and NPDC1 were relatively epithelial cell-specific. Creating a four-gene prognostic signature, Kaplan-Meier survival analyses emphasized higher risk scores correlating with unfavorable prognoses, confirmed across training and validation cohorts. The risk score emerged as an independent prognostic factor, supported by a reliable nomogram. Intriguingly, drug sensitivity analysis unveiled contrasting anti-cancer drug responses in the two risk groups, suggesting significant clinical implications. Conclusion We developed a novel prognostic four-gene risk model, and these genes may act as potential therapeutic targets for CC.
Collapse
Affiliation(s)
- Ruoyang Chai
- Department of General Practice, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yajie Zhao
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhengjia Su
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Liang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Lei M, Wu B, Zhang Z, Qin Y, Cao X, Cao Y, Liu B, Su X, Liu Y. A Web-Based Calculator to Predict Early Death Among Patients With Bone Metastasis Using Machine Learning Techniques: Development and Validation Study. J Med Internet Res 2023; 25:e47590. [PMID: 37870889 PMCID: PMC10628690 DOI: 10.2196/47590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/05/2023] [Accepted: 08/24/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Patients with bone metastasis often experience a significantly limited survival time, and a life expectancy of <3 months is generally regarded as a contraindication for extensive invasive surgeries. In this context, the accurate prediction of survival becomes very important since it serves as a crucial guide in making clinical decisions. OBJECTIVE This study aimed to develop a machine learning-based web calculator that can provide an accurate assessment of the likelihood of early death among patients with bone metastasis. METHODS This study analyzed a large cohort of 118,227 patients diagnosed with bone metastasis between 2010 and 2019 using the data obtained from a national cancer database. The entire cohort of patients was randomly split 9:1 into a training group (n=106,492) and a validation group (n=11,735). Six approaches-logistic regression, extreme gradient boosting machine, decision tree, random forest, neural network, and gradient boosting machine-were implemented in this study. The performance of these approaches was evaluated using 11 measures, and each approach was ranked based on its performance in each measure. Patients (n=332) from a teaching hospital were used as the external validation group, and external validation was performed using the optimal model. RESULTS In the entire cohort, a substantial proportion of patients (43,305/118,227, 36.63%) experienced early death. Among the different approaches evaluated, the gradient boosting machine exhibited the highest score of prediction performance (54 points), followed by the neural network (52 points) and extreme gradient boosting machine (50 points). The gradient boosting machine demonstrated a favorable discrimination ability, with an area under the curve of 0.858 (95% CI 0.851-0.865). In addition, the calibration slope was 1.02, and the intercept-in-large value was -0.02, indicating good calibration of the model. Patients were divided into 2 risk groups using a threshold of 37% based on the gradient boosting machine. Patients in the high-risk group (3105/4315, 71.96%) were found to be 4.5 times more likely to experience early death compared with those in the low-risk group (1159/7420, 15.62%). External validation of the model demonstrated a high area under the curve of 0.847 (95% CI 0.798-0.895), indicating its robust performance. The model developed by the gradient boosting machine has been deployed on the internet as a calculator. CONCLUSIONS This study develops a machine learning-based calculator to assess the probability of early death among patients with bone metastasis. The calculator has the potential to guide clinical decision-making and improve the care of patients with bone metastasis by identifying those at a higher risk of early death.
Collapse
Affiliation(s)
- Mingxing Lei
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
- Department of Orthopedics, Hainan Hospital of Chinese PLA General Hospital, Hainan, China
- Chinese PLA Medical School, Beijing, China
| | - Bing Wu
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
- Department of Orthopedics, The First Medical Center of PLA General Hospital, Beijing, China
| | - Zhicheng Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yong Qin
- Department of Joint and Sports Medicine Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuyong Cao
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yuncen Cao
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Baoge Liu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiuyun Su
- Intelligent Medical Innovation institute, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Yaosheng Liu
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
- Department of Orthopedics, The Fifth Medical Center of PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, PLA General Hospital, Beijing, China
| |
Collapse
|