1
|
Zhu Y, Lu Z, Wang Z, Liu J, Ning K. Based on the immune system: the role of the IL-2 family in pancreatic disease. Front Immunol 2025; 16:1480496. [PMID: 39958351 PMCID: PMC11825815 DOI: 10.3389/fimmu.2025.1480496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Abstract
The IL-2 family, consisting of IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21, is a key regulator of the immune response. As an important endocrine and digestive organ, the function of the pancreas is regulated by the immune system. Studies have shown that each cytokine of the IL-2 family influences the occurrence and development of pancreatic diseases by participating in the regulation of the immune system. In this paper, we review the structural and functional characteristics of IL-2 family members, focus on their molecular mechanisms in pancreatic diseases including acute pancreatitis, chronic pancreatitis and pancreatic cancer, and highlight the importance of the related proteins in the regulation of immune response and disease progression, which will provide valuable insights for new biomarkers in pancreatic diseases, early diagnosis of the diseases, assessment of the disease severity, and development of new therapeutic regimens. The insights of the study are summarized in the following sections.
Collapse
Affiliation(s)
| | | | | | | | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
2
|
Mohammad Taheri M, Javan F, Poudineh M, Athari SS. Beyond CAR-T: The rise of CAR-NK cell therapy in asthma immunotherapy. J Transl Med 2024; 22:736. [PMID: 39103889 PMCID: PMC11302387 DOI: 10.1186/s12967-024-05534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Asthma poses a major public health burden. While existing asthma drugs manage symptoms for many, some patients remain resistant. The lack of a cure, especially for severe asthma, compels exploration of novel therapies. Cancer immunotherapy successes with CAR-T cells suggest its potential for asthma treatment. Researchers are exploring various approaches for allergic diseases including membrane-bound IgE, IL-5, PD-L2, and CTLA-4 for asthma, and Dectin-1 for fungal asthma. NK cells offer several advantages over T cells for CAR-based immunotherapy. They offer key benefits: (1) HLA compatibility, meaning they can be used in a wider range of patients without the need for matching tissue types. (2) Minimal side effects (CRS and GVHD) due to their limited persistence and cytokine profile. (3) Scalability for "off-the-shelf" production from various sources. Several strategies have been introduced that highlight the superiority and challenges of CAR-NK cell therapy for asthma treatment including IL-10, IFN-γ, ADCC, perforin-granzyme, FASL, KIR, NCRs (NKP46), DAP, DNAM-1, TGF-β, TNF-α, CCL, NKG2A, TF, and EGFR. Furthermore, we advocate for incorporating AI for CAR design optimization and CRISPR-Cas9 gene editing technology for precise gene manipulation to generate highly effective CAR constructs. This review will delve into the evolution and production of CAR designs, explore pre-clinical and clinical studies of CAR-based therapies in asthma, analyze strategies to optimize CAR-NK cell function, conduct a comparative analysis of CAR-T and CAR-NK cell therapy with their respective challenges, and finally present established novel CAR designs with promising potential for asthma treatment.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Shamseddin Athari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, Zanjan School of Medicine, Zanjan University of Medical Sciences, 12th Street, Shahrake Karmandan, Zanjan, 45139-561111, Iran.
| |
Collapse
|
3
|
Verhaar ER, van Keizerswaard WJC, Knoflook A, Balligand T, Ploegh HL. Nanobody-based CAR NK cells for possible immunotherapy of MICA + tumors. PNAS NEXUS 2024; 3:pgae184. [PMID: 38756234 PMCID: PMC11096969 DOI: 10.1093/pnasnexus/pgae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
The glycoproteins MICA and MICB are upregulated on the surface of cells undergoing stress, for instance due to (viral) infection or malignant transformation. MICA/B are the ligands for the activating receptor NKG2D, found on cytotoxic immune cells like NK cells, CD8+ T cells, and γδ T cells. Upon engagement of NKG2D, these cells are activated to eradicate the MICA/B-positive targets, assisted by the secretion of cytokines. Nanobodies, or VHHs, are derived from the variable regions of camelid heavy-chain only immunoglobulins. Nanobodies are characterized by their small size, ease of production, stability, and specificity of recognition. We generated nanobodies that recognize membrane-bound MICA with high affinity. Here, we use these nanobodies as building blocks for a chimeric antigen receptor (CAR) to establish VHH-based CAR NK cells. These anti-MICA nanobody-based CAR NK cells recognize and selectively kill MICA-positive tumor cells in vitro and in vivo. We track localization of the VHH-based CAR NK cells to MICA-positive lung metastases by immuno-positron emission tomography imaging.
Collapse
Affiliation(s)
- Elisha R Verhaar
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | | | - Anouk Knoflook
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Balligand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
4
|
Liu X, Shi J, Tian L, Xiao B, Zhang K, Zhu Y, Zhang Y, Jiang K, Zhu Y, Yuan H. Comprehensive prognostic and immune analysis of a glycosylation related risk model in pancreatic cancer. BMC Cancer 2023; 23:1229. [PMID: 38097951 PMCID: PMC10720206 DOI: 10.1186/s12885-023-11725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a malignant tumor with extremely poor prognosis, exhibiting resistance to chemotherapy and immunotherapy. Nowadays, it is ranked as the third leading cause of cancer-related mortality. Glycation is a common epigenetic modification that occurs during the tumor transformation. Many studies have demonstrated a strong correlation between glycation modification and tumor progression. However, the expression status of glycosylation-related genes (GRGs) in PC and their potential roles in PC microenvironment have not been extensively investigated. METHOD We systematically integrated RNA sequencing data and clinicopathological parameters of PC patients from TCGA and GTEx databases. A GRGs risk model based on glycosylation related genes was constructed and validated in 60 patients from Pancreatic biobank via RT-PCR. R packages were used to analyze the relationships between GRGs risk scores and overall survival (OS), tumor microenvironment, immune checkpoint, chemotherapy drug sensitivity and tumor mutational load in PC patients. Panoramic analysis was performed on PC tissues. The function of B3GNT8 in PC was detected via in vitro experiments. RESULTS In this study, we found close correlations between GRGs risk model and PC patients' overall survival and tumor microenvironment. Multifaceted predictions demonstrated the low-risk cohort exhibits superior OS compared to high-risk counterparts. Meanwhile, the low-risk group was characterized by high immune infiltration and may be more sensitive to immunotherapy or chemotherapy. Panoramic analysis was further confirmed a significant relationship between the GRGs risk score and both the distribution of PC tumor cells as well as CD8 + T cell infiltration. In addition, we also identified a unique glycosylation gene B3GNT8, which could suppress PC progression in vitro and in vivo. CONCLUSION We established a GRGs risk model, which could predict prognosis and immune infiltration in PC patients. This risk model may provide a new tool for PC precision treatment.
Collapse
Affiliation(s)
- XueAng Liu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute of Nanjing Medical University, Nanjing, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Shi
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute of Nanjing Medical University, Nanjing, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Tian
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Bin Xiao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Kai Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Yan Zhu
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - YuFeng Zhang
- Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - KuiRong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Pancreas Institute of Nanjing Medical University, Nanjing, China.
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, China.
| | - Hao Yuan
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Pancreas Institute of Nanjing Medical University, Nanjing, China.
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Zhang P, Zhang G, Wan X. Challenges and new technologies in adoptive cell therapy. J Hematol Oncol 2023; 16:97. [PMID: 37596653 PMCID: PMC10439661 DOI: 10.1186/s13045-023-01492-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
Adoptive cell therapies (ACTs) have existed for decades. From the initial infusion of tumor-infiltrating lymphocytes to the subsequent specific enhanced T cell receptor (TCR)-T and chimeric antigen receptor (CAR)-T cell therapies, many novel strategies for cancer treatment have been developed. Owing to its promising outcomes, CAR-T cell therapy has revolutionized the field of ACTs, particularly for hematologic malignancies. Despite these advances, CAR-T cell therapy still has limitations in both autologous and allogeneic settings, including practicality and toxicity issues. To overcome these challenges, researchers have focused on the application of CAR engineering technology to other types of immune cell engineering. Consequently, several new cell therapies based on CAR technology have been developed, including CAR-NK, CAR-macrophage, CAR-γδT, and CAR-NKT. In this review, we describe the development, advantages, and possible challenges of the aforementioned ACTs and discuss current strategies aimed at maximizing the therapeutic potential of ACTs. We also provide an overview of the various gene transduction strategies employed in immunotherapy given their importance in immune cell engineering. Furthermore, we discuss the possibility that strategies capable of creating a positive feedback immune circuit, as healthy immune systems do, could address the flaw of a single type of ACT, and thus serve as key players in future cancer immunotherapy.
Collapse
Affiliation(s)
- Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
6
|
Kilgour MK, Bastin DJ, Lee SH, Ardolino M, McComb S, Visram A. Advancements in CAR-NK therapy: lessons to be learned from CAR-T therapy. Front Immunol 2023; 14:1166038. [PMID: 37205115 PMCID: PMC10187144 DOI: 10.3389/fimmu.2023.1166038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Advancements in chimeric antigen receptor engineered T-cell (CAR-T) therapy have revolutionized treatment for several cancer types over the past decade. Despite this success, obstacles including the high price tag, manufacturing complexity, and treatment-associated toxicities have limited the broad application of this therapy. Chimeric antigen receptor engineered natural killer cell (CAR-NK) therapy offers a potential opportunity for a simpler and more affordable "off-the-shelf" treatment, likely with fewer toxicities. Unlike CAR-T, CAR-NK therapies are still in early development, with few clinical trials yet reported. Given the challenges experienced through the development of CAR-T therapies, this review explores what lessons we can apply to build better CAR-NK therapies. In particular, we explore the importance of optimizing the immunochemical properties of the CAR construct, understanding factors leading to cell product persistence, enhancing trafficking of transferred cells to the tumor, ensuring the metabolic fitness of the transferred product, and strategies to avoid tumor escape through antigen loss. We also review trogocytosis, an important emerging challenge that likely equally applies to CAR-T and CAR-NK cells. Finally, we discuss how these limitations are already being addressed in CAR-NK therapies, and what future directions may be possible.
Collapse
Affiliation(s)
- Marisa K. Kilgour
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | | | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Scott McComb
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Canada
| | - Alissa Visram
- Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
7
|
Ghaedrahmati F, Esmaeil N, Abbaspour M. Targeting immune checkpoints: how to use natural killer cells for fighting against solid tumors. Cancer Commun (Lond) 2022; 43:177-213. [PMID: 36585761 PMCID: PMC9926962 DOI: 10.1002/cac2.12394] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/08/2022] [Accepted: 11/15/2022] [Indexed: 01/01/2023] Open
Abstract
Natural killer (NK) cells are unique innate immune cells that mediate anti-viral and anti-tumor responses. Thus, they might hold great potential for cancer immunotherapy. NK cell adoptive immunotherapy in humans has shown modest efficacy. In particular, it has failed to demonstrate therapeutic efficiency in the treatment of solid tumors, possibly due in part to the immunosuppressive tumor microenvironment (TME), which reduces NK cell immunotherapy's efficiencies. It is known that immune checkpoints play a prominent role in creating an immunosuppressive TME, leading to NK cell exhaustion and tumor immune escape. Therefore, NK cells must be reversed from their dysfunctional status and increased in their effector roles in order to improve the efficiency of cancer immunotherapy. Blockade of immune checkpoints can not only rescue NK cells from exhaustion but also augment their robust anti-tumor activity. In this review, we discussed immune checkpoint blockade strategies with a focus on chimeric antigen receptor (CAR)-NK cells to redirect NK cells to cancer cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Farhoodeh Ghaedrahmati
- Department of ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Nafiseh Esmaeil
- Department of ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran,Research Institute for Primordial Prevention of Non‐Communicable DiseaseIsfahan University of Medical SciencesIsfahanIran
| | - Maryam Abbaspour
- Department of Pharmaceutical BiotechnologyFaculty of PharmacyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|