1
|
Tarin M, Saljooghi AS. Gasdermin E as a potential target and biomarker for CRISPR-Cas9-based cancer therapy. Biochem Pharmacol 2025; 237:116961. [PMID: 40300704 DOI: 10.1016/j.bcp.2025.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/19/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Gasdermin E (GSDME), a protein pivotal in mediating pyroptosis, has gained significant attention due to its role in cancer pathogenesis and its potential as a therapeutic target. The advent of CRISPR-Cas9, a precise genome editing tool, has revolutionized cancer therapy by enabling the manipulation of GSDME expression and function. This review explores the interplay of GSDME and CRISPR-Cas9 in cancer, emphasizing GSDME's unique mechanism of cleavage-dependent pore formation in the cell membrane and its emerging applications as both a therapeutic target and a diagnostic biomarker. We discuss the potential and challenges of using GSDME-induced pyroptosis as a therapeutic strategy and how can enhance its efficacy and specificity. We conclude by highlighting promising future research directions in this emerging field.
Collapse
Affiliation(s)
- Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Kundnani NR, Passini V, Stefania Carlogea I, Dumitrescu P, Meche V, Buzas R, Duda-Seiman DM. Overview of Oncology: Drug-Induced Cardiac Toxicity. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:709. [PMID: 40283000 PMCID: PMC12028728 DOI: 10.3390/medicina61040709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
Cancer medications can cause cardiac issues, which are difficult to treat in oncologic patients because of the risk of complications. In some cases, this may significantly impact their well-being and treatment outcomes. Overall, these complications fall under the term "drug induced cardiotoxicity", mainly due to chemotherapy drugs being specifically toxic to the heart, causing a decrease in the heart's capacity to pump blood efficiently and leading to a reduction in the left ventricular ejection fraction (LVEF), and subsequently possibly leading to heart failure. Anthracyclines, alkylating agents, and targeted therapies for cancer hold the potential of causing harmful effects on the heart. The incidence of heart-related issues varies from patient to patient and depends on multiple factors, including the type of medication, dosage, duration of the treatment, and pre-existing heart conditions. The underlying mechanism leading to oncologic-drug-induced cardiovascular harmful effects is quite complex. One particular group of drugs, called anthracyclines, have garnered attention due to their impact on oxidative stress and their ability to cause direct harm to heart muscle cells. Reactive oxygen species (ROS) cause harm by inducing damage and programmed cell death in heart cells. Conventional biomarkers alone can only indicate some degree of damage that has already occurred and, therefore, early detection is key. Novel methods like genetic profiling are being developed to detect individuals at risk, prior to the onset of clinical symptoms. Key management strategies-including early detection, personalized medicine approaches, and the use of novel biomarkers-play a crucial role in mitigating cardiotoxicity and improving patient outcomes. Identification of generated genetic alterations and the association to an increased likelihood of cardiotoxicity will allow treatment in a more personalized approach, aiming at decreasing rates of cardiac events while maintaining high oncological efficacy. Oncology drug-induced cardiotoxicity is managed through a combination of preventive strategies and therapeutic interventions from the union of cardiac and oncological knowledge.
Collapse
Affiliation(s)
- Nilima Rajpal Kundnani
- University Clinic of Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, Department VI—Cardiology, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania; (N.R.K.)
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania
| | - Vincenzo Passini
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania
| | - Iulia Stefania Carlogea
- University Clinic of Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, Department VI—Cardiology, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania; (N.R.K.)
| | - Patrick Dumitrescu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania
| | - Vlad Meche
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania
| | - Roxana Buzas
- 1st Medical Semiology, Internal Medicine, Department V, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania
- Center for Advanced Research in Cardiovascular Pathology and in Hemostaseology, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania
| | - Daniel Marius Duda-Seiman
- University Clinic of Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, Department VI—Cardiology, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania; (N.R.K.)
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania
| |
Collapse
|
3
|
Ramachandran S. Oral cancer: Recent breakthroughs in pathology and therapeutic approaches. ORAL ONCOLOGY REPORTS 2024; 12:100678. [DOI: 10.1016/j.oor.2024.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Udofa E, Sankholkar D, Mitragotri S, Zhao Z. Antibody drug conjugates in the clinic. Bioeng Transl Med 2024; 9:e10677. [PMID: 39545074 PMCID: PMC11558205 DOI: 10.1002/btm2.10677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 11/17/2024] Open
Abstract
Antibody-drug conjugates (ADCs), chemotherapeutic agents conjugated to an antibody to enhance their targeted delivery to tumors, represent a significant advancement in cancer therapy. ADCs combine the precise targeting capabilities of antibodies and the potent cell-killing effects of chemotherapy, allowing for enhanced cytotoxicity to tumors while minimizing damage to healthy tissues. Here, we provide an overview of the current clinical landscape of ADCs, highlighting 11 U.S. Food and Drug Administration (FDA)-approved products and discussing over 500 active clinical trials investigating newer ADCs. We also discuss some key challenges associated with the clinical translation of ADCs and highlight emerging strategies to overcome these hurdles. Our discussions will provide useful guidelines for the future development of safer and more effective ADCs for a broader range of indications.
Collapse
Affiliation(s)
- Edidiong Udofa
- Department of Pharmaceutical SciencesUniversity of Illinois ChicagoChicagoIllinoisUSA
| | | | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMassachusettsUSA
| | - Zongmin Zhao
- Department of Pharmaceutical SciencesUniversity of Illinois ChicagoChicagoIllinoisUSA
- University of Illinois Cancer CenterChicagoIllinoisUSA
| |
Collapse
|
5
|
Bondar D, Karpichev Y. Poly(ADP-Ribose) Polymerase (PARP) Inhibitors for Cancer Therapy: Advances, Challenges, and Future Directions. Biomolecules 2024; 14:1269. [PMID: 39456202 PMCID: PMC11506039 DOI: 10.3390/biom14101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) are crucial nuclear proteins that play important roles in various cellular processes, including DNA repair, gene transcription, and cell death. Among the 17 identified PARP family members, PARP1 is the most abundant enzyme, with approximately 1-2 million molecules per cell, acting primarily as a DNA damage sensor. It has become a promising biological target for anticancer drug studies. Enhanced PARP expression is present in several types of tumors, such as melanomas, lung cancers, and breast tumors, correlating with low survival outcomes and resistance to treatment. PARP inhibitors, especially newly developed third-generation inhibitors currently undergoing Phase II clinical trials, have shown efficacy as anticancer agents both as single drugs and as sensitizers for chemo- and radiotherapy. This review explores the properties, characteristics, and challenges of PARP inhibitors, discussing their development from first-generation to third-generation compounds, more sustainable synthesis methods for discovery of new anti-cancer agents, their mechanisms of therapeutic action, and their potential for targeting additional biological targets beyond the catalytic active site of PARP proteins. Perspectives on green chemistry methods in the synthesis of new anticancer agents are also discussed.
Collapse
Affiliation(s)
| | - Yevgen Karpichev
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), Akadeemia tee 15, 12618 Tallinn, Estonia;
| |
Collapse
|
6
|
Wen L, Hu W, Hou S, Luo C, Jin Y, Zeng Z, Zhang Z, Meng Y. GRB7 Plays a Vital Role in Promoting the Progression and Mediating Immune Evasion of Ovarian Cancer. Pharmaceuticals (Basel) 2024; 17:1043. [PMID: 39204147 PMCID: PMC11357674 DOI: 10.3390/ph17081043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/31/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Despite breakthroughs in treatment, ovarian cancer (OC) remains one of the most lethal gynecological malignancies, with an increasing age-standardized mortality rate. This underscores an urgent need for novel biomarkers and therapeutic targets. Although growth factor receptor-bound protein 7 (GRB7) is implicated in cell signaling and tumorigenesis, its expression pattern and clinical implications in OC remain poorly characterized. METHODS To systematically investigate GRB7's expression in OC, our study utilized extensive datasets from TCGA, GTEx, CCLE, and GEO. The prognostic significance of GRB7 was evaluated by means of Kaplan-Meier and Cox regression analyses. Using a correlation analysis and gene set enrichment analysis, relationships between GRB7's expression and gene networks, immune cell infiltration and immunotherapy response were investigated. In vitro experiments were conducted to confirm GRB7's function in the biology of OC. RESULTS Compared to normal tissues, OC tissues exhibited a substantial upregulation of GRB7. Reduced overall survival, disease-specific survival, and disease-free interval were all connected with high GRB7 mRNA levels. The network study demonstrated that GRB7 is involved in pathways relevant to the course of OC and has a positive connection with several key driver genes. Notably, GRB7's expression was linked to the infiltration of M2 macrophage and altered response to immunotherapy. Data from single-cell RNA sequencing data across multiple cancer types indicated GRB7's predominant expression in malignant cells. Moreover, OC cells with GRB7 deletion showed decreased proliferation and migration, as well as increased susceptibility to T cell-mediated cytotoxicity. CONCLUSION With respect to OC, our results validated GRB7 as a viable prognostic biomarker and a promising therapeutic target, providing information about its function in tumorigenesis and immune modulation. GRB7's preferential expression in malignant cells highlights its significance in the biology of cancer and bolsters the possibility that it could be useful in enhancing the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Liang Wen
- Chinese People’s Liberation Army (PLA) Medical School, Beijing 100853, China;
| | - Wei Hu
- Department of Emergency, The Fifth Medical Center of Chinese PLA Hospital, Beijing 100039, China;
| | - Sen Hou
- Department of Gastrointestinal Surgery, Peking University People’s Hospital, Beijing 100032, China;
| | - Ce Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100091, China; (C.L.); (Y.J.); (Z.Z.)
| | - Yiteng Jin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100091, China; (C.L.); (Y.J.); (Z.Z.)
| | - Zexian Zeng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100091, China; (C.L.); (Y.J.); (Z.Z.)
| | - Zhe Zhang
- Department of Obstetrics and Gynecology, Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Yuanguang Meng
- Chinese People’s Liberation Army (PLA) Medical School, Beijing 100853, China;
- Department of Obstetrics and Gynecology, Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| |
Collapse
|
7
|
Cao R, Guo S, Min L, Li P. Roles of Rictor alterations in gastrointestinal tumors (Review). Oncol Rep 2024; 51:37. [PMID: 38186315 PMCID: PMC10807360 DOI: 10.3892/or.2024.8696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Gastrointestinal tumors account for five of the top 10 causes of mortality from all cancers (colorectal, liver, stomach, esophageal and pancreatic cancer). Mammalian target of rapamycin (mTOR) signaling is commonly dysregulated in various human cancers. As a core component of the mTOR complex 2 (mTORC2), Rictor is a key effector molecule of the PI3K/Akt pathway. A high alteration rate of Rictor has been observed in gastrointestinal tumors, and such Rictor alterations are often associated with resistance to chemotherapy and related adverse clinical outcomes. However, the exact roles of Rictor in gastrointestinal tumors remain elusive. The aim of the present study was to critically discuss the following: i) Mutation and biological characteristics of Rictor in tumors with a detailed overview of Rictor in cell proliferation, angiogenesis, apoptosis, autophagy and drug resistance; ii) the role of Rictor in tumors of the digestive system, particularly colorectal, hepatobiliary, gastric, esophageal and pancreatic cancer and cholangiocarcinoma; and iii) the current status and prospects of targeted therapy for Rictor by inhibiting Akt activation. Despite the growing realization of the importance of Rictor/mTORC2 in cancer, the underlying mechanistic details remain poorly understood; this needs to change in order for the development of efficient targeted therapies and re‑sensitization of therapy‑resistant cancers to be made possible.
Collapse
Affiliation(s)
- Ruizhen Cao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Shuilong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| |
Collapse
|
8
|
Cheke RS, Kharkar PS. Covalent inhibitors: An ambitious approach for the discovery of newer oncotherapeutics. Drug Dev Res 2024; 85:e22132. [PMID: 38054744 DOI: 10.1002/ddr.22132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/04/2023] [Accepted: 10/29/2023] [Indexed: 12/07/2023]
Abstract
Covalent inhibitors have been used to treat several diseases for over a century. However, strategic approaches for the rational design of covalent drugs have taken a definitive shape in recent times. Since the first appearance of covalent inhibitors in the late 18th century, the field has grown tremendously and around 30% of marketed drugs are covalent inhibitors especially, for oncology indications. However, the off-target toxicity and safety concerns can be significant issues related to the covalent drugs. Covalent kinase inhibitor (CKI) targeted oncotherapeutics has advanced dramatically over the last two decades since the discovery of afatinib (Gilotrif®), an EGFR inhibitor. Since then, US FDA has approved 10 CKIs for diverse cancer targets. The present review broadly summarizes the ongoing development in the discovery of newer CKIs from 2016 till the end of 2022. We believe that these efforts will assist the modern medicinal chemist actively working in the field of CKI discovery for varied indications.
Collapse
Affiliation(s)
- Rameshwar S Cheke
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Prashant S Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
9
|
Jabir NR, Rehman MT, AlAjmi MF, Ahmed BA, Tabrez S. Prioritization of bioactive compounds envisaging yohimbine as a multi targeted anticancer agent: insight from molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:10463-10477. [PMID: 36533328 DOI: 10.1080/07391102.2022.2158137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Recently, multi-targeted drugs have attracted much attention in cancer therapy where several therapeutic proteins are targeted by a single agent. Using the published scientific literature, we selected sixteen well-known anticancer targets and seven potential phytobioactive chemicals to find a multitargeted compound by screening through molecular docking. The feasible protein-ligand interaction was further predicted by protein-ligand interaction analysis and molecular dynamic simulation. The phytochemical yohimbine exhibited the lowest docking score in the range of -8.3 to -10.0 kcal/mol over other ligands with all the studied protein targets. Molecular interaction data also revealed the feasible binding of yohimbine with all targets. Moreover, the molecular simulation data also confirmed the stability of protein-ligand complexes with three most scored targets viz. ERK2, PARP1 and PIK3α. Based on our results, yohimbine seems to be the most potent compound out of those selected compounds and can be considered as effective lead molecule against the studied target proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Thanjavur, Tamil Nadu, India
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bakrudeen Ali Ahmed
- Department of Biochemistry, Centre for Research and Development, PRIST University, Thanjavur, Tamil Nadu, India
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Zhou Y, Dong Y, Zhang A, Wu J, Sun Q. The role of mesenchymal stem cells derived exosomes as a novel nanobiotechnology target in the diagnosis and treatment of cancer. Front Bioeng Biotechnol 2023; 11:1214190. [PMID: 37662434 PMCID: PMC10470003 DOI: 10.3389/fbioe.2023.1214190] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs), one of the most common types of stem cells, are involved in the modulation of the tumor microenvironment (TME). With the advancement of nanotechnology, exosomes, especially exosomes secreted by MSCs, have been found to play an important role in the initiation and development of tumors. In recent years, nanobiotechnology and bioengineering technology have been gradually developed to detect and identify exosomes for diagnosis and modify exosomes for tumor treatment. Several novel therapeutic strategies bioengineer exosomes to carry drugs, proteins, and RNAs, and further deliver their encapsulated cargoes to cancer cells through the properties of exosomes. The unique properties of exosomes in cancer treatment include targeting, low immunogenicity, flexibility in modification, and high biological barrier permeability. Nevertheless, the current comprehensive understanding of the roles of MSCs and their secreted exosomes in cancer development remain inadequate. It is necessary to better understand/update the mechanism of action of MSCs-secreted exosomes in cancer development, providing insights for better modification of exosomes through bioengineering technology and nanobiotechnology. Therefore, this review focuses on the role of MSCs-secreted exosomes and bioengineered exosomes in the development, progression, diagnosis, and treatment of cancer.
Collapse
Affiliation(s)
- You Zhou
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yuqing Dong
- China Medical University and Department of Pathology, Shenyang, China
| | - Aixue Zhang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jibin Wu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Liu YL, Huang HJ, Sheu SY, Liu YC, Lee IJ, Chiang SC, Lin AMY. Oral ellagic acid attenuated LPS-induced neuroinflammation in rat brain: MEK1 interaction and M2 microglial polarization. Exp Biol Med (Maywood) 2023; 248:656-664. [PMID: 37340785 PMCID: PMC10350794 DOI: 10.1177/15353702231182230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/20/2023] [Indexed: 06/22/2023] Open
Abstract
Ellagic acid, the marker component of peels of Punica granatum L., is known traditionally to treat traumatic hemorrhage. In this study, the cellular mechanism underlying ellagic acid-induced anti-inflammation was investigated using lipopolysaccharides (LPSs) as a neuroinflammation inducer. Our in vitro data showed that LPS (1 μg/mL) consistently phosphorylated ERK and induced neuroinflammation, such as elevation in tumor necrosis factor-α (TNF-α) and nitric oxide production in treated BV-2 cells. Incubation of ellagic acid significantly inhibited LPS-induced ERK phosphorylation and subsequent neuroinflammation in treated BV-2 cells. Furthermore, our in vivo study of neuroinflammation employed an intranigral infusion of LPS that resulted in a time-dependent elevation in phosphorylated ERK levels in the infused substantia nigra (SN). Oral administration of ellagic acid (100 mg/kg) significantly attenuated LPS-induced ERK phosphorylation. A four-day treatment of ellagic acid did not alter LPS-induced ED-1 elevation but ameliorated LPS-induced reduction in CD206 and arginase-1 (two biomarkers of M2 microglia). A seven-day treatment of ellagic acid abolished LPS-induced increases in heme-oxygenase-1, cyclo-oxygenase 2, and α-synuclein trimer levels (a pathological hallmark) in the infused SN. At the same time, ellagic acid attenuated LPS-induced increases in active caspase 3 and receptor-interacting protein kinase-3 levels (respective biomarkers of apoptosis and necroptosis) as well as reduction in tyrosine hydroxylase-positive cells in the infused SN. In silico analysis showed that ellagic acid binds to the catalytic site of MEK1. Our data suggest that ellagic acid is capable of inhibiting MEK1-ERK signaling and then attenuated LPS-induced neuroinflammation, protein aggregation, and programmed cell deaths. Moreover, M2 microglial polarization is suggested as a novel antineuroinflammatory mechanism in the ellagic acid-induced neuroprotection.
Collapse
Affiliation(s)
- Yu-Ling Liu
- Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112
| | - Hui-Ju Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112
| | - Sheh-Yi Sheu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112
| | - Yu-Cheng Liu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112
| | - I-Jung Lee
- Pharmaceutical Botany Research Laboratory, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Shao-Chin Chiang
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112
- Department of Pharmacy, Koo Foundation Sun Yat-Sen Cancer center, Taipei, Taiwan
| | - Anya Maan-Yuh Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112
| |
Collapse
|
12
|
From the Catastrophic Objective Irreproducibility of Cancer Research and Unavoidable Failures of Molecular Targeted Therapies to the Sparkling Hope of Supramolecular Targeted Strategies. Int J Mol Sci 2023; 24:ijms24032796. [PMID: 36769134 PMCID: PMC9917659 DOI: 10.3390/ijms24032796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
The unprecedented non-reproducibility of the results published in the field of cancer research has recently come under the spotlight. In this short review, we try to highlight some general principles in the organization and evolution of cancerous tumors, which objectively lead to their enormous variability and, consequently, the irreproducibility of the results of their investigation. This heterogeneity is also extremely unfavorable for the effective use of molecularly targeted medicine. Against the seemingly comprehensive background of this heterogeneity, we single out two supramolecular characteristics common to all tumors: the clustered nature of tumor interactions with their microenvironment and the formation of biomolecular condensates with tumor-specific distinctive features. We suggest that these features can form the basis of strategies for tumor-specific supramolecular targeted therapies.
Collapse
|
13
|
Nomoto N, Tate S, Arai M, Iizaka S, Mori C, Sakurai K. Pretreatment Nutritional Status in Combination with Inflammation Affects Chemotherapy Interruption in Women with Ovarian, Fallopian Tube, and Peritoneal Cancer. Nutrients 2022; 14:5183. [PMID: 36501212 PMCID: PMC9741349 DOI: 10.3390/nu14235183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Discontinuing chemotherapy worsens cancer prognosis. This study aimed to investigate the relationship between nutritional status at the start of chemotherapy and chemotherapy discontinuation in patients with ovarian, fallopian tube, and primary peritoneal cancer. METHODS This was a retrospective cohort study. One hundred and forty-six patients to whom weekly paclitaxel and carboplatin were administered as postoperative chemotherapy were included. Six courses in 21-day cycles were defined as complete treatment. As nutritional indicators, body mass index, weight change rate, serum albumin, total lymphocyte count, prognostic nutritional index, and C-reactive protein-to-albumin ratio (CAR) were compared between complete and incomplete treatment groups. Patients were divided into two groups according to CAR. The number of chemotherapy cycles was compared between these two groups. A Cox proportional hazard model was used for covariate adjustment. RESULTS Several indicators differed between complete and incomplete treatment groups, and among the indicators, CAR had the highest discriminatory ability. The number of chemotherapy cycles was shorter in the high CAR group than in the low CAR group. A high CAR was associated with chemotherapy interruption even after adjusting for covariates. CONCLUSION Based on CAR, nutritional status before chemotherapy is suggested to be associated with the risk of chemotherapy discontinuation.
Collapse
Affiliation(s)
- Naoko Nomoto
- Department of Nutrition and Metabolic Medicine, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba 260-8670, Japan
- Department of Clinical Nutrition, Chiba University Hospital, Chiba 260-8677, Japan
| | - Shinichi Tate
- Division of Gynecology, Chiba University Hospital, Chiba 260-8677, Japan
| | - Makoto Arai
- Department of Medical Oncology, Chiba University Hospital, Chiba 260-8677, Japan
| | - Shinji Iizaka
- School of Nutrition, College of Nursing and Nutrition, Shukutoku University, Chiba 260-8701, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, Chiba 263-8522, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba 263-8522, Japan
| | - Kenichi Sakurai
- Department of Nutrition and Metabolic Medicine, Center for Preventive Medical Sciences, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
14
|
Kilanowska A, Ziółkowska A, Stasiak P, Gibas-Dorna M. cAMP-Dependent Signaling and Ovarian Cancer. Cells 2022; 11:cells11233835. [PMID: 36497095 PMCID: PMC9738761 DOI: 10.3390/cells11233835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
cAMP-dependent pathway is one of the most significant signaling cascades in healthy and neoplastic ovarian cells. Working through its major effector proteins-PKA and EPAC-it regulates gene expression and many cellular functions. PKA promotes the phosphorylation of cAMP response element-binding protein (CREB) which mediates gene transcription, cell migration, mitochondrial homeostasis, cell proliferation, and death. EPAC, on the other hand, is involved in cell adhesion, binding, differentiation, and interaction between cell junctions. Ovarian cancer growth and metabolism largely depend on changes in the signal processing of the cAMP-PKA-CREB axis, often associated with neoplastic transformation, metastasis, proliferation, and inhibition of apoptosis. In addition, the intracellular level of cAMP also determines the course of other pathways including AKT, ERK, MAPK, and mTOR, that are hypo- or hyperactivated among patients with ovarian neoplasm. With this review, we summarize the current findings on cAMP signaling in the ovary and its association with carcinogenesis, multiplication, metastasis, and survival of cancer cells. Additionally, we indicate that targeting particular stages of cAMP-dependent processes might provide promising therapeutic opportunities for the effective management of patients with ovarian cancer.
Collapse
Affiliation(s)
- Agnieszka Kilanowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
- Correspondence: ; Tel.: +48-683-283-148
| | - Agnieszka Ziółkowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Piotr Stasiak
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Magdalena Gibas-Dorna
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
15
|
Calvo-Martín G, Plano D, Martínez-Sáez N, Aydillo C, Moreno E, Espuelas S, Sanmartín C. Norbornene and Related Structures as Scaffolds in the Search for New Cancer Treatments. Pharmaceuticals (Basel) 2022; 15:ph15121465. [PMID: 36558915 PMCID: PMC9780886 DOI: 10.3390/ph15121465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The norbornene scaffold has arisen as a promising structure in medicinal chemistry due to its possible therapeutic application in cancer treatment. The development of norbornene-based derivatives as potential chemotherapeutic agents is attracting significant attention. Here, we report an unprecedented review on the recent advances of investigations into the antitumoral efficacy of different compounds, including the abovementioned bicyclic scaffold in their structure, in combination with chemotherapeutic agents or forming metal complexes. The impact that structural modifications to these bicyclic compounds have on the antitumoral properties and the mechanisms by which these norbornene derivatives act are discussed in this review. In addition, the use of norbornene, and its related compounds, encapsulation in nanosystems for its use in cancer therapies is here detailed.
Collapse
Affiliation(s)
- Gorka Calvo-Martín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Correspondence: (D.P.); (C.A.); Tel.: +34-948425600 (ext. 806358) (D.P.); +34-948425600 (ext. 803183) (C.A.)
| | - Nuria Martínez-Sáez
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
| | - Carlos Aydillo
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Correspondence: (D.P.); (C.A.); Tel.: +34-948425600 (ext. 806358) (D.P.); +34-948425600 (ext. 803183) (C.A.)
| | - Esther Moreno
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Socorro Espuelas
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
16
|
Damasio MPS, Nascimento CS, Andrade LM, de Oliveira VL, Calzavara-Silva CE. The role of T-cells in head and neck squamous cell carcinoma: From immunity to immunotherapy. Front Oncol 2022; 12:1021609. [PMID: 36338731 PMCID: PMC9632296 DOI: 10.3389/fonc.2022.1021609] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) encompass a group of complex entities of tumours affecting the aerodigestive upper tract. The main risk factors are strongly related to tobacco and alcohol consumption, but also HPV infection is often associated. Surgery, radiotherapy and/or chemotherapy are the standard treatments, though the 5-year overall survival is less than 50%. The advances in genomics, molecular medicine, immunology, and nanotechnology have shed a light on tumour biology which helps clinical researchers to obtain more efficacious and less toxic therapies. Head and neck tumours possess different immune escape mechanisms including diminishing the immune response through modulating immune checkpoints, in addition to the recruitment and differentiation of suppressive immune cells. The insights into the HNSCC biology and its strong interaction with the tumour microenvironment highlights the role of immunomodulating agents. Recently, the knowledge of the immunological features of these tumours has paved the way for the discovery of effective biomarkers that allow a better selection of patients with odds of improving overall survival through immunotherapy. Specially biomarkers regarding immune checkpoint inhibitors antibodies, such as anti-PD-1/PD-L1 and anti-CTLA-4 in combination with standard therapy or as monotherapy. New immunotherapies to treat head and neck cancer carcinomas, such as CAR T cells and nanoparticles have been the center of attention and in this review, we discuss the necessity of finding targets for the T cell in the cancer cells to generate CAR T cells, but also the relevance of evaluating specificity and safety of those therapies.
Collapse
Affiliation(s)
- Marcos Paulo S. Damasio
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Camila Sales Nascimento
- Grupo de pesquisa em Imunologia Celular e Molecular, Fundação Oswaldo Cruz, Instituto Rene Rachou, Belo Horizonte, MG, Brazil
| | - Lidia M. Andrade
- Departamento de Genética, Ecologia e Evolução, Departamento de Física, Nanobiomedical Research Group, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian L. de Oliveira
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, São Paulo, Brazil
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Carlos Eduardo Calzavara-Silva
- Grupo de pesquisa em Imunologia Celular e Molecular, Fundação Oswaldo Cruz, Instituto Rene Rachou, Belo Horizonte, MG, Brazil
| |
Collapse
|
17
|
Min HY, Lee HY. Molecular targeted therapy for anticancer treatment. Exp Mol Med 2022; 54:1670-1694. [PMID: 36224343 PMCID: PMC9636149 DOI: 10.1038/s12276-022-00864-3] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023] Open
Abstract
Since the initial clinical approval in the late 1990s and remarkable anticancer effects for certain types of cancer, molecular targeted therapy utilizing small molecule agents or therapeutic monoclonal antibodies acting as signal transduction inhibitors has served as a fundamental backbone in precision medicine for cancer treatment. These approaches are now used clinically as first-line therapy for various types of human cancers. Compared to conventional chemotherapy, targeted therapeutic agents have efficient anticancer effects with fewer side effects. However, the emergence of drug resistance is a major drawback of molecular targeted therapy, and several strategies have been attempted to improve therapeutic efficacy by overcoming such resistance. Herein, we summarize current knowledge regarding several targeted therapeutic agents, including classification, a brief biology of target kinases, mechanisms of action, examples of clinically used targeted therapy, and perspectives for future development.
Collapse
Affiliation(s)
- Hye-Young Min
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ho-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Associations of miR-181a with Health-Related Quality of Life, Cognitive Functioning, and Clinical Data of Patients with Different Grade Glioma Tumors. Int J Mol Sci 2022; 23:ijms231911149. [PMID: 36232448 PMCID: PMC9570445 DOI: 10.3390/ijms231911149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Gliomas are central nervous system tumors with a lethal prognosis. Small micro-RNA molecules participate in various biological processes, are tissue-specific, and, therefore, could be promising targets for cancer treatment. Thus, this study aims to examine miR-181a as a potent biomarker for the diagnosis and prognosis of glioma patients and, for the first time, to find associations between the expression level of miR-181a and patient quality of life (QoL) and cognitive functioning. The expression level of miR-181a was analyzed in 78 post-operative II-IV grade gliomas by quantitative real-time polymerase chain reaction. The expression profile was compared with patient clinical data (age, survival time after the operation, tumor grade and location, mutation status of isocitrate dehydrogenase 1 (IDH1), and promoter methylation of O-6-methylguanine methyltransferase). Furthermore, the health-related QoL was assessed using the Karnofsky performance scale and the quality of life questionnaires; while cognitive assessment was assessed by the Hopkins verbal learning test-revised, trail-making test, and phonemic fluency tasks. The expression of miR-181a was significantly lower in tumors of grade III and IV and was associated with IDH1 wild-type gliomas and a worse prognosis of patient overall survival. Additionally, a positive correlation was observed between miR-181a levels and functional status and QoL of glioma patients. Therefore, miR-181a is a unique molecule that plays an important role in gliomagenesis, and is also associated with changes in patients’ quality of life.
Collapse
|