1
|
Xiao Y, He M, Zhang X, Yang M, Yuan Z, Yao S, Qin Y. Research progress on the mechanism of tumor cell ferroptosis regulation by epigenetics. Epigenetics 2025; 20:2500949. [PMID: 40327848 PMCID: PMC12064064 DOI: 10.1080/15592294.2025.2500949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025] Open
Abstract
Cancer remains a significant barrier to human longevity and a leading cause of mortality worldwide. Despite advancements in cancer therapies, challenges such as cellular toxicity and drug resistance to chemotherapy persist. Regulated cell death (RCD), once regarded as a passive process, is now recognized as a programmed mechanism with distinct biochemical and morphological characteristics, thereby presenting new therapeutic opportunities. Ferroptosis, a novel form of RCD characterized by iron-dependent lipid peroxidation and unique mitochondrial damage, differs from apoptosis, autophagy, and necroptosis. It is driven by reactive oxygen species (ROS)-induced lipid peroxidation and is implicated in tumorigenesis, anti-tumor immunity, and resistance, particularly in tumors undergoing epithelial-mesenchymal transition. Moreover, ferroptosis is associated with ischemic organ damage, degenerative diseases, and aging, regulated by various cellular metabolic processes, including redox balance, iron metabolism, and amino acid, lipid, and glucose metabolism. This review focuses on the role of epigenetic factors in tumor ferroptosis, exploring their mechanisms and potential applications in cancer therapy. It synthesizes current knowledge to provide a comprehensive understanding of epigenetic regulation in tumor cell ferroptosis, offering insights for future research and clinical applications.
Collapse
Affiliation(s)
- Yuyang Xiao
- Department of Health Management Medical, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mengyang He
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xupeng Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Meng Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhangchi Yuan
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shanhu Yao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Medical Information Research, Central South University, Changsha, Hunan, China
| | - Yuexiang Qin
- Department of Health Management Medical, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Li MH, Yang Y, Dong QQ, Tao H, Lu C, Yang JJ. Novel epitranscriptomic and epigenetic therapeutic strategies and targets for ferroptosis in liver fibrosis. Eur J Pharmacol 2025; 996:177344. [PMID: 40015597 DOI: 10.1016/j.ejphar.2025.177344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
Liver fibrosis is characterized by an excessive accumulation of extracellular matrix (ECM) and the activation of hepatic stellate cells (HSCs), which are influenced by epitranscriptomic and epigenetic factors. Recent advancements in epigenetic and epitranscriptomic research have revealed new opportunities for therapeutic interventions, particularly through the regulation of ferroptosis, a type of programmed cell death that is specifically linked to iron-dependent lipid peroxidation. In the context of liver fibrosis, a progressive scarring process that can progress to cirrhosis and ultimately end-stage liver disease, targeting these regulatory mechanisms to modulate ferroptosis presents a promising therapeutic strategy. This review aims to consolidate current knowledge on the epigenetic and epitranscriptomic control of ferroptosis and investigate its potential implications for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Ming-Hui Li
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Center for Scientific Research and Experiment, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yang Yang
- Department of General Surgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Qi-Qi Dong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Center for Scientific Research and Experiment, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Center for Scientific Research and Experiment, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Chao Lu
- First Affiliated Hospital, Anhui University of Science & Technology, Huainan, 232001, China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Center for Scientific Research and Experiment, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
3
|
Ajam-Hosseini M, Babashah S. Exploring ferroptosis and miRNAs: implications for cancer modulation and therapy. Mol Cell Biochem 2025; 480:3455-3476. [PMID: 39869280 DOI: 10.1007/s11010-024-05169-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/16/2024] [Indexed: 01/28/2025]
Abstract
Ferroptosis is a novel, iron-dependent form of non-apoptotic cell death characterized by the accumulation of lipid reactive oxygen species (ROS) and mitochondrial shrinkage. It is closely associated with the onset and progression of various diseases, especially cancer, at all stages, making it a key focus of research for developing therapeutic strategies. Numerous studies have explored the role of microRNAs (miRNAs) in regulating ferroptosis by modulating the expression of critical genes involved in iron metabolism and lipid peroxidation. Due to their diversity, unique properties, and dynamic expression patterns in diseases, exosomal miRNAs are emerging as promising biomarkers. Exosomes act as biological messengers, delivering miRNAs to target cells through specific internalization, thus influencing the ferroptosis response in recipient cells. This review summarizes the roles of miRNAs, with particular focus on exosomal miRNAs, in ferroptosis and their implications for cancer pathology. By examining the molecular mechanisms of miRNAs, we aim to provide valuable insights into potential therapeutic approaches.
Collapse
Affiliation(s)
- Mobarakeh Ajam-Hosseini
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
| |
Collapse
|
4
|
Safari MH, Rahimzadeh P, Alaei E, Alimohammadi M, Esfandiari N, Daneshi S, Malgard N, Farahani N, Taheriazam A, Hashemi M. Targeting ferroptosis in gastrointestinal tumors: Interplay of iron-dependent cell death and autophagy. Mol Cell Probes 2025; 79:102013. [PMID: 39837469 DOI: 10.1016/j.mcp.2025.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Ferroptosis is a regulated cell death mechanism distinct from apoptosis, autophagy, and necroptosis, marked by iron accumulation and lipid peroxidation. Since its identification in 2012, it has developed into a potential therapeutic target, especially concerning GI disorders like PC, HCC, GC, and CRC. This interest arises from the distinctive role of ferroptosis in the progression of diseases, presenting a new avenue for treatment where existing therapies fall short. Recent studies emphasize the promise of focusing on ferroptosis to fight GI cancers, showcasing its unique pathophysiological mechanisms compared to other types of cell death. By comprehending how ferroptosis aids in the onset and advancement of GI diseases, scientists aim to discover novel drug targets and treatment approaches. Investigating ferroptosis in gastrointestinal disorders reveals exciting possibilities for novel therapies, potentially revolutionizing cancer treatment and providing renewed hope for individuals affected by these tumors.
Collapse
Affiliation(s)
- Mohamad Hosein Safari
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Negin Esfandiari
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Neda Malgard
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Cao S, Wei Y, Yue Y, Wang D, Xiong A, Zeng H. Deciphering Epigenetic and Post-Translational Modifications in Ferroptosis: A Scientometric and Visualization Study. Int J Med Sci 2025; 22:508-527. [PMID: 39898258 PMCID: PMC11783085 DOI: 10.7150/ijms.104222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/09/2024] [Indexed: 02/04/2025] Open
Abstract
Background: Recent research emphasizes the significant regulatory functions of epigenetic alterations and post-translational modifications (PTMs) in the ferroptosis process. Despite the existing volume of literature, there is a remarkable shortage of comprehensive analyses that systematically trace the evolution of research, map key investigative routes, evaluate the current situation of the field, determine central themes, and predict future directions. This study intends to offer a comprehensive summary of the progress achieved during the past 12 years in comprehending how epigenetic modifications and PTMs regulate ferroptosis. Methods: The dataset originated from the Web of Science, covering the period from January 1, 2012, to May 21, 2024. By employing advanced analytical tools, we carried out an extensive scientometric assessment in combination with detailed visual data analysis. Results: The results emphasize the crucial role of China, which contributes 69.59% of the global research output, thereby demonstrating its significant influence on the research trajectory in this domain. Remarkable productivity is manifested at institutions such as Central South University, Shanghai Jiao Tong University, and Zhejiang University. Liu Shuang and Tang Daolin stand out as the most productive authors in this field. The journal Cell Death & Disease leads in terms of publication volume, having published the greatest number of articles related to this area. This study identified hepatocellular carcinoma, mitochondrial diseases, and iron overload as the most prominent diseases explored in this research domain. Conclusion: This meticulous scientometric assessment is beneficial to both experienced researchers and newcomers by providing essential information and facilitating the derivation of innovative concepts in this field.
Collapse
Affiliation(s)
- Siyang Cao
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yihao Wei
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Department of Rehabilitation Science, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People's Republic of China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, People's Republic of China
| | - Yaohang Yue
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Deli Wang
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Ao Xiong
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Hui Zeng
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
6
|
Ouyang S, Zeng Z, He J, Luo L. Epigenetic regulation of targeted ferroptosis: A new strategy for drug development. J Pharm Anal 2024; 14:101012. [PMID: 39850234 PMCID: PMC11755343 DOI: 10.1016/j.jpha.2024.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 01/25/2025] Open
Abstract
Ferroptosis is a newly discovered form of cell death that is influenced by iron levels and is triggered by cellular metabolism and excessive lipid peroxidation. Epigenetic regulation plays a crucial role in the development and progression of diseases, making it essential to understand these mechanisms in order to identify potential targets for drug development and clinical treatment. The intersection of ferroptosis and epigenetics has opened up new avenues for research in drug development, offering innovative strategies for combating diseases. Recent studies have shown that epigenetic modifications can impact pathways related to ferroptosis, potentially leading to organ dysfunction. Despite the increasing focus on this relationship, the role of epigenetic regulation in drug development remains largely unexplored. This article explores current research on the interplay between epigenetic regulation and ferroptosis, delving into their regulatory mechanisms and discussing the effects of existing epigenetic modification regulators on diseases. Additionally, we highlight ongoing research on epigenetic factors involved in targeting ferroptosis in cancer, providing new insights for the development of cancer treatments.
Collapse
Affiliation(s)
- Shengli Ouyang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Zeyao Zeng
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jieyi He
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
7
|
Liu M, Gao S, Wang Y, Yang X, Fang H, Hou X. Discovery of a Novel Benzimidazole Derivative Targeting Histone Deacetylase to Induce Ferroptosis and Trigger Immunogenic Cell Death. J Med Chem 2024; 67:15098-15117. [PMID: 39145486 DOI: 10.1021/acs.jmedchem.4c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Ferroptosis is a unique type of cell death, characterized by its reliance on iron dependency and lipid peroxidation (LPO). Consequently, small-molecule ferroptosis modulators have garnered substantial interest as a promising avenue for cancer therapy. Herein, we explored the ferroptosis sensitivity of epigenetic modulators and found that the antiproliferative effects of class I histone deacetylase (HDAC) inhibitors are significantly reliant on ferroptosis. Subsequently, we developed a novel series of HDAC inhibitors, identifying HL-5s with robust inhibitory activity against class I HDACs, particularly HDAC1. Notably, HL-5s induces ferroptosis by augmenting LPO production. Mechanistically, HL-5s increased the YB-1 acetylation and inhibited the Nrf2/HO-1 signaling pathway. Furthermore, HL-5s not only significantly suppresses tumor growth in the PC-9 xenograft model but also remodels the tumor microenvironment in the LLC allograft model. Our study has unveiled that class I HDAC inhibitors can exert antitumor effects by triggering ferroptosis, and HL-5s may serve as a promising candidate for future cancer treatment.
Collapse
Affiliation(s)
- Meng Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Shan Gao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yong Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 26003, P. R. China
| | - Xinying Yang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Hao Fang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xuben Hou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
8
|
Dong J, Ruan B, Zhang L, Wei A, Li C, Tang N, Zhu L, Jiang Q, Cao W. DNA Methylation-Mediated GPX4 Transcriptional Repression and Osteoblast Ferroptosis Promote Titanium Particle-Induced Osteolysis. RESEARCH (WASHINGTON, D.C.) 2024; 7:0457. [PMID: 39161535 PMCID: PMC11331012 DOI: 10.34133/research.0457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/27/2024] [Indexed: 08/21/2024]
Abstract
Metal wear particles generated by the movement of joint prostheses inevitably lead to aseptic osteolytic damage and ultimately prosthesis loosening, which are aggravated by various types of regulated cell death of bone. Nevertheless, the exact cellular nature and regulatory network underlying osteoferroptosis are poorly understood. Here, we report that titanium particles (TP) induced severe peri-implant osteolysis and ferroptotic changes with concomitant transcriptional repression of a key anti-ferroptosis factor, GPX4, in a mouse model of calvarial osteolysis. GPX4 repression was accompanied by an increase in DNA methyltransferases (DNMTs) 1/3a/3b and hypermethylation of the Gpx4 promoter, which were partly mediated by the transcriptional regulator/co-repressor KLF5 and NCoR. Conversely, treatment with SGI-1027, a DNMT-specific inhibitor, resulted in marked reversal of Gpx4 promoter hypermethylation and GPX4 repression, as well as improvement in ferroptotic osteolysis to a similar extent as with a ferroptosis inhibitor, liproxstatin-1. This suggests that epigenetic GPX4 repression and ferroptosis caused by the increase of DNMT1/3a/3b have a causal influence on TP-induced osteolysis. In cultured primary osteoblasts and osteoclasts, GPX4 repression and ferroptotic changes were observed primarily in osteoblasts that were alleviated by SGI-1027 in a GPX4 inactivation-sensitive manner. Furthermore, we developed a mouse strain with Gpx4 haplodeficiency in osteoblasts (Gpx4 Ob+/-) that exhibited worsened ferroptotic osteolysis in control and TP-treated calvaria and largely abolished the anti-ferroptosis and osteoprotective effects of SGI-1027. Taken together, our results demonstrate that DNMT1/3a/3b elevation, resulting GPX4 repression, and osteoblastic ferroptosis form a critical epigenetic pathway that significantly contributes to TP-induced osteolysis, and that targeting DNMT aberration and the associated osteoferroptosis could be a potential strategy to prevent or slow down prosthesis-related osteolytic complications.
Collapse
Affiliation(s)
- Jian Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital,
Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Binjia Ruan
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
| | - Lijun Zhang
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
| | - Ai Wei
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
| | - Chuling Li
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
| | - Neng Tang
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
| | - Linxi Zhu
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital,
Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wangsen Cao
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
- Yancheng Medical Research Center, Yancheng First People’s Hospital,
Affiliated Hospital of Nanjing University Medical School, Yancheng, China
- Yangzhou Precision Research Institute of Kidney Disease, Department of Nephrology, Northern Jiangsu People’s Hospital, Yangzhou, China
| |
Collapse
|
9
|
Tuerhong A, Xu J, Wang W, Shi S, Meng Q, Hua J, Liu J, Zhang B, Yu X, Liang C. CPT1B maintains redox homeostasis and inhibits ferroptosis to induce gemcitabine resistance via the KEAP1/NRF2 axis in pancreatic cancer. Surgery 2024; 175:1264-1275. [PMID: 38302326 DOI: 10.1016/j.surg.2023.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/31/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Although we have made progress in treatment and have increased the 5-year survival by ≤30% in pancreatic cancer, chemotherapy resistance remains a major obstacle. However, whether reprogrammed lipid metabolism contributes to chemoresistance still needs to be further studied. METHODS Gene expression was determined using Western blotting and quantitative reverse transcription polymerase chain reaction. Cell cloning formation assay, Cell Counting Kit-8, EdU assay, wound healing assay, transwell assay, and flow cytometry were used to detect apoptosis, cell proliferation capacity, migration capacity, and cytotoxicity of gemcitabine. Confocal fluorescence microscopy, transmission electron microscopy, etc., were used to detect the changes in intracellular reactive oxygen species, glutathione, lipid peroxidation level, and cell morphology. An animal study was performed to evaluate the effect of CPT1B knockdown on tumor growth and gemcitabine efficacy. RESULTS In our study, we observed that the CPT1B expression level was higher in pancreatic ductal adenocarcinoma tissues than in normal tissues and correlated with a low rate of survival. Moreover, silencing of CPT1B significantly suppressed the proliferative ability and metastasis of pancreatic cancer cells. Furthermore, we discovered that CPT1B interacts with Kelch-like ECH-associated protein 1, and CPT1B knockdown led to decreased NRF2 expression and ferroptosis induction. In addition, CPT1B expression increased after gemcitabine treatment, and it was highly expressed in gemcitabine-resistant pancreatic ductal adenocarcinoma cells. Finally, we discovered that ferroptosis induced by CPT1B knockdown enhanced the gemcitabine toxicity in pancreatic ductal adenocarcinoma. CONCLUSION CPT1B may act as a promising target in treating patients with gemcitabine-resistant pancreatic ductal adenocarcinoma .
Collapse
Affiliation(s)
- Abudureyimu Tuerhong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China.
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China.
| |
Collapse
|
10
|
Barrio E, Lerma-Puertas D, Jaulín-Pueyo JJ, Labarta JI, Gascón-Catalán A. Epigenetic modifications in the ferroptosis pathway in cord blood cells from newborns of smoking mothers and their influence on fetal growth. Reprod Toxicol 2024; 125:108581. [PMID: 38552991 DOI: 10.1016/j.reprotox.2024.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Maternal smoking during pregnancy increases oxidative stress and decreases antioxidant capacity in newborns. Uncontrolled oxidative stress plays a role in fetal development disorders and in adverse perinatal outcomes. In order to identify molecular pathways involved in low fetal growth, epigenetic modifications in newborns of smoking and non-smoking mothers were examined. Low birth weight newborns of mothers who smoked more than 10 cigarettes per day during the first trimester of pregnancy and normal birth weight newborns of mothers who did not smoke during pregnancy were included in the study. DNA was extracted from umbilical cord blood of term newborns. 125 differentially methylated regions were identified by MeDIP-Seq. Functional analysis revealed several pathways, such as ferroptosis, that were enriched in differentially methylated genes after prenatal smoke exposure. GPX4 and PCBP1 were found to be hypermethylated and associated with low fetal growth. These epigenetic modifications in ferroptosis pathway genes in newborns of smoking mothers can potentially contribute to intrauterine growth restriction through the induction of cell death via lipid peroxidation of cell membranes. The identification of epigenetic modifications in the ferroptosis pathway sheds light on the potential mechanisms underlying the pathophysiology of low birth weight in infants born to smoking mothers.
Collapse
Affiliation(s)
- Eva Barrio
- Facultad de Medicina, Universidad de Zaragoza, Spain
| | - Diego Lerma-Puertas
- Facultad de Medicina, Universidad de Zaragoza, Spain; Servicio de Obstetricia y Ginecología, Hospital Universitario Clínico Lozano Blesa, Zaragoza, Spain
| | - José Javier Jaulín-Pueyo
- Facultad de Medicina, Universidad de Zaragoza, Spain; Servicio de Pediatría. Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - José Ignacio Labarta
- Facultad de Medicina, Universidad de Zaragoza, Spain; Servicio de Pediatría. Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | |
Collapse
|
11
|
Li Z, Wang Q, Huang X, Fu R, Wen X, Zhang L. Multi-omics analysis reveals that ferroptosis-related gene CISD2 is a prognostic biomarker of head and neck squamous cell carcinoma. J Gene Med 2024; 26:e3580. [PMID: 37581006 DOI: 10.1002/jgm.3580] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/24/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignancy, with high mortality rate and unavailability of accurate therapies. However, its early prevention remains a challenge. In the purview of predictive, preventive, and personalized medicine (PPPM), it is paramount to identify novel and powerful biomarkers. CISD2 is a crucial regulator of iron homeostasis and reactive oxygen species (ROS). Recent studies showed that the NEET protein (NAF-1) encoded by CISD2 is involved in regulating the proliferation and metastasis of tumor cells. Nevertheless, the prognostic value and immunological correlations of CISD2 remain unclear. METHODS Bioinformatics analyses conducted utilizing data from comprehensive databases The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). All statistical evaluations were executed employing R software. RESULTS Our investigation of biological function, enrichment pathway, and immune correlation revealed a discernable linkage between CISD2 and the immune response. Moreover, we found that the suppression of CISD2 is associated with immune cell infiltration and various immune signatures. CONCLUSIONS The present study successfully revealed the potential prognostic and biological function of CISD2 in HNSCC. High expression of CISD2 are linked to gender, race, grade, etc., can notably enhance the early detection, prognosis, and prediction for individuals afflicted with HNSCC.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Rao Fu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xutao Wen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
12
|
Zhang L, Chen F, Dong J, Wang R, Bi G, Xu D, Zhang Y, Deng Y, Lin W, Yang Z, Cao W. HDAC3 aberration-incurred GPX4 suppression drives renal ferroptosis and AKI-CKD progression. Redox Biol 2023; 68:102939. [PMID: 37890360 PMCID: PMC10638610 DOI: 10.1016/j.redox.2023.102939] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Acute kidney injury (AKI) progression to chronic kidney disease (CKD) represents a unique renal disease setting characterized by early renal cellular injury and regulated cell death, and later renal fibrosis, of which the critical role and nature of ferroptosis are only partially understood. Here, we report that renal tubular epithelial ferroptosis caused by HDAC3 (histone deacetylase 3) aberration and the resultant GPX4 suppression drives AKI-CKD progression. In mouse models of AKI-CKD transition induced by nephrotoxic aristolochic acid (AA) and folic acid (FA), renal tubular epithelial ferroptosis occurred early that coincided with preferential HDAC3 elevation and marked suppression of a core anti-ferroptosis enzyme GPX4 (glutathione peroxidase 4). Intriguingly, genetic Hdac3 knockout or administration of a HDAC3-selective inhibitor RGFP966 effectively mitigated the GPX4 suppression, ferroptosis and the fibrosis-associated renal functional loss. In cultured tubular epithelial cells, HDAC3 over-expression or inhibition inversely affected GPX4 abundances. Further analysis revealed that Gpx4 promoter contains a typical binding motif of transcription factor KLF5 (Kruppel-like factor 5). HDAC3 and KLF5 inducibly associated and bound to Gpx4 promoter upon AA treatment, leading to local histone hypoacetylation and GPX4 transactivation inhibition, which was blocked by RGFP966 and a KLF5 inhibitor ML264, respectively, suggesting that KLF5 co-regulated the HDAC3-incurred Gpx4 transcription inhibition. More importantly, in AKI-CKD mice receiving a GPX4 inactivator RSL3, the anti-ferroptosis and renoprotective effects of RGFP966 were largely abrogated, indicating that GPX4 is an essential downstream mediator of the HDAC3 aberration and renal ferroptosis during AKI-CKD transition. Together, our study identified a critical epigenetic pathway of ferroptosis during AKI-CKD transition and suggested that the strategies preserving GPX4 by HDAC3 inhibition are potentially effective to reduce renal ferroptosis and slow AKI-CKD progression.
Collapse
Affiliation(s)
- Lijun Zhang
- Yancheng Medical Research Center of Nanjing University Medical School, Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, China; Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine, Nanjing, China
| | - Fang Chen
- Yancheng Medical Research Center of Nanjing University Medical School, Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, China
| | - Jian Dong
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine, Nanjing, China
| | - Rong Wang
- Yangzhou Precision Research Institute of Kidney Disease, Department of Nephrology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Guangyu Bi
- Yangzhou Precision Research Institute of Kidney Disease, Department of Nephrology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Daoliang Xu
- Yangzhou Precision Research Institute of Kidney Disease, Department of Nephrology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yingwei Zhang
- Department of Respirology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yijun Deng
- Yancheng Medical Research Center of Nanjing University Medical School, Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, China
| | - Wenjun Lin
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhongzhou Yang
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine, Nanjing, China.
| | - Wangsen Cao
- Yancheng Medical Research Center of Nanjing University Medical School, Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, China; Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine, Nanjing, China; Yangzhou Precision Research Institute of Kidney Disease, Department of Nephrology, Northern Jiangsu People's Hospital, Yangzhou, China.
| |
Collapse
|
13
|
Lee J, Roh JL. Epigenetic modulation of ferroptosis in cancer: Identifying epigenetic targets for novel anticancer therapy. Cell Oncol (Dordr) 2023; 46:1605-1623. [PMID: 37438601 DOI: 10.1007/s13402-023-00840-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Ferroptosis is a newly recognized form of oxidative-regulated cell death resulting from iron-mediated lipid peroxidation accumulation. Radical-trapping antioxidant systems can eliminate these oxidized lipids and prevent disrupting the integrity of cell membranes. Epigenetic modifications can regulate ferroptosis by altering gene expression or cell phenotype without permanent sequence changes. These mechanisms include DNA methylation, histone modifications, RNA modifications, and noncoding RNAs. Epigenetic alterations in cancer can control the expression of ferroptosis regulators or related pathways, leading to changes in cell sensitivity to ferroptosis inducers or cancer progression. Epigenetic alterations in cancer are influenced by a wide range of cancer hallmarks, contributing to therapeutic resistance. Targeting epigenetic alterations is a promising approach to overcoming cancer resilience. However, the exact mechanisms involved in different types of cancer remain unresolved. Discovering more ferroptosis-associated epigenetic targets and interventions can help overcome current barriers in anticancer therapy. Many papers on epigenetic modifications of ferroptosis have been continuously published, making it essential to summarize the current state-of-the-art in the epigenetic regulation of ferroptosis in human cancer.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, 13496, Republic of Korea.
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
14
|
Rabitha R, Shivani S, Showket Y, Sudhandiran G. Ferroptosis regulates key signaling pathways in gastrointestinal tumors: Underlying mechanisms and therapeutic strategies. World J Gastroenterol 2023; 29:2433-2451. [PMID: 37179581 PMCID: PMC10167906 DOI: 10.3748/wjg.v29.i16.2433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023] Open
Abstract
Ferroptosis is an emerging novel form of non-apoptotic, regulated cell death that is heavily dependent on iron and characterized by rupture in plasma membrane. Ferroptosis is distinct from other regulated cell death modalities at the biochemical, morphological, and molecular levels. The ferroptotic signature includes high membrane density, cytoplasmic swelling, condensed mitochondrial membrane, and outer mitochondrial rupture with associated features of accumulation of reactive oxygen species and lipid peroxidation. The selenoenzyme glutathione peroxidase 4, a key regulator of ferroptosis, greatly reduces the lipid overload and protects the cell membrane against oxidative damage. Ferroptosis exerts a momentous role in regulating cancer signaling pathways and serves as a therapeutic target in cancers. Dysregulated ferroptosis orchestrates gastrointestinal (GI) cancer signaling pathways leading to GI tumors such as colonic cancer, pancreatic cancer, and hepatocellular carcinoma. Crosstalk exists between ferroptosis and other cell death modalities. While apoptosis and autophagy play a detrimental role in tumor progression, depending upon the factors associated with tumor microenvironment, ferroptosis plays a decisive role in either promoting tumor growth or suppressing it. Several transcription factors, such as TP53, activating transcription factors 3 and 4, are involved in influencing ferroptosis. Importantly, several molecular mediators of ferroptosis, such as p53, nuclear factor erythroid 2-related factor 2/heme oxygenase-1, hypoxia inducible factor 1, and sirtuins, coordinate with ferroptosis in GI cancers. In this review, we elaborated on key molecular mechanisms of ferroptosis and the signaling pathways that connect ferroptosis to GI tumors.
Collapse
Affiliation(s)
- Ravichandiran Rabitha
- Department of Biochemistry, University of Madras, Cell Biology Research Laboratory, Chennai 600 025, Tamil Nadu, India
| | - Sethuraman Shivani
- Department of Biochemistry, University of Madras, Cell Biology Research Laboratory, Chennai 600 025, Tamil Nadu, India
| | - Yahya Showket
- Department of Biochemistry, University of Madras, Cell Biology Research Laboratory, Chennai 600 025, Tamil Nadu, India
| | - Ganapasam Sudhandiran
- Department of Biochemistry, University of Madras, Cell Biology Research Laboratory, Chennai 600 025, Tamil Nadu, India
| |
Collapse
|
15
|
Lee J, Roh JL. Targeting GPX4 in human cancer: Implications of ferroptosis induction for tackling cancer resilience. Cancer Lett 2023; 559:216119. [PMID: 36893895 DOI: 10.1016/j.canlet.2023.216119] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/25/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
Cancer metabolic alterations have been emphasized to protect cancer cells from cell death. The metabolic reprogramming toward a mesenchymal state makes cancer cells resistant to therapy but vulnerable to ferroptosis induction. Ferroptosis is a new form of regulated cell death based on the iron-dependent accumulation of excessive lipid peroxidation. Glutathione peroxidase 4 (GPX4) is the core regulator of ferroptosis by detoxifying cellular lipid peroxidation using glutathione as a cofactor. GPX4 synthesis requires selenium incorporation into the selenoprotein through isopentenylation and selenocysteine tRNA maturation. GPX4 synthesis and expression can be regulated by multiple levels of its transcription, translation, posttranslational modifications, and epigenetic modifications. Targeting GPX4 in cancer may be a promising strategy for effectively inducing ferroptosis and killing therapy-resistant cancer. Several pharmacological therapeutics targeting GPX4 have been developed constantly to activate ferroptosis induction in cancer. The potential therapeutic index of GPX4 inhibitors remains to be tested with thorough examinations of their safety and adverse effects in vivo and clinical trials. Many papers have been published continuously in recent years, requiring state-of-the-art updates in targeting GPX4 in cancer. Herein, we summarize targeting the GPX4 pathway in human cancer, which leads to implications of ferroptosis induction for tackling cancer resilience.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
16
|
Epigenetic Regulation of Ferroptosis in Central Nervous System Diseases. Mol Neurobiol 2023; 60:3584-3599. [PMID: 36847936 DOI: 10.1007/s12035-023-03267-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
Ferroptosis, a newly identified form of cell death, is characterized by iron overload and accumulation of lipid reactive oxygen species. Inactivation of pathways, such as glutathione/glutathione peroxidase 4, NAD(P)H/ferroptosis suppressor protein 1/ubiquinone, dihydroorotate dehydrogenase/ubiquinol, or guanosine triphosphate cyclohydrolase-1/6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin pathways, have been found to induce ferroptosis. The accumulating data suggest that epigenetic regulation can determine cell sensitivity to ferroptosis at both the transcriptional and translational levels. While many of the effectors that regulate ferroptosis have been mapped, epigenetic regulation in ferroptosis is not yet fully understood. Neuronal ferroptosis is a driver in several central nervous system (CNS) diseases, such as stroke, Parkinson's disease, traumatic brain injury, and spinal cord injury, and thus, research on how to inhibit neuronal ferroptosis is required to develop novel therapies for these diseases. In this review, we have summarized epigenetic regulation of ferroptosis in these CNS diseases, focusing in particular on DNA methylation, non-coding RNA regulation, and histone modification. Understanding epigenetic regulation in ferroptosis will hasten the development of promising therapeutic strategies in CNS diseases associated with ferroptosis.
Collapse
|
17
|
Induction of ferroptosis in head and neck cancer: A novel bridgehead for fighting cancer resilience. Cancer Lett 2022; 546:215854. [PMID: 35973621 DOI: 10.1016/j.canlet.2022.215854] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/11/2022]
Abstract
Most head and neck cancers (HNCs) originate from mucosal epithelial cells and show epithelial traits. It often changes to a mesenchymal or poorly differentiated state as cancer progresses, leading to invasion, metastasis, and resistance to treatment. The loss of epithelial traits by the epithelial-mesenchymal transition may render resilient cancers vulnerable to a novel non-apoptotic regulated cell death ferroptosis by the iron-dependent accumulation of excessive lipid peroxidation. By regulating mitochondrial or iron metabolism, intracellular ferrous iron and lipid peroxidation accumulation can be boosted, making resistant cancer cells more susceptible to ferroptosis. This article discusses the potential effect of ferroptosis induction as a novel treatment for resilient HNCs.
Collapse
|