1
|
Huang K, Wen XQ, Zhang W, Wang JX, Liang Y, Li WQ, Wang YH, Liang MM, Jing AR, Ma J, Zhang X, Liu Y, Gao J. Predictive Value of 5-Methoxytryptophan on Long-Term Clinical Outcome after PCI in Patients with Acute Myocardial Infarction-a Prospective Cohort Study. J Cardiovasc Transl Res 2024; 17:1036-1047. [PMID: 38683422 PMCID: PMC11519123 DOI: 10.1007/s12265-024-10518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND In recent years, 5-Methoxytryptophan (5-MTP) has been identified as an endothelial factor with vaso-protective and anti-inflammatory properties. METHODS In this prospective cohort study, a total of 407 patients with acute myocardial infarction (AMI) who underwent percutaneous coronary intervention (PCI) successfully were enrolled. A 1-year follow-up Kaplan-Meier survival analysis was used for evaluating the correlation between 5-MTP and major adverse cardiovascular event (MACE) while Cox proportional-hazards regression was used to identify predictive values of 5-MTP on MACE after AMI. RESULTS Increased 5-MTP level led to a significant downtrend in the incidence of MACE (All Log-rank p < 0.05). Thus, a high baseline 5-MTP could reduce the 1-year incidence of MACE (HR = 0.33, 95%Cl 0.17-0.64, p = 0.001) and heart failure (HF) (HR = 0.28, 95% Cl 0.13-0.62, p = 0.002). Subgroup analysis indicated the predictive value of 5-MTP was more significant in patients aged ≤ 65 years and those with higher baseline NT-proBNP, T2DM, STEMI, and baseline HF with preserved LVEF (HFpEF) characteristics. CONCLUSIONS Plasma 5-MTP is an independent and protective early biomarker for 1-year MACE and HF events in patients with AMI, especially in younger patients and those with T2DM, STEMI, and baseline HFpEF characteristics.
Collapse
Affiliation(s)
- Kui Huang
- Thoracic Clinical College, Tianjin Medical University, No.22 Qi Xiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
- Department of Cardiology, Tianjin Chest Hospital, No.261 Tai Erzhuang Road, Jinnan District, Tianjin, 300222, People's Republic of China
| | - Xiao-Qin Wen
- Department of Cardiology, Tianjin Hospital, Tianjin, People's Republic of China
| | - Wei Zhang
- Department of Cardiology, Tianjin Chest Hospital, No.261 Tai Erzhuang Road, Jinnan District, Tianjin, 300222, People's Republic of China
| | - Jing-Xian Wang
- Thoracic Clinical College, Tianjin Medical University, No.22 Qi Xiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Yan Liang
- Thoracic Clinical College, Tianjin Medical University, No.22 Qi Xiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Wen-Qing Li
- Thoracic Clinical College, Tianjin Medical University, No.22 Qi Xiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Yu-Hang Wang
- Thoracic Clinical College, Tianjin Medical University, No.22 Qi Xiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Miao-Miao Liang
- Thoracic Clinical College, Tianjin Medical University, No.22 Qi Xiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - An-Ran Jing
- Thoracic Clinical College, Tianjin Medical University, No.22 Qi Xiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Jing Ma
- Cardiovascular Institute, Tianjin Chest Hospital, No.261 Tai Erzhuang Road, Jinnan District, Tianjin, 300222, People's Republic of China
| | - Xu Zhang
- Cardiovascular Institute, Tianjin Chest Hospital, No.261 Tai Erzhuang Road, Jinnan District, Tianjin, 300222, People's Republic of China
| | - Yin Liu
- Department of Cardiology, Tianjin Chest Hospital, No.261 Tai Erzhuang Road, Jinnan District, Tianjin, 300222, People's Republic of China.
| | - Jing Gao
- Thoracic Clinical College, Tianjin Medical University, No.22 Qi Xiangtai Road, Heping District, Tianjin, 300070, People's Republic of China.
- Cardiovascular Institute, Tianjin Chest Hospital, No.261 Tai Erzhuang Road, Jinnan District, Tianjin, 300222, People's Republic of China.
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin, People's Republic of China.
- Chest Hospital, Tianjin University, No.92 Weijin Road Nankai District, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
2
|
Chen HC, Kuo CY, Chang Y, Tsai DL, Lee MH, Lee JY, Lee HM, Su YC. 5-Methoxytryptophan enhances the sensitivity of sorafenib on the inhibition of proliferation and metastasis for lung cancer cells. BMC Cancer 2024; 24:248. [PMID: 38388902 PMCID: PMC10885375 DOI: 10.1186/s12885-024-11986-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Lung cancer is a leading cause of cancer-related mortality worldwide, and effective therapies are limited. Lung cancer is a leading cause of cancer-related mortality worldwide with limited effective therapy. Sorafenib is a multi-tyrosine kinase inhibitor frequently used to treat numerous types of malignant tumors. However, it has been demonstrated that sorafenib showed moderate antitumor activity and is associated with several side effects in lung cancer, which restricted its clinical application. This study aimed to examine the antitumor effect of the combination treatment of sorafenib and 5-methoxytryptophan (5-MTP) on cell growth and metastasis of Lewis lung carcinoma (LLC) cells. METHOD The anticancer effect of the combination treatment of sorafenib and 5-MTP was determined through cytotoxicity assay and colony forming assays. The mechanism was elucidated using flow cytometry and western blotting. Wound healing and Transwell assays were conducted to evaluate the impact of the combination treatment on migration and invasion abilities. An in vivo model was employed to analyze the effect of the combination treatment on the tumorigenic ability of LLC cells. RESULT Our results demonstrated that the sorafenib and 5-MTP combination synergistically reduced viability and proliferation compared to sorafenib or 5-MTP treatment alone. Reduction of cyclin D1 expression was observed in the sorafenib alone or combination treatments, leading to cell cycle arrest. Furthermore, the sorafenib-5-MTP combination significantly increased the inhibitory effect on migration and invasion of LLC cells compared to the single treatments. The combination also significantly downregulated vimentin and MMP9 levels, contributing to the inhibition of metastasis. The reduction of phosphorylated Akt and STAT3 expression may further contribute to the inhibitory effect on proliferation and metastasis. In vivo, the sorafenib-5-MTP combination further reduced tumor growth and metastasis compared to the treatment of sorafenib alone. CONCLUSIONS In conclusion, our data indicate that 5-MTP sensitizes the antitumor activity of sorafenib in LLC cells in vitro and in vivo, suggesting that sorafenib-5-MTP has the potential to serve as a therapeutic option for patients with lung cancer.
Collapse
Affiliation(s)
- Huang-Chi Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yu Kuo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu Chang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Dong-Lin Tsai
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Chest Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Hsuan Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jui-Ying Lee
- Division of Chest Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Ming Lee
- Division of General Surgery, Department of Surgery, E-Da Cancer Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Chieh Su
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan.
- Division of Hematology-Oncology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Zheng L, Han Z, Zhang J, Kang J, Li C, Pang Q, Liu S. Lactiplantibacillus plantarum and Saccharomyces cerevisiae-Fermented Coconut Water Alleviates Dextran Sodium Sulfate-Induced Enteritis in Wenchang Chicken: A Gut Microbiota and Metabolomic Approach. Animals (Basel) 2024; 14:575. [PMID: 38396543 PMCID: PMC10886277 DOI: 10.3390/ani14040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
In order to investigate the potential mechanisms of probiotic-fermented coconut water in treating enteritis, this study conducted a comprehensive analysis of the effects of probiotic intervention on the recovery from Dextran Sodium Sulfate-induced acute enteritis in Wenchang chicks. The analysis encompassed the assessment of growth performance, serum indicators, intestinal tissue structure, and metagenomic and metabolomic profiles of cecal contents in 60 Wenchang chicks subjected to intervention. This approach aimed to elucidate the impact of probiotic intervention on the recovery process from acute enteritis at both the genetic and metabolic levels in the avian model. The results revealed that intervention with Saccharomyces cerevisiae Y301 improved the growth rate of chicks. and intervention with Lactiplantibacillus plantarum MS2c regulated the glycerophospholipid metabolism pathway and reshaped the gut microbiota structure in modeling chicks with acute enteritis, reducing the abundance of potentially pathogenic bacteria from the Alistipes and increasing the abundance of potentially beneficial species from the Christensenellaceae. This intervention resulted in the production of specific gut metabolites, including Gentamicin C and polymyxin B2, recognized for their therapeutic effects on acute enteritis. The combined intervention of S. cerevisiae Y301 and L. plantarum MS2c not only enhanced growth performance but also mitigated intestinal wall damage and increased the abundance of gut metabolites such as gentamicin C and polymyxin B2, thereby mitigating symptoms of enteritis. Furthermore, this combined intervention reduced the levels of serum immune markers, including IL-10, IL-6, TNF-α, IFN-γ, and D-lactic acid, thus mitigating intestinal epithelial cell damage and promoting acute enteritis recovery. This study provides crucial insights into the mechanisms of action of probiotics and probiotic-fermented coconut water in acute enteritis recovery, offering new perspectives for sustainable farming practices for Wenchang chicken.
Collapse
Affiliation(s)
- Leijie Zheng
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.Z.)
| | - Zhe Han
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.Z.)
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.Z.)
| | - Jiamu Kang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.Z.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.Z.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou City, Haikou 570228, China
| | - Qing Pang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.Z.)
| | - Sixin Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.Z.)
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou City, Haikou 570228, China
| |
Collapse
|