1
|
Zhou X, Zhang Q, Wang D, Xiang Z, Ruan J, Tang L. Risk of Hematologic Malignancies in Patients with Inflammatory Bowel Disease: A Meta-Analysis of Cohort Studies. Gut Liver 2024; 18:845-856. [PMID: 38953119 PMCID: PMC11391147 DOI: 10.5009/gnl240119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 07/03/2024] Open
Abstract
Background/Aims Inflammatory bowel disease (IBD) may contribute to the development of hematologic malignancies. In this study, the potential relationship between IBD and hematologic malignancies was investigated. Methods We searched the PubMed, Web of Science, Embase, and Cochrane Library databases for all cohort studies comparing the incidence of hematologic malignancies in non-IBD populations with that in IBD patients, and we extracted relevant data from January 2000 to June 2023 for meta-analysis. Results Twenty cohort studies involving 756,377 participants were included in this study. The results showed that compared with the non-IBD cohort, the incidence of hematologic malignancies in the IBD cohort was higher (standardized incidence ratio [SIR]=3.05, p<0.001). According to the specific types of IBD, compared with the non-IBD patients, the incidences of hematologic malignancies in ulcerative colitis patients (SIR=2.29, p=0.05) and Crohn's disease patients (SIR=3.56, p=0.005) were all higher. In the subgroup analysis of hematologic malignancy types, compared with the control group, the incidences of non-Hodgkin's lymphoma (SIR=1.70, p=0.01), Hodgkin's lymphoma (SIR=3.47, p=0.002), and leukemia (SIR=3.69, p<0.001) were all higher in the IBD cohort. Conclusions The incidence of hematologic malignancies, including non-Hodgkin's lymphoma, Hodgkin's lymphoma, and leukemia is higher in patients with IBD (ulcerative colitis or Crohn's disease) than in non-IBD patients.
Collapse
Affiliation(s)
- Xiaoshuai Zhou
- Department of Anus and Intestine Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| | - Qiufeng Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongying Wang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiyi Xiang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiale Ruan
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linlin Tang
- Department of Gastroenterology, Zhuji People's Hospital, Shaoxing, China
| |
Collapse
|
2
|
Shannon ML, Heimlich JB, Olson S, Debevec A, Copeland Z, Kishtagari A, Vlasschaert C, Snider C, Silver AJ, Brown D, Spaulding T, Bhatta M, Pugh K, Stockton SS, Ulloa J, Xu Y, Baljevic M, Moslehi J, Jahangir E, Ferrell PB, Slosky D, Bick AG, Savona MR. Clonal hematopoiesis and inflammation in the vasculature: CHIVE, a prospective, longitudinal clonal hematopoiesis cohort and biorepository. Blood Adv 2024; 8:3453-3463. [PMID: 38608257 PMCID: PMC11259927 DOI: 10.1182/bloodadvances.2023011510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 04/14/2024] Open
Abstract
ABSTRACT Clonal hematopoiesis (CH) is an age-associated phenomenon leading to an increased risk of both hematologic malignancy and nonmalignant organ dysfunction. Increasingly available genetic testing has made the incidental discovery of CH clinically common yet evidence-based guidelines and effective management strategies to prevent adverse CH health outcomes are lacking. To address this gap, the prospective CHIVE (clonal hematopoiesis and inflammation in the vasculature) registry and biorepository was created to identify and monitor individuals at risk, support multidisciplinary CH clinics, and refine taxonomy and standards of practice for CH risk mitigation. Data from the first 181 patients enrolled in this prospective registry recapitulate the molecular epidemiology of CH from biobank-scale retrospective studies, with DNMT3A, TET2, ASXL1, and TP53 as the most commonly mutated genes. Blood counts across all hematopoietic lineages trended lower in patients with CH. In addition, patients with CH had higher rates of end organ dysfunction, in particular chronic kidney disease. Among patients with CH, variant allele frequency was independently associated with the presence of cytopenias and progression to hematologic malignancy, whereas other common high-risk CH clone features were not clear. Notably, accumulation of multiple distinct high-risk clone features was also associated with cytopenias and hematologic malignancy progression, supporting a recently published CH risk score. Surprisingly, ∼30% of patients enrolled in CHIVE from CH clinics were adjudicated as not having clonal hematopoiesis of indeterminate potential, highlighting the need for molecular standards and purpose-built assays in this field. Maintenance of this well-annotated cohort and continued expansion of CHIVE to multiple institutions are underway and will be critical to understanding how to thoughtfully care for this patient population.
Collapse
Affiliation(s)
- Morgan L. Shannon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - J. Brett Heimlich
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Sydney Olson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ariana Debevec
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Zachary Copeland
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ashwin Kishtagari
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Christina Snider
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Alexander J. Silver
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Donovan Brown
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Travis Spaulding
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Manasa Bhatta
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Kelly Pugh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Jessica Ulloa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Muhamed Baljevic
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Javid Moslehi
- Section of Cardio-Oncology & Immunology, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA
| | - Eiman Jahangir
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - P. Brent Ferrell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN
| | - David Slosky
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Alexander G. Bick
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN
| | - Michael R. Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
3
|
Kishtagari A, Corty RW, Visconte V. Clonal hematopoiesis and autoimmunity. Semin Hematol 2024; 61:3-8. [PMID: 38423847 DOI: 10.1053/j.seminhematol.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 03/02/2024]
Abstract
Clonal hematopoiesis (CH) has been associated with aging, occurring in about 10% of individuals aged >70 years, and immune dysfunction. Aged hematopoietic stem and progenitor cells exhibit pathological changes in immune function and activation of inflammatory pathways. CH clones commonly harbor a loss of function mutation in DNMT3A or TET2, which causes increased expression of inflammatory signaling genes, a proposed mechanism connected to CH and the development of age-related diseases. Additionally, inflammation may stress the hematopoietic compartment, driving the expansion of mutant clones. While the epidemiologic overlap between CH, hematologic malignancies, and atherosclerotic cardiovascular diseases has been reported, the mechanisms linking these concepts are largely unknown and merit much further investigation. Here, we review studies highlighting the interplay between CH, inflamm-aging, the immune system, and the prevalence of CH in autoimmune diseases.
Collapse
Affiliation(s)
- Ashwin Kishtagari
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Robert W Corty
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
4
|
Kanagal-Shamanna R, Beck DB, Calvo KR. Clonal Hematopoiesis, Inflammation, and Hematologic Malignancy. ANNUAL REVIEW OF PATHOLOGY 2024; 19:479-506. [PMID: 37832948 DOI: 10.1146/annurev-pathmechdis-051222-122724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Somatic or acquired mutations are postzygotic genetic variations that can occur within any tissue. These mutations accumulate during aging and have classically been linked to malignant processes. Tremendous advancements over the past years have led to a deeper understanding of the role of somatic mutations in benign and malignant age-related diseases. Here, we review the somatic mutations that accumulate in the blood and their connection to disease states, with a particular focus on inflammatory diseases and myelodysplastic syndrome. We include a definition of clonal hematopoiesis (CH) and an overview of the origins and implications of these mutations. In addition, we emphasize somatic disorders with overlapping inflammation and hematologic disease beyond CH, including paroxysmal nocturnal hemoglobinuria and aplastic anemia, focusing on VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. Finally, we provide a practical view of the implications of somatic mutations in clinical hematology, pathology, and beyond.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology and Molecular Diagnostics, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David B Beck
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA;
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Zhang H, Kalla R, Chen J, Zhao J, Zhou X, Adams A, Noble A, Ventham NT, Wellens J, Ho GT, Dunlop MG, Nowak JK, Ding Y, Liu Z, Satsangi J, Theodoratou E, Li X. Altered DNA methylation within DNMT3A, AHRR, LTA/TNF loci mediates the effect of smoking on inflammatory bowel disease. Nat Commun 2024; 15:595. [PMID: 38238335 PMCID: PMC10796384 DOI: 10.1038/s41467-024-44841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
This work aims to investigate how smoking exerts effect on the development of inflammatory bowel disease (IBD). A prospective cohort study and a Mendelian randomization study are first conducted to evaluate the association between smoking behaviors, smoking-related DNA methylation and the risks of Crohn's disease (CD) and ulcerative colitis (UC). We then perform both genome-wide methylation analysis and co-localization analysis to validate the observed associations. Compared to never smoking, current and previous smoking habits are associated with increased CD (P = 7.09 × 10-10) and UC (P < 2 × 10-16) risk, respectively. DNA methylation alteration at cg17742416 [DNMT3A] is linked to both CD (P = 7.30 × 10-8) and UC (P = 1.04 × 10-4) risk, while cg03599224 [LTA/TNF] is associated with CD risk (P = 1.91 × 10-6), and cg14647125 [AHRR] and cg23916896 [AHRR] are linked to UC risk (P = 0.001 and 0.002, respectively). Our study identifies biological mechanisms and pathways involved in the effects of smoking on the pathogenesis of IBD.
Collapse
Affiliation(s)
- Han Zhang
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rahul Kalla
- Edinburgh IBD Science Unit, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Jie Chen
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhui Zhao
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuan Zhou
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Alex Adams
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alexandra Noble
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nicholas T Ventham
- Academic Coloproctology, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Judith Wellens
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Gwo-Tzer Ho
- Edinburgh IBD Science Unit, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Malcolm G Dunlop
- Cancer Research UK Scotland Centre and Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Jan Krzysztof Nowak
- Department of Paediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhanju Liu
- Center for IBD Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Evropi Theodoratou
- Cancer Research UK Scotland Centre and Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, UK.
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK.
| | - Xue Li
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
Park E, Evans MA, Walsh K. Regulators of clonal hematopoiesis and physiological consequences of this condition. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:3. [PMID: 39119355 PMCID: PMC11309374 DOI: 10.20517/jca.2023.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Clonal hematopoiesis (CH) is a prevalent condition that results from somatic mutations in hematopoietic stem cells. When these mutations occur in "driver" genes, they can potentially confer fitness advantages to the affected cells, leading to a clonal expansion. While most clonal expansions of mutant cells are generally considered to be asymptomatic since they do not impact overall blood cell numbers, CH carriers face long-term risks of all-cause mortality and age-associated diseases, including cardiovascular disease and hematological malignancies. While considerable research has focused on understanding the association between CH and these diseases, less attention has been given to exploring the regulatory factors that contribute to the expansion of the driver gene clone. This review focuses on the association between environmental stressors and inherited genetic risk factors in the context of CH development. A better understanding of how these stressors impact CH development will facilitate mechanistic studies and potentially lead to new therapeutic avenues to treat individuals with this condition.
Collapse
Affiliation(s)
- Eunbee Park
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Megan A. Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Kenneth Walsh
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
7
|
Zhu F, Hu Z, Yu W, Dai F, Jing D, Zhou G. Ulcerative Colitis Concomitant with Cytomegalovirus Infection, Bullous Sweet's Syndrome, and Acute Myeloid Leukemia: A Case Report and Literature Review. J Inflamm Res 2023; 16:3715-3723. [PMID: 37663756 PMCID: PMC10473406 DOI: 10.2147/jir.s422057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Abstract
Background Ulcerative colitis (UC) is a chronic, relapsing progressive inflammatory immune disease. There is still no cure for it. Even worse, UC may predispose patients to opportunistic infections, and several extra-intestinal manifestations (EIMs) and comorbidities may antedate, occur with, or postdate the onset of UC, which may increase the mortality risk. But case reports of UC patients simultaneously concomitant with opportunistic infection, EIM, and comorbidity are extremely rare. Case Presentation We report a case of 51-year-old male patient with incipient UC accompanied by cytomegalovirus (CMV) infection and bullous Sweet's syndrome (bSS, a cutaneous EIM of UC) after treatment with oral mesalazine and prednisolone for 3 weeks. After clearance of the CMV infection by using ganciclovir, the patient was administered two cycles of infliximab to cure UC and bSS; however, he developed acute myeloid leukemia (AML) a month later and died after two cycles of chemotherapy. Conclusion Based on this rare case of UC concomitant with CMV infection, bSS and AML, we recommend that it is important to distinguish between an acute UC flare and opportunistic infections, especially in patients receiving immunosuppressive therapy, and monitor EIMs and comorbidities timely. Particular attention should be paid to cancer surveillance. Clinicians should be mindful of these facts to adopt optimal therapeutic options to address all aspects of UC. Early initiation of biological therapy may be of benefit to patients with newly diagnosed severe UC.
Collapse
Affiliation(s)
- Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272000, People’s Republic of China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People’s Republic of China
| | - Zongjing Hu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Wei Yu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Fengxian Dai
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Dehuai Jing
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272000, People’s Republic of China
| |
Collapse
|
8
|
Galloway-Peña JR, Jobin C. Microbiota Influences on Hematopoiesis and Blood Cancers: New Horizons? Blood Cancer Discov 2023; 4:267-275. [PMID: 37052501 PMCID: PMC10320642 DOI: 10.1158/2643-3230.bcd-22-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Hematopoiesis governs the generation of immune cells through the differentiation of hematopoietic stem cells (HSC) into various progenitor cells, a process controlled by intrinsic and extrinsic factors. Among extrinsic factors influencing hematopoiesis is the microbiota, or the collection of microorganisms present in various body sites. The microbiota has a profound impact on host homeostasis by virtue of its ability to release various molecules and structural components, which promote normal organ function. In this review, we will discuss the role of microbiota in influencing hematopoiesis and how disrupting the microbiota/host network could lead to hematologic malignancies, as well as highlight important knowledge gaps to move this field of research forward. SIGNIFICANCE Microbiota dysfunction is associated with many pathologic conditions, including hematologic malignancies. In this review, we discuss the role of microbiota in influencing hematopoiesis and how disrupting the microbiota/host network could lead to hematologic malignancies. Understanding how the microbiota influences hematologic malignancies could have an important therapeutic impact for patients.
Collapse
Affiliation(s)
- Jessica R. Galloway-Peña
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida
| |
Collapse
|
9
|
Park J, An H, Lim J, Park IS, Kim MH, Kim JH, Kim SW, Koh YI, Lee EY, Cheon JH. Interplay between chronic inflammation and clonal haematopoiesis of indeterminate potential in Behçet's disease. Arthritis Res Ther 2023; 25:33. [PMID: 36864496 PMCID: PMC9979406 DOI: 10.1186/s13075-023-03014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Clonal haematopoiesis of indeterminate potential (CHIP) is a predisposition to haematological malignancy whose relationship with chronic inflammatory diseases, such as cardiovascular diseases, has been highlighted. Here, we aimed to investigate the CHIP emergence rate and its association with inflammatory markers in Behçet's disease (BD). METHODS We performed targeted next-generation sequencing to detect the presence of CHIP using peripheral blood cells from 117 BD patients and 5004 healthy controls between March 2009 and September 2021 and analysed the association between CHIP and inflammatory markers. RESULTS CHIP was detected in 13.9% of patients in the control group and 11.1% of patients in the BD group, indicating no significant intergroup difference. Among the BD patients of our cohort, five variants (DNMT3A, TET2, ASXL1, STAG2, and IDH2) were detected. DNMT3A mutations were the most common, followed by TET2 mutations. CHIP carriers with BD had a higher serum platelet count, erythrocyte sedimentation rate, and C-reactive protein level; older age; and lower serum albumin level at diagnosis than non-CHIP carriers with BD. However, the significant association between inflammatory markers and CHIP disappeared after the adjustment for various variables, including age. Moreover, CHIP was not an independent risk factor for poor clinical outcomes in patients with BD. CONCLUSIONS Although BD patients did not have higher CHIP emergence rates than the general population, older age and degree of inflammation in BD were associated with CHIP emergence.
Collapse
Affiliation(s)
- Jihye Park
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Jiwoo Lim
- Genome Opinion Inc, Seoul, South Korea
| | - I Seul Park
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Mi Hyun Kim
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Hyung Kim
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Won Kim
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Il Koh
- Genome Opinion Inc, Seoul, South Korea
- Division of Hematology and Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea.
| | - Jae Hee Cheon
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
- Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
10
|
Tarantini F, Cumbo C, Zagaria A, Anelli L, Parciante E, Redavid I, Coccaro N, Tota G, Conserva MR, Minervini CF, Minervini A, Attolico I, Russo Rossi A, Specchia G, Musto P, Albano F. Clonal hematopoiesis onset in chronic myeloid leukemia patients developing an adverse cardiovascular event. Leuk Res 2023; 127:107023. [PMID: 36822077 DOI: 10.1016/j.leukres.2023.107023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/27/2022] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Life expectation of chronic myeloid leukemia patients in the tyrosine kinase inhibitors era is almost equal to that of healthy subjects. On the other hand, their long-term management must take into account a higher risk of adverse events, at least partly related to the treatment. Various studies reported a higher incidence of cardiovascular events in these patients. Clonal hematopoiesis is broadly considered a major independent risk factor for cardiovascular events. Of note, the underlying physiopathological mechanisms connect clonal hematopoiesis with a global proinflammatory status, triggering a vicious circle in which the somatic mutations and inflammation feed each other. All this considered, we investigated the occurrence of clonal hematopoiesis in chronic myeloid leukemia patients developing a cardiovascular event under tyrosine kinase inhibitor therapy.
Collapse
Affiliation(s)
- Francesco Tarantini
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J) - Hematology and Stem Cell Transplantation Unit - University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Cosimo Cumbo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J) - Hematology and Stem Cell Transplantation Unit - University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Antonella Zagaria
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J) - Hematology and Stem Cell Transplantation Unit - University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Luisa Anelli
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J) - Hematology and Stem Cell Transplantation Unit - University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Elisa Parciante
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J) - Hematology and Stem Cell Transplantation Unit - University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Immacolata Redavid
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J) - Hematology and Stem Cell Transplantation Unit - University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Nicoletta Coccaro
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J) - Hematology and Stem Cell Transplantation Unit - University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giuseppina Tota
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J) - Hematology and Stem Cell Transplantation Unit - University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Maria Rosa Conserva
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J) - Hematology and Stem Cell Transplantation Unit - University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Crescenzio Francesco Minervini
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J) - Hematology and Stem Cell Transplantation Unit - University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Angela Minervini
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J) - Hematology and Stem Cell Transplantation Unit - University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Immacolata Attolico
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J) - Hematology and Stem Cell Transplantation Unit - University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Antonella Russo Rossi
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J) - Hematology and Stem Cell Transplantation Unit - University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giorgina Specchia
- School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Pellegrino Musto
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J) - Hematology and Stem Cell Transplantation Unit - University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Albano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J) - Hematology and Stem Cell Transplantation Unit - University of Bari "Aldo Moro", 70124 Bari, Italy.
| |
Collapse
|
11
|
Evans MA, Walsh K. Clonal hematopoiesis, somatic mosaicism, and age-associated disease. Physiol Rev 2023; 103:649-716. [PMID: 36049115 PMCID: PMC9639777 DOI: 10.1152/physrev.00004.2022] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 12/15/2022] Open
Abstract
Somatic mosaicism, the occurrence of multiple genetically distinct cell clones within the same tissue, is an evitable consequence of human aging. The hematopoietic system is no exception to this, where studies have revealed the presence of expanded blood cell clones carrying mutations in preleukemic driver genes and/or genetic alterations in chromosomes. This phenomenon is referred to as clonal hematopoiesis and is remarkably prevalent in elderly individuals. While clonal hematopoiesis represents an early step toward a hematological malignancy, most individuals will never develop blood cancer. Somewhat unexpectedly, epidemiological studies have found that clonal hematopoiesis is associated with an increase in the risk of all-cause mortality and age-related disease, particularly in the cardiovascular system. Studies using murine models of clonal hematopoiesis have begun to shed light on this relationship, suggesting that driver mutations in mature blood cells can causally contribute to aging and disease by augmenting inflammatory processes. Here we provide an up-to-date review of clonal hematopoiesis within the context of somatic mosaicism and aging and describe recent epidemiological studies that have reported associations with age-related disease. We will also discuss the experimental studies that have provided important mechanistic insight into how driver mutations promote age-related disease and how this knowledge could be leveraged to treat individuals with clonal hematopoiesis.
Collapse
Affiliation(s)
- Megan A Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
12
|
Zagaria A, Tarantini F, Orsini P, Anelli L, Cumbo C, Coccaro N, Tota G, Minervini CF, Parciante E, Conserva MR, Redavid I, Ricco A, Attolico I, Specchia G, Musto P, Albano F. The genomic analysis brings a new piece to the molecular jigsaw of idiopathic erythrocytosis. Exp Hematol Oncol 2022; 11:47. [PMID: 36031623 PMCID: PMC9420251 DOI: 10.1186/s40164-022-00301-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/20/2022] [Indexed: 11/11/2022] Open
Abstract
Erythrocytosis is a clinical condition characterized by increased red cell mass, hemoglobin, and hematocrit values. A significant fraction of patients is described as having idiopathic erythrocytosis. We have previously demonstrated an association between erythrocytosis and the JAK2 GGCC_46/1 haplotype and CALR rs1049481_G allele. In the present study, we investigated genomic and clinical features of 80 erythrocytosis patients with the aim to provide useful information in clinical practice. Patients with idiopathic erythrocytosis could have a genomic germline background, eventually associated with somatic variants. Through association analysis, we show that male patients presenting with idiopathic erythrocytosis, and normal EPO levels could be the best candidates for the search for the JAK2 GGCC_46/1 haplotype and CALR rs1049481_G allele. Further studies are needed to confirm these findings and to depict detailed genomic and phenotypical characteristics of these patients.
Collapse
|