1
|
Zhang IP, Heger G, Cohen GN, Arazi L, Damato AL. Modeling absorbed alpha particle dose from diffusing alpha-emitters radiation therapy in changing tissue volumes. Med Phys 2025; 52:2618-2631. [PMID: 39871089 DOI: 10.1002/mp.17646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/19/2024] [Accepted: 12/22/2024] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a promising new radiation therapy modality for treating bulky tumors. 224Ra-carrying sources are inserted intratumorally, producing a therapeutic alpha-dose region with a total size of a few millimeter via the diffusive motion of 224Ra's alpha-emitting daughters. Clinical studies of Alpha DaRT have reported 100% positive response (30%-100% shrinkage within several weeks), with post-insertion swelling in close to half of the cases. While dosimetry recommendations informed by the effects of edema are standard in some radiation therapy modalities, the effect of edema and tumor shrinkage on the absorbed dose delivered by Alpha DaRT is still unknown. PURPOSE The aim of this work is to develop a simple model for Alpha-DaRT dose deposition in a time-dependent tissue volume in order to study the effect of geometrical changes in source location due to edema and tumor shrinkage on the delivered alpha particle dose. METHODS We perform FEM-based dose deposition modeling for a single Alpha-DaRT source inside shrinking and swelling tissues. Gradual volume change models were used for shrinkage and swelling, and an additional immediate volume gain model was also used for "worst case" swelling. Volume change rates were estimated from source location data from serial scans acquired at time of insertion and removal for seven patients treated using Alpha DaRT. We calculate absorbed dose profiles under both the high- and low-diffusion regimes described by the Diffusion-Leakage model. RESULTS Changes in tissue volume can lead to over- or underestimation of the calculated absorbed dose. In the low-diffusion regime, gradual tissue shrinkage can result in an increase of 100% and gradual swelling can result in a 35% decrease in absorbed dose compared to a calculation in static tissue. Although immediate post-insertion swelling can reduce the absorbed dose by close to 65% for very closely spaced sources, in all cases analyzed the final absorbed dose continues to exceed the 10 Gy target. These effects are less severe in the high-diffusion regime. CONCLUSIONS These results indicate that tissue swelling and shrinkage can have a non-negligible effect on the tumor absorbed dose. Further study of tissue dynamics during Alpha-DaRT treatment will be necessary for improvements in dosimetry practice.
Collapse
Affiliation(s)
- Irene P Zhang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Guy Heger
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Gil'ad N Cohen
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York, USA
| | - Lior Arazi
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Antonio L Damato
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
2
|
Roncali L, Hindré F, Samarut E, Lacoeuille F, Rousseau A, Lemée JM, Garcion E, Chérel M. Current landscape and future directions of targeted-alpha-therapy for glioblastoma treatment. Theranostics 2025; 15:4861-4889. [PMID: 40303349 PMCID: PMC12036880 DOI: 10.7150/thno.106081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/02/2025] [Indexed: 05/02/2025] Open
Abstract
Glioblastoma (GB) is the most aggressive malignancy of the central nervous system. Despite two decades of intensive research since the establishment of the standard of care, emerging strategies have yet to produce consistent satisfactory outcomes. Because of its specific localisation and intricate characteristics, GB is a uniquely regulated solid tumour with a strong resistance to therapy. Advances in targeted radionuclide therapy (TRT), particularly with the introduction of a-emitting radionuclides, have unveiled potential avenues for the management of GB. Recent preclinical and clinical studies underscored promising advancements for targeted-α-therapy (TAT), but these therapeutic approaches exhibit a vast design heterogeneity, encompassing diverse radionuclides, vectors, target molecules, and administration modalities. This review seeks to critically assess the therapeutic landscape of GB through the perspective of TAT. Here, the focus is made on the advancements and limitations of in vivo explorations, pilot studies, and clinical trials, to determine the best directions for future investigations. In doing so, we hope to identify existing challenges and draw insights that might pave the way towards a more effective therapeutic approach.
Collapse
Affiliation(s)
- Loris Roncali
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela; E-15782 Santiago de Compostela, Spain
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- Nantes University, INSERM, CNRS, CRCI 2 NA; F-44000 Nantes, France
| | - François Hindré
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- PRIMEX (Experimental Imagery and Radiobiology Platform), University of Angers, SFR 4208; F-49000 Angers, France
| | - Edouard Samarut
- Nantes University, INSERM, CNRS, CRCI 2 NA; F-44000 Nantes, France
- Department of Neurosurgery & Neurotraumatology, University Hospital of Nantes; F-44093 Nantes, France
| | - Franck Lacoeuille
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- Department of Nuclear Medicine, University Hospital of Angers; F-49000 Angers, France
| | - Audrey Rousseau
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- Department of Pathology, University Hospital of Angers; F-49000 Angers, France
| | - Jean-Michel Lemée
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- Department of Neurosurgery, University Hospital of Angers; F-49000 Angers, France
| | - Emmanuel Garcion
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- PACEM (Platform of Cellular and Molecular Analysis), University of Angers, SFR 4208; F-49000 Angers, France
| | - Michel Chérel
- Nantes University, INSERM, CNRS, CRCI 2 NA; F-44000 Nantes, France
- Institut de Cancérologie de l'Ouest, Department of Nuclear Medicine; F-44160 Saint-Herblain, France
| |
Collapse
|
3
|
Levy OI, Altaras A, Binyamini L, Sagi-Assif O, Izraely S, Cooks T, Kobiler O, Gerlic M, Kelson I, Witz IP, Keisari Y. Melanoma Cells from Different Patients Differ in Their Sensitivity to Alpha Radiation-Mediated Killing, Sensitivity Which Correlates with Cell Nuclei Area and Double Strand Breaks. Cancers (Basel) 2024; 16:3804. [PMID: 39594759 PMCID: PMC11592378 DOI: 10.3390/cancers16223804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objective: In this study, for the first time, we examined and compared the sensitivity of four patient-derived cutaneous melanoma cell lines to alpha radiation in vitro and analyzed it in view of cell nucleus area and the formation of double-strand breaks (DSB). Melanoma cells sensitivity to alpha radiation was compared to photon radiation effects. Furthermore, we compared the sensitivity of the melanoma cells to squamous cell carcinoma. Methods: Human melanoma cell lines YDFR.C, DP.C, M12.C, and M16.C, and the squamous cell carcinoma cell line, CAL 27, were irradiated in vitro using Americium-241 as alpha-particle source. Cells were irradiated with doses of 0 to 2.8 gray (Gy). Cell viability, DNA DSB, and nuclear size were measured. Results: 1. Alpha radiation caused death and proliferation arrest of all four melanoma cell lines, but inter-tumor heterogeneity was observed. 2. The most sensitive cell line (DP.C) had a significantly larger nucleus area (408 µm2) and the highest mean number of DSB per cell (9.61) compared to more resistant cells. 3. The most resistant cell, M16.C, had a much lower nucleus area (236.99 µm2) and DSB per cell (6.9). 4. Alpha radiation was more lethal than photon radiation for all melanoma cells. 5. The SCC cell, CAL 27, was more sensitive to alpha radiation than all melanoma cells but had a similar number of DSB (6.67) and nucleus size (175.49 µm2) as the more resistant cells. 6. The cytotoxic effect of alpha radiation was not affected by proliferation arrest after serum starvation. 7. Killing of cells by alpha radiation was marginally elevated by ATR or topoisomerase 1 inhibition. Conclusions: This study demonstrates that various human melanoma cells can be killed by alpha radiation but exhibit variance in sensitivity to alpha radiation. Alpha radiation applied using the Intra-tumoral Diffusing alpha-emitters Radiation Therapy (Alpha DaRT) methodology may serve as an efficient treatment for human melanoma.
Collapse
Affiliation(s)
- Or I. Levy
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (O.I.L.); (A.A.); (L.B.); (O.K.); (M.G.)
| | - Anat Altaras
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (O.I.L.); (A.A.); (L.B.); (O.K.); (M.G.)
| | - Lior Binyamini
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (O.I.L.); (A.A.); (L.B.); (O.K.); (M.G.)
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.S.-A.); (S.I.); (I.P.W.)
| | - Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.S.-A.); (S.I.); (I.P.W.)
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Oren Kobiler
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (O.I.L.); (A.A.); (L.B.); (O.K.); (M.G.)
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (O.I.L.); (A.A.); (L.B.); (O.K.); (M.G.)
| | - Itzhak Kelson
- Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Isaac P. Witz
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.S.-A.); (S.I.); (I.P.W.)
| | - Yona Keisari
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (O.I.L.); (A.A.); (L.B.); (O.K.); (M.G.)
| |
Collapse
|
4
|
Heger G, Dumančić M, Luz I, Vatarescu M, Weizman N, Miller BW, Cooks T, Arazi L. First measurements of radon-220 diffusion in mice tumors, towards treatment planning in diffusing alpha-emitters radiation therapy. Med Phys 2024; 51:5045-5058. [PMID: 38507254 DOI: 10.1002/mp.17020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Diffusing alpha-emitters radiation therapy ("Alpha-DaRT") is a new method for treating solid tumors with alpha particles, relying on the release of the short-lived alpha-emitting daughter atoms of radium-224 from interstitial sources inserted into the tumor. Alpha-DaRT tumor dosimetry is governed by the spread of radium's progeny around the source, as described by an approximate framework called the "diffusion-leakage model". The most important model parameters are the diffusion lengths of radon-220 and lead-212, and their estimation is therefore essential for treatment planning. PURPOSE Previous works have provided initial estimates for the dominant diffusion length, by measuring the activity spread inside mice-borne tumors several days after the insertion of an Alpha-DaRT source. The measurements, taken when lead-212 was in secular equilibrium with radium-224, were interpreted as representing the lead-212 diffusion length. The aim of this work is to provide first experimental estimates for the diffusion length of radon-220, using a new methodology. METHODS The diffusion length of radon-220 was estimated from autoradiography measurements of histological sections taken from 24 mice-borne subcutaneous tumors of five different types. Unlike previous studies, the source dwell time inside the tumor was limited to 30 min, to prevent the buildup of lead-212. To investigate the contribution of potential non-diffusive processes, experiments were done in two sets: fourteen in vivo tumors, where during the treatment the tumors were still carried by the mice with active blood supply, and 10 ex-vivo tumors, where the tumors were excised before source insertion and kept in a medium at37 ∘ C $37^\circ {\text{C}}$ with the source inside. RESULTS The measured diffusion lengths of radon-220, extracted by fitting the recorded activity pattern up to 1.5 mm from the source, lie in the range0.25 - 0.6 mm ${0.25-0.6}\nobreakspace {\text{mm}}$ , with no significant difference between the average values measured in in-vivo and ex-vivo tumors:L R n i n - v i v o = 0.40 ± 0.08 mm $L_{Rn}^{in-vivo}=0.40{\pm }0.08\nobreakspace {\text{mm}}$ versusL R n e x - v i v o = 0.39 ± 0.07 mm $L_{Rn}^{ex-vivo}=0.39{\pm }0.07\nobreakspace {\text{mm}}$ . However, in-vivo tumors display an enhanced spread of activity 2-3 mm away from the source. This effect is not explained by the current model and is much less pronounced in ex-vivo tumors. CONCLUSIONS The average measured radon-220 diffusion lengths in both in-vivo and ex-vivo tumors are consistent with published data on the diffusion length of radon in water and lie close to the upper limit of the previously estimated range of0.2 - 0.4 mm $0.2-0.4\nobreakspace {\text{mm}}$ . The observation that close to the source there is no apparent difference between in-vivo and ex-vivo tumors, and the good agreement with the theoretical model in this region suggest that the spread of radon-220 is predominantly diffusive in this region. The departure from the model prediction in in-vivo tumors at large radial distances may hint at potential vascular contribution, which will be the subject of future works.
Collapse
Affiliation(s)
- Guy Heger
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Mirta Dumančić
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- Now at Gerald Bronfman Department of Oncology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Ishai Luz
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Maayan Vatarescu
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Noam Weizman
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- Oncology Department, Radiation Therapy Unit, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Brian W Miller
- College of Medicine, Department of Radiation Oncology, Department of Medical Imaging, The University of Arizona, Tucson, Arizona, USA
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Lior Arazi
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
5
|
Michaeli O, Luz I, Vatarescu M, Manko T, Weizman N, Korotinsky Y, Tsitrina A, Braiman A, Arazi L, Cooks T. APR-246 as a radiosensitization strategy for mutant p53 cancers treated with alpha-particles-based radiotherapy. Cell Death Dis 2024; 15:426. [PMID: 38890278 PMCID: PMC11189442 DOI: 10.1038/s41419-024-06830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Radiation therapy (RT) remains a common treatment for cancer patients worldwide, despite the development of targeted biological compounds and immunotherapeutic drugs. The challenge in RT lies in delivering a lethal dose to the cancerous site while sparing the surrounding healthy tissues. Low linear energy transfer (low-LET) and high linear energy transfer (high-LET) radiations have distinct effects on cells. High-LET radiation, such as alpha particles, induces clustered DNA double-strand breaks (DSBs), potentially inducing cell death more effectively. However, due to limited range, alpha-particle therapies have been restricted. In human cancer, mutations in TP53 (encoding for the p53 tumor suppressor) are the most common genetic alteration. It was previously reported that cells carrying wild-type (WT) p53 exhibit accelerated senescence and significant rates of apoptosis in response to RT, whereas cells harboring mutant p53 (mutp53) do not. This study investigated the combination of the alpha-emitting atoms RT based on internal Radium-224 (224Ra) sources and systemic APR-246 (a p53 reactivating compound) to treat tumors with mutant p53. Cellular models of colorectal cancer (CRC) or pancreatic ductal adenocarcinoma (PDAC) harboring mutant p53, were exposed to alpha particles, and tumor xenografts with mutant p53 were treated using 224Ra source and APR-246. Effects on cell survival and tumor growth, were assessed. The spread of alpha emitters in tumors was also evaluated as well as the spatial distribution of apoptosis within the treated tumors. We show that mutant p53 cancer cells exhibit radio-sensitivity to alpha particles in vitro and to alpha-particles-based RT in vivo. APR-246 treatment enhanced sensitivity to alpha radiation, leading to reduced tumor growth and increased rates of tumor eradication. Combining alpha-particles-based RT with p53 restoration via APR-246 triggered cell death, resulting in improved therapeutic outcomes. Further preclinical and clinical studies are needed to provide a promising approach for improving treatment outcomes in patients with mutant p53 tumors.
Collapse
Affiliation(s)
- Or Michaeli
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Ishai Luz
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Maayan Vatarescu
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
- Translational Research Laboratory, Alpha Tau Medical, Jerusalem, Israel
| | - Tal Manko
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Noam Weizman
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yevgeniya Korotinsky
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexandra Tsitrina
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Lior Arazi
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel.
| |
Collapse
|
6
|
Nojima H, Kaida A, Matsuya Y, Uo M, Yoshimura RI, Arazi L, Miura M. DNA damage response in a 2D-culture model by diffusing alpha-emitters radiation therapy (Alpha-DaRT). Sci Rep 2024; 14:11468. [PMID: 38769339 PMCID: PMC11106084 DOI: 10.1038/s41598-024-62071-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Diffusing alpha-emitters radiation therapy (Alpha-DaRT) is a unique method, in which interstitial sources carrying 224Ra release a chain of short-lived daughter atoms from their surface. Although DNA damage response (DDR) is crucial to inducing cell death after irradiation, how the DDR occurs during Alpha-DaRT treatment has not yet been explored. In this study, we temporo-spatially characterized DDR such as kinetics of DNA double-strand breaks (DSBs) and cell cycle, in two-dimensional (2D) culture conditions qualitatively mimicking Alpha-DaRT treatments, by employing HeLa cells expressing the Fucci cell cycle-visualizing system. The distribution of the alpha-particle pits detected by a plastic nuclear track detector, CR-39, strongly correlated with γH2AX staining, a marker of DSBs, around the 224Ra source, but the area of G2 arrested cells was more widely spread 24 h from the start of the exposure. Thereafter, close time-lapse observation revealed varying cell cycle kinetics, depending on the distance from the source. A medium containing daughter nuclides prepared from 224Ra sources allowed us to estimate the radiation dose after 24 h of exposure, and determine surviving fractions. The present experimental model revealed for the first time temporo-spatial information of DDR occurring around the source in its early stages.
Collapse
Affiliation(s)
- Hitomi Nojima
- Department of Dental Radiology and Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Atsushi Kaida
- Department of Dental Radiology and Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Yusuke Matsuya
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Motohiro Uo
- Department of Advanced Biomaterials, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Ryo-Ichi Yoshimura
- Department of Radiation Therapeutics and Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Lior Arazi
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 8410501, Be'er-Sheva, Israel
| | - Masahiko Miura
- Department of Dental Radiology and Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
7
|
Epstein L, Heger G, Roy A, Gannot I, Kelson I, Arazi L. The low-LET radiation contribution to the tumor dose in diffusing alpha-emitters radiation therapy. Med Phys 2024; 51:3020-3033. [PMID: 38096442 DOI: 10.1002/mp.16885] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a new technique that enables the use of alpha particles for the treatment of solid tumors. Alpha DaRT employs interstitial sources carrying a few μ $\mu$ Ci of224 $^{224}$ Ra below their surface, designed to release a chain of short-lived atoms (progeny of224 $^{224}$ Ra) which emit alpha particles, along with beta, Auger, and conversion electrons, x- and gamma rays. These atoms diffuse around the source and create-primarily through their alpha decays-a lethal high-dose region measuring a few millimeters in diameter. PURPOSE While previous studies focused on the dose from the alpha emissions alone, this work addresses the electron and photon dose contributed by the diffusing atoms and by the atoms remaining on the source surface, for both a single Alpha DaRT source and multi-source lattices. This allows to evaluate the low-LET contribution to the tumor dose and tumor cell survival, and demonstrate the sparing of surrounding healthy tissue. METHODS The low-LET dose is calculated using the EGSnrc and FLUKA Monte Carlo (MC) codes. We compare the results of a simple line-source approximation with no diffusion to those of a full simulation, which implements a realistic source geometry and the spread of diffusing atoms. We consider two opposite scenarios: one with low diffusion and high212 $^{212}$ Pb leakage, and the other with high diffusion and low leakage. The low-LET dose in source lattices is calculated by superposition of single-source contributions. Its effect on cell survival is estimated with the linear quadratic model in the limit of low dose rate. RESULTS For sources carrying 3 μ $\umu$ Ci/cm224 $^{224}$ Ra arranged in a hexagonal lattice with 4 mm spacing, the minimal low-LET dose between sources is∼ 18 - 30 $\sim 18-30$ Gy for the two test cases and is dominated by the beta contribution. The low-LET dose drops below 5 Gy∼ 3 $\sim 3$ mm away from the outermost source in the lattice with an effective maximal dose rate of< 0.04 $<0.04$ Gy/h. The accuracy of the line-source/no-diffusion approximation is∼ 15 % $\sim 15\%$ for the total low-LET dose over clinically relevant distances (2-4 mm). The low-LET dose reduces tumor cell survival by a factor of∼ 2 - 200 $\sim 2-200$ . CONCLUSIONS The low-LET dose in Alpha DaRT can be modeled by conventional MC techniques with appropriate leakage corrections to the source activity. For 3 μ $\umu$ Ci/cm224 $^{224}$ Ra sources, the contribution of the low-LET dose can reduce cell survival inside the tumor by up to two orders of magnitude. The low-LET dose to surrounding healthy tissue is negligible. Increasing source activities by a factor of 5 can bring the low-LET dose itself to therapeutic levels, in addition to the high-LET dose contributed by alpha particles, leading to a "self-boosted" Alpha DaRT configuration, and potentially allowing to increase the lattice spacing.
Collapse
Affiliation(s)
- Lior Epstein
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Soreq Nuclear Research Center, Yavne, Israel
| | - Guy Heger
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Arindam Roy
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Israel Gannot
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Itzhak Kelson
- School of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lior Arazi
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| |
Collapse
|
8
|
Nelson BJB, Wilson J, Andersson JD, Wuest F. Theranostic Imaging Surrogates for Targeted Alpha Therapy: Progress in Production, Purification, and Applications. Pharmaceuticals (Basel) 2023; 16:1622. [PMID: 38004486 PMCID: PMC10674391 DOI: 10.3390/ph16111622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
This article highlights recent developments of SPECT and PET diagnostic imaging surrogates for targeted alpha particle therapy (TAT) radiopharmaceuticals. It outlines the rationale for using imaging surrogates to improve diagnostic-scan accuracy and facilitate research, and the properties an imaging-surrogate candidate should possess. It evaluates the strengths and limitations of each potential imaging surrogate. Thirteen surrogates for TAT are explored: 133La, 132La, 134Ce/134La, and 226Ac for 225Ac TAT; 203Pb for 212Pb TAT; 131Ba for 223Ra and 224Ra TAT; 123I, 124I, 131I and 209At for 211At TAT; 134Ce/134La for 227Th TAT; and 155Tb and 152Tb for 149Tb TAT.
Collapse
Affiliation(s)
- Bryce J. B. Nelson
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
| | - John Wilson
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
| | - Jan D. Andersson
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
- Edmonton Radiopharmaceutical Center, Alberta Health Services, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
9
|
Kozempel J, Sakmár M, Janská T, Vlk M. Study of 213Bi and 211Pb Recoils Release from 223Ra Labelled TiO 2 Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2022; 16:343. [PMID: 36614682 PMCID: PMC9821810 DOI: 10.3390/ma16010343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Nanoparticles of various materials were proposed as carriers of nuclides in targeted alpha particle therapy to at least partially eliminate the nuclear recoil effect causing the unwanted release of radioactive progeny originating in nuclear decay series of so-called in vivo generators. Here, we report on the study of 211Pb and 211Bi recoils release from the 223Ra surface-labelled TiO2 nanoparticles in the concentration range of 0.01-1 mg/mL using two phase separation methods different in their kinetics in order to test the ability of progeny resorption. We have found significant differences between the centrifugation and the dialysis used for labelled NPs separation as well as that the release of 211Pb and 211Bi from the nanoparticles also depends on the NPs dispersion concentration. These findings support our previously proposed recoils-retaining mechanism of the progeny by their resorption on the NPs surface. At the 24 h time-point, the highest overall released progeny fractions were observed using centrifugation (4.0% and 13.5% for 211Pb and 211Bi, respectively) at 0.01 mg/mL TiO2 concentration. The lowest overall released fractions at the 24 h time-point (1.5% and 2.5% for 211Pb and 211Bi respectively) were observed using dialysis at 1 mg/mL TiO2 concentration. Our findings also indicate that the in vitro stability tests of such radionuclide systems designed to retain recoil-progeny may end up with biased results and particular care needs to be given to in vitro stability test experimental setup to mimic in vivo dynamic conditions. On the other hand, controlled and well-defined progeny release may enhance the alpha-emitter radiation therapy of some tumours.
Collapse
|