1
|
Miftah H, Benthami H, Badou A. Insights into the emerging immune checkpoint NR2F6 in cancer immunity. J Leukoc Biol 2025; 117:qiae260. [PMID: 39722227 DOI: 10.1093/jleuko/qiae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/17/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024] Open
Abstract
NR2F6 has emerged as a key player in immune regulation, especially in cancer immunity. It has been reported that NR2F6 could suppress the antitumor immune response and has therefore been suggested as a possible target in cancer immunotherapy. In this review, we start by describing the complex structure of the NR2F6 gene and its multifaceted biological functions. Then, we examine its expression in distinct immune cells and cancer cells, elucidating its role in cancer progression. Subsequently, we highlight the predictive significance of NR2F6 for cancer patient outcomes, suggesting its possible use as a prognostic biomarker. Finally, we discuss the emerging potential of NR2F6 as a therapeutic target, presenting novel opportunities for developing effective cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Hayat Miftah
- LIGEP, Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Tarik Ibnou Ziad Street, P.O. Box 9154, Casablanca 20000, Morocco
| | - Hamza Benthami
- LIGEP, Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Tarik Ibnou Ziad Street, P.O. Box 9154, Casablanca 20000, Morocco
| | - Abdallah Badou
- LIGEP, Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Tarik Ibnou Ziad Street, P.O. Box 9154, Casablanca 20000, Morocco
| |
Collapse
|
2
|
Lee JW, Mun H, Kim JH, Ko S, Kim YK, Shim MJ, Kim K, Ho CW, Park HB, Kim M, Lee C, Choi SH, Kim JW, Jeong JH, Yoon JH, Min KW, Son TG. Low-Dose Ionizing Radiation-Crosslinking Immunoprecipitation (LDIR-CLIP) Identified Irradiation-Sensitive RNAs for RNA-Binding Protein HuR-Mediated Decay. BIOLOGY 2023; 12:1533. [PMID: 38132359 PMCID: PMC10740889 DOI: 10.3390/biology12121533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Although ionizing radiation (IR) is widely used for therapeutic and research purposes, studies on low-dose ionizing radiation (LDIR) are limited compared with those on other IR approaches, such as high-dose gamma irradiation and ultraviolet irradiation. High-dose IR affects DNA damage response and nucleotide-protein crosslinking, among other processes; however, the molecular consequences of LDIR have been poorly investigated. Here, we developed a method to profile RNA species crosslinked to an RNA-binding protein, namely, human antigen R (HuR), using LDIR and high-throughput RNA sequencing. The RNA fragments isolated via LDIR-crosslinking and immunoprecipitation sequencing were crosslinked to HuR and protected from RNase-mediated digestion. Upon crosslinking HuR to target mRNAs such as PAX6, ZFP91, NR2F6, and CAND2, the transcripts degraded rapidly in human cell lines. Additionally, PAX6 and NR2F6 downregulation mediated the beneficial effects of LDIR on cell viability. Thus, our approach provides a method for investigating post-transcriptional gene regulation using LDIR.
Collapse
Affiliation(s)
- Ji Won Lee
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung-si 25457, Republic of Korea; (J.W.L.); (M.J.S.); (K.K.); (C.W.H.); (H.B.P.)
| | - Hyejin Mun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (H.M.); (S.K.); (J.-H.Y.)
- Department of Oncology Science, University of Oklahoma, Oklahoma City, OK 73104, USA;
| | - Jeong-Hyun Kim
- Department of Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Seungbeom Ko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (H.M.); (S.K.); (J.-H.Y.)
| | - Young-Kook Kim
- Biomedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea;
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Min Ji Shim
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung-si 25457, Republic of Korea; (J.W.L.); (M.J.S.); (K.K.); (C.W.H.); (H.B.P.)
| | - Kyungmin Kim
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung-si 25457, Republic of Korea; (J.W.L.); (M.J.S.); (K.K.); (C.W.H.); (H.B.P.)
| | - Chul Woong Ho
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung-si 25457, Republic of Korea; (J.W.L.); (M.J.S.); (K.K.); (C.W.H.); (H.B.P.)
| | - Hyun Bong Park
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung-si 25457, Republic of Korea; (J.W.L.); (M.J.S.); (K.K.); (C.W.H.); (H.B.P.)
| | - Meesun Kim
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan 46033, Republic of Korea; (M.K.); (C.L.); (S.H.C.)
| | - Chaeyoung Lee
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan 46033, Republic of Korea; (M.K.); (C.L.); (S.H.C.)
| | - Si Ho Choi
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan 46033, Republic of Korea; (M.K.); (C.L.); (S.H.C.)
| | - Jung-Woong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea;
| | - Ji-Hoon Jeong
- Department of Oncology Science, University of Oklahoma, Oklahoma City, OK 73104, USA;
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (H.M.); (S.K.); (J.-H.Y.)
- Department of Oncology Science, University of Oklahoma, Oklahoma City, OK 73104, USA;
| | - Kyung-Won Min
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung-si 25457, Republic of Korea; (J.W.L.); (M.J.S.); (K.K.); (C.W.H.); (H.B.P.)
| | - Tae Gen Son
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan 46033, Republic of Korea; (M.K.); (C.L.); (S.H.C.)
| |
Collapse
|
3
|
Miftah H, Naji O, Ssi SA, Ghouzlani A, Lakhdar A, Badou A. NR2F6, a new immune checkpoint that acts as a potential biomarker of immunosuppression and contributes to poor clinical outcome in human glioma. Front Immunol 2023; 14:1139268. [PMID: 37575237 PMCID: PMC10419227 DOI: 10.3389/fimmu.2023.1139268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Intoroduction Nuclear receptor subfamily 2 group F member 6 (NR2F6) is a promising checkpoint target for cancer immunotherapy. However, there has been no investigation of NR2F6 in glioma. Our study systematically explored the clinical characteristics and biological functions of NR2F6 in gliomas. Methods We extracted RNA sequencing (RNA-seq) data of 663 glioma samples from The Cancer Genome Atlas (TCGA) as the training cohort and 325 samples from the Chinese Glioma Genome Atlas (CGGA) as the validation cohort. We also confirmed the NR2F6 gene expression feature in our own cohort of 60 glioma patients. R language and GraphPad Prism softwares were mainly used for statistical analysis and graphical work. Results We found that NR2F6 was significantly related to high tumor aggressiveness and poor outcomes for glioma patients. Functional enrichment analysis demonstrated that NR2F6 was associated with many biological processes that are related to glioma progression, such as angiogenesis, and with multiple immune-related functions. Moreover, NR2F6 was found to be significantly correlated with stromal and immune infiltration in gliomas. Subsequent analysis based on Gliomas single-cell sequencing datasets showed that NR2F6 was expressed in immune cells, tumor cells, and stromal cells. Mechanistically, results suggested that NR2F6 might act as a potential immunosuppression-mediated molecule in the glioma microenvironment through multiple ways, such as the recruitment of immunosuppressive cells, secretion of immunosuppressive cytokines, M2 polarization of macrophages, in addition to combining with other immune checkpoint inhibitors. Conclusion Our findings indicated that intracellular targeting of NR2F6 in both immune cells and tumor cells, as well as stromal cells, may represent a promising immunotherapeutic strategy for glioma. Stromal cells, may represent a promising immunotherapeutic strategy for glioma.
Collapse
Affiliation(s)
- Hayat Miftah
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Oumayma Naji
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Saadia Ait Ssi
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdelhakim Lakhdar
- Department of Neurosurgery, University Hospital Center (UHC) Ibn Rochd, Casablanca, Morocco
- Laboratory of Research on Neurologic, Neurosensorial Diseases and Handicap, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
4
|
Dai T, Kang X, Yang C, Mei S, Wei S, Guo X, Ma Z, Shi Y, Chu Y, Dan X. Integrative Analysis of miRNA-mRNA in Ovarian Granulosa Cells Treated with Kisspeptin in Tan Sheep. Animals (Basel) 2022; 12:2989. [PMID: 36359113 PMCID: PMC9656243 DOI: 10.3390/ani12212989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Kisspeptin is a peptide hormone encoded by the kiss-1 gene that regulates animal reproduction. Our studies revealed that kisspeptin can regulate steroid hormone production and promote cell proliferation in ovarian granulosa cells of Tan sheep, but the mechanism has not yet been fully understood. We speculated that kisspeptin might promote steroid hormone production and cell proliferation by mediating the expression of specific miRNA and mRNA in granulosa cells. Accordingly, after granulosa cells were treated with kisspeptin, the RNA of cells was extracted to construct a cDNA library, and miRNA-mRNA sequencing was performed. Results showed that 1303 expressed genes and 605 expressed miRNAs were identified. Furthermore, eight differentially expressed miRNAs were found, and their target genes were significantly enriched in progesterone synthesis/metabolism, hormone biosynthesis, ovulation cycle, and steroid metabolism regulation. Meanwhile, mRNA was significantly enriched in steroid biosynthesis, IL-17 signaling pathway, and GnRH signaling pathway. Integrative analysis of miRNA-mRNA revealed that the significantly different oar-let-7b targets eight genes, of which EGR1 (early growth response-1) might play a significant role in regulating the function of granulosa cells, and miR-10a regulates lipid metabolism and steroid hormone synthesis by targeting HNRNPD. Additionally, PPI analysis revealed genes that are not miRNA targets but crucial to other biological processes in granulosa cells, implying that kisspeptin may also indirectly regulate granulosa cell function by these pathways. The findings of this work may help understand the molecular mechanism of kisspeptin regulating steroid hormone secretion, cell proliferation, and other physiological functions in ovarian granulosa cells of Tan sheep.
Collapse
|