1
|
Xie X, He H, Zhang N, Wang X, Rui W, Xu D, Zhu Y, Tian M, He W. DDR1 Targeting HOXA6 Facilitates Bladder Cancer Progression via Inhibiting Ferroptosis. J Cell Mol Med 2025; 29:e70410. [PMID: 40105492 PMCID: PMC11921465 DOI: 10.1111/jcmm.70410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 01/01/2025] [Accepted: 01/24/2025] [Indexed: 03/20/2025] Open
Abstract
Ferroptosis is an important factor affecting the progression of bladder cancer (BC). Previous studies have confirmed that discoidin domain receptor 1 (DDR1) promotes BC progression. However, the regulatory mechanisms of BC ferroptosis are largely unknown. Therefore, this study aimed to investigate the regulatory effects of DDR1 on BC cell ferroptosis. Ferroptosis-sensitive and -resistant BC cells were screened, and reverse-transcription quantitative PCR and western blotting were used to determine the expression of DDR1 in BC cells. In vitro and in vivo assays were performed to analyse the mechanisms of DDR1 in BC ferroptosis. The ferroptosis inducer erastin inhibited DDR1 expression in TCCSUP cells. The ferroptosis inhibitor ferrostatin-1 inhibited BC cell death caused by DDR1 knockdown. DDR1 increased glutathione, glutathione peroxidase 4 and solute carrier family 7 member 11 expression, while decreasing malondialdehyde and Fe2+ levels and acyl-CoA synthetase long-chain family member 4 levels and inhibiting epithelial mesenchymal transition and neurofibromin 2-yes-associated protein. These effects were abrogated by the knockdown of homeobox A6 (HOXA6). DDR1 targeting of HOXA6 facilitated BC growth and inhibited BC ferroptosis in vivo. DDR1 promotes BC progression by inhibiting ferroptosis and targeting HOXA6. Thus, DDR1 may serve as a potential therapeutic target for BC.
Collapse
Affiliation(s)
- Xin Xie
- Department of Urology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hongchao He
- Department of Urology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ning Zhang
- Department of Urology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaojing Wang
- Department of Urology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenbin Rui
- Department of Urology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Danfeng Xu
- Department of Urology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yu Zhu
- Department of Urology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ming Tian
- Department of Burn, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wei He
- Department of Urology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
2
|
Soloveva N, Novikova S, Farafonova T, Tikhonova O, Zgoda V. Secretome and Proteome of Extracellular Vesicles Provide Protein Markers of Lung and Colorectal Cancer. Int J Mol Sci 2025; 26:1016. [PMID: 39940785 PMCID: PMC11816676 DOI: 10.3390/ijms26031016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Colorectal cancer (CRC) and lung cancer (LC) are leading causes of cancer-related mortality, highlighting the need for minimally invasive diagnostic, prognostic, and predictive markers for these cancers. Proteins secreted by a tumor into the extracellular space directly, known as the tumor secretome, as well as proteins in the extra-cellular vesicles (EVs), represent an attractive source of biomarkers for CRC and LC. We performed proteomic analyses on secretome and EV samples from LC (A549, NCI-H23, NCI-H460) and CRC (Caco2, HCT116, HT-29) cell lines and targeted mass spectrometry on EVs from plasma samples of 20 patients with CRC and 19 healthy controls. A total of 782 proteins were identified across the CRC and LC secretome and EV samples. Of these, 22 and 44 protein markers were significantly elevated in the CRC and LC samples, respectively. Functional annotation revealed enrichment in proteins linked to metastasis and tumor progression for both cancer types. In EVs isolated from the plasma of patients with CRC, ITGB3, HSPA8, TUBA4A, and TLN1 were reduced, whereas FN1, SERPINA1, and CST3 were elevated, compared to healthy controls. These findings support the development of minimally invasive liquid biopsy methods for the detection, prognosis, and treatment monitoring of LC and CRC.
Collapse
Affiliation(s)
| | | | | | | | - Victor Zgoda
- Laboratory of Systems Biology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (N.S.); (S.N.); (T.F.); (O.T.)
| |
Collapse
|
3
|
Ouyang P, Cheng B, He X, Lou J, Li X, Guo H, Xu F. Navigating the biophysical landscape: how physical cues steer the journey of bone metastatic tumor cells. Trends Cancer 2024; 10:792-808. [PMID: 39127608 DOI: 10.1016/j.trecan.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
Many tumors prefer to metastasize to bone, but the underlying mechanisms remain elusive. The human skeletal system has unique physical properties, that are distinct from other organs, which play a key role in directing the behavior of tumor cells within bone. Understanding the physical journey of tumor cells within bone is crucial. In this review we discuss bone metastasis in the context of how physical cues in the bone vasculature and bone marrow niche regulate the fate of tumor cells. Our objective is to inspire innovative diagnostic and therapeutic approaches for bone metastasis from a mechanobiological perspective.
Collapse
Affiliation(s)
- Pengrong Ouyang
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Bo Cheng
- Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, P.R. China
| | - Xijing He
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China; Xi'an International Medical Center Hospital, Xi'an 710061, P.R. China.
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China.
| | - Xiaokang Li
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, P.R. China.
| | - Hui Guo
- Department of Medical Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China.
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China.
| |
Collapse
|
4
|
Trono P, Ottavi F, Rosano' L. Novel insights into the role of Discoidin domain receptor 2 (DDR2) in cancer progression: a new avenue of therapeutic intervention. Matrix Biol 2024; 125:31-39. [PMID: 38081526 DOI: 10.1016/j.matbio.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 02/12/2024]
Abstract
Discoidin domain receptors (DDRs), including DDR1 and DDR2, are a unique class of receptor tyrosine kinases (RTKs) activated by collagens at the cell-matrix boundary interface. The peculiar mode of activation makes DDRs as key cellular sensors of microenvironmental changes, with a critical role in all physiological and pathological processes governed by collagen remodeling. DDRs are widely expressed in fetal and adult tissues, and experimental and clinical evidence has shown that their expression is deregulated in cancer. Strong findings supporting the role of collagens in tumor progression and metastasis have led to renewed interest in DDRs. However, despite an increasing number of studies, DDR biology remains poorly understood, particularly the less studied DDR2, whose involvement in cancer progression mechanisms is undoubted. Thus, the understanding of a wider range of DDR2 functions and related molecular mechanisms is expected. To date, several lines of evidence support DDR2 as a promising target in cancer therapy. Its involvement in key functions in the tumor microenvironment makes DDR2 inhibition particularly attractive to achieve simultaneous targeting of tumor and stromal cells, and tumor regression, which is beneficial for improving the response to different types of anti-cancer therapies, including chemo- and immunotherapy. This review summarizes current research on DDR2, focusing on its role in cancer progression through its involvement in tumor and stromal cell functions, and discusses findings that support the rationale for future development of direct clinical strategies targeting DDR2.
Collapse
Affiliation(s)
- Paola Trono
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, Via E. Ramarini, 32, Monterotondo Scalo 00015 Rome
| | - Flavia Ottavi
- Institute of Molecular Biology and Pathology (IBPM)-CNR, Via degli Apuli 4, Rome 00185, Italy
| | - Laura Rosano'
- Institute of Molecular Biology and Pathology (IBPM)-CNR, Via degli Apuli 4, Rome 00185, Italy.
| |
Collapse
|
5
|
Gatti DM, Tyler AL, Mahoney JM, Churchill GA, Yener B, Koyuncu D, Gurcan MN, Niazi M, Tavolara T, Gower AC, Dayao D, McGlone E, Ginese ML, Specht A, Alsharaydeh A, Tessier PA, Kurtz SL, Elkins K, Kramnik I, Beamer G. Systems genetics uncover new loci containing functional gene candidates in Mycobacterium tuberculosis-infected Diversity Outbred mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572738. [PMID: 38187647 PMCID: PMC10769337 DOI: 10.1101/2023.12.21.572738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mycobacterium tuberculosis, the bacillus that causes tuberculosis (TB), infects 2 billion people across the globe, and results in 8-9 million new TB cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. We investigated the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using clinical indicators of disease, granuloma histopathological features, and immune response traits identified five new loci on mouse chromosomes 1, 2, 4, 16 and three previously identified loci on chromosomes 3 and 17. Quantitative trait loci (QTLs) on chromosomes 1, 16, and 17, associated with multiple correlated traits and had similar patterns of allele effects, suggesting these QTLs contain important genetic regulators of responses to M. tuberculosis. To narrow the list of candidate genes in QTLs, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks, generating functional scores. The scores were then used to rank candidates for each mapped trait in each locus, resulting in 11 candidates: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Importantly, all 11 candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling. Further, all candidates contain single nucleotide polymorphisms (SNPs), and some but not all SNPs were predicted to have deleterious consequences on protein functions. Multiple methods were used for validation including (i) a statistical method that showed Diversity Outbred mice carrying PWH/PhJ alleles on chromosome 17 QTL have shorter survival; (ii) quantification of S100A8 protein levels, confirming predicted allele effects; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and new functionally relevant gene candidates that may be major regulators of granuloma necrosis and acute inflammation in pulmonary TB.
Collapse
Affiliation(s)
- D M Gatti
- The Jackson Laboratory, Bar Harbor, ME
| | - A L Tyler
- The Jackson Laboratory, Bar Harbor, ME
| | | | | | - B Yener
- Rensselaer Polytechnic Institute, Troy, NY
| | - D Koyuncu
- Rensselaer Polytechnic Institute, Troy, NY
| | - M N Gurcan
- Wake Forest University School of Medicine, Winston Salem, NC
| | - Mkk Niazi
- Wake Forest University School of Medicine, Winston Salem, NC
| | - T Tavolara
- Wake Forest University School of Medicine, Winston Salem, NC
| | - A C Gower
- Clinical and Translational Science Institute, Boston University, Boston, MA
| | - D Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - E McGlone
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - M L Ginese
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - A Specht
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - A Alsharaydeh
- Texas Biomedical Research Institute, San Antonio, TX
| | - P A Tessier
- Department of Microbiology and Immunology, Laval University School of Medicine, Quebec, Canada
| | - S L Kurtz
- Center for Biologics, Food and Drug Administration, Bethesda, MD
| | - K Elkins
- Center for Biologics, Food and Drug Administration, Bethesda, MD
| | - I Kramnik
- NIEDL, Boston University, Boston, MA
| | - G Beamer
- Texas Biomedical Research Institute, San Antonio, TX
| |
Collapse
|
6
|
Wu C, Weis SM, Cheresh DA. Upregulation of fibronectin and its integrin receptors - an adaptation to isolation stress that facilitates tumor initiation. J Cell Sci 2023; 136:jcs261483. [PMID: 37870164 PMCID: PMC10652044 DOI: 10.1242/jcs.261483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
Tumor initiation at either primary or metastatic sites is an inefficient process in which tumor cells must fulfill a series of conditions. One critical condition involves the ability of individual tumor-initiating cells to overcome 'isolation stress', enabling them to survive within harsh isolating microenvironments that can feature nutrient stress, hypoxia, oxidative stress and the absence of a proper extracellular matrix (ECM). In response to isolation stress, tumor cells can exploit various adaptive strategies to develop stress tolerance and gain stemness features. In this Opinion, we discuss how strategies such as the induction of certain cell surface receptors and deposition of ECM proteins enable tumor cells to endure isolation stress, thereby gaining tumor-initiating potential. As examples, we highlight recent findings from our group demonstrating how exposure of tumor cells to isolation stress upregulates the G-protein-coupled receptor lysophosphatidic acid receptor 4 (LPAR4), its downstream target fibronectin and two fibronectin-binding integrins, α5β1 and αvβ3. These responses create a fibronectin-rich niche for tumor cells, ultimately driving stress tolerance, cancer stemness and tumor initiation. We suggest that approaches to prevent cancer cells from adapting to stress by suppressing LPAR4 induction, blocking its downstream signaling or disrupting fibronectin-integrin interactions hold promise as potential strategies for cancer treatment.
Collapse
Affiliation(s)
- Chengsheng Wu
- Department of Pathology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Sara M. Weis
- Department of Pathology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - David A. Cheresh
- Department of Pathology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Tian Y, Bai F, Zhang D. New target DDR1: A "double-edged sword" in solid tumors. Biochim Biophys Acta Rev Cancer 2023; 1878:188829. [PMID: 36356724 DOI: 10.1016/j.bbcan.2022.188829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/16/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Globally, cancer is a major catastrophic disease that seriously threatens human health. Thus, there is an urgent need to find new strategies to treat cancer. Among them, identifying new targets is one of the best ways to treat cancer at present. Especially in recent years, scientists have discovered many new targets and made breakthroughs in the treatment of cancer, bringing new hope to cancer patients. As one of the novel targets for cancer treatment, DDR1 has attracted much attention due to its unique role in cancer. Hence, here, we focus on a new target, DDR1, which may be a "double-edged sword" of human solid tumors. In this review, we provide a comprehensive overview of how DDR1 acts as a "double-edged sword" in cancer. First, we briefly introduce the structure and normal physiological function of DDR1; Second, we delineate the DDR1 expression pattern in single cells; Next, we sorte out the relationship between DDR1 and cancer, including the abnormal expression of DDR1 in cancer, the mechanism of DDR1 and cancer occurrence, and the value of DDR1 on cancer prognosis. In addition, we introduced the current status of global drug and antibody research and development targeting DDR1 and its future design prospects; Finally, we summarize and look forward to designing more DDR1-targeting drugs in the future to make further progress in the treatment of solid tumors.
Collapse
Affiliation(s)
- Yonggang Tian
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Feihu Bai
- The Gastroenterology Clinical Medical Center of Hainan Province, Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| | - Dekui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China.
| |
Collapse
|