1
|
Zhang Z, Tang Y, Luo D, Qiu J, Chen L. Advances in nanotechnology for targeting cancer-associated fibroblasts: A review of multi-strategy drug delivery and preclinical insights. APL Bioeng 2025; 9:011502. [PMID: 40094065 PMCID: PMC11910205 DOI: 10.1063/5.0244706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a crucial role in the tumor microenvironment by promoting tumor growth, immune evasion, and metastasis. Recently, drug delivery systems targeting CAFs have emerged as a promising long-term and effective approach to cancer treatment. Advances in nanotechnology, in particular, have led to the development of nanomedicine delivery systems designed specifically to target CAFs, offering new possibilities for precise and personalized cancer therapies. This article reviews recent progress in drug delivery using nanocarriers that target CAFs. Additionally, we explore the potential of combining multiple therapies, such as chemotherapy and immunotherapy, with nanocarriers to enhance efficacy and overcome drug resistance. Although many preclinical studies show promise, the clinical application of nanomedicine still faces considerable challenges, especially in terms of drug penetration and large-scale production. Therefore, this review aims to provide a fresh perspective on CAF-targeted drug delivery systems and highlight potential future research directions and clinical applications.
Collapse
|
2
|
Wenta T, Nastaly P, Lipinska B, Manninen A. Remodeling of the extracellular matrix by serine proteases as a prerequisite for cancer initiation and progression. Matrix Biol 2024; 134:197-219. [PMID: 39500383 DOI: 10.1016/j.matbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024]
Abstract
The extracellular matrix (ECM) serves as a physical scaffold for tissues that is composed of structural proteins such as laminins, collagens, proteoglycans and fibronectin, forming a three dimensional network, and a wide variety of other matrix proteins with ECM-remodeling and signaling functions. The activity of ECM-associated signaling proteins is tightly regulated. Thus, the ECM serves as a reservoir for water and growth regulatory signals. The ECM architecture is dynamically modulated by multiple serine proteases that process both structural and signaling proteins to regulate physiological processes such as organogenesis and tissue homeostasis but they also contribute to pathological events, especially cancer progression. Here, we review the current literature regarding the role of ECM remodeling by serine proteases (KLKs, uPA, furin, HtrAs, granzymes, matriptase, hepsin) in tumorigenesis.
Collapse
Affiliation(s)
- Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland.
| | - Paulina Nastaly
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
3
|
Erreni M, Fumagalli MR, D’Anna R, Sollai M, Bozzarelli S, Nappo G, Zanini D, Parente R, Garlanda C, Rimassa L, Terracciano LM, Biswas SK, Zerbi A, Mantovani A, Doni A. Depicting the cellular complexity of pancreatic adenocarcinoma by Imaging Mass Cytometry: focus on cancer-associated fibroblasts. Front Immunol 2024; 15:1472433. [PMID: 39575252 PMCID: PMC11578750 DOI: 10.3389/fimmu.2024.1472433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) represents the complexity of interaction between cancer and cells of the tumor microenvironment (TME). Immune cells affect tumor cell behavior, thus driving cancer progression. Cancer-associated fibroblasts (CAFs) are responsible of the desmoplastic and fibrotic reaction by regulating deposition and remodeling of extracellular matrix (ECM). As tumor-promoting cells abundant in PDAC ECM, CAFs represent promising targets for novel anticancer interventions. However, relevant clinical trials are hampered by the lack of specific markers and elusive differences among CAF subtypes. Indeed, while single-cell transcriptomic analyses have provided important information on the cellular constituents of PDACs and related molecular pathways, studies based on the identification of protein markers in tissues aimed at identifying CAF subtypes and new molecular targets result incomplete. Methods Herein, we applied multiplexed Imaging Mass Cytometry (IMC) at single-cell resolution on 8 human PDAC tissues to depict the PDAC composing cells, and profiling immune cells, endothelial cells (ECs), as well as endocrine cells and tumor cells. Results We focused on CAFs by characterizing up to 19 clusters distinguished by phenotype, spatiality, and interaction with immune and tumor cells. We report evidence that specific subtypes of CAFs (CAFs 10 and 11) predominantly are enriched at the tumor-stroma interface and closely associated with tumor cells. CAFs expressing different combinations of FAP, podoplanin and cadherin-11, were associated with a higher level of CA19-9. Moreover, we identified specific subsets of FAP+ and podoplanin+/cadherin-11+ CAFs enriched in patients with negative prognosis. Discussion The present study provides new general insights into the complexity of the PDAC microenvironment by defining phenotypic heterogeneities and spatial distributions of CAFs, thus suggesting different functions of their subtypes in the PDAC microenvironment.
Collapse
Affiliation(s)
- Marco Erreni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Maria Rita Fumagalli
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Raffaella D’Anna
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Mauro Sollai
- Pathology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Silvia Bozzarelli
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Gennaro Nappo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Damiano Zanini
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Raffaella Parente
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luigi Maria Terracciano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pathology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Subhra K. Biswas
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Alessandro Zerbi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Andrea Doni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
4
|
Lubuela G, Beaufrère A, Albuquerque M, Pignollet C, Nicolle R, Lesurtel M, Bouattour M, Cros J, Paradis V. Prognostic impact of the tumour microenvironment in intrahepatic cholangiocarcinoma: identification of a peritumoural fibro-immune interface. Virchows Arch 2024; 485:901-911. [PMID: 39242455 DOI: 10.1007/s00428-024-03922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The tumour microenvironment (TME) of intrahepatic cholangiocarcinoma (iCCA) is complex and plays a role in prognosis and resistance to treatments. We aimed to decipher the iCCA TME phenotype using multiplex sequential immunohistochemistry (MS-IHC) to investigate which cell types and their spatial location may affect its prognosis. This was a retrospective study of 109 iCCA resected samples. For all cases, we used an open-source software to analyse a panel of markers (αSMA, FAP, CD8, CD163) by MS-IHC for characterize the different TME cells and their location. RNA sequencing was performed to determine the main iCCA transcriptomic classes. The association of the TME composition with overall survival (OS) was assessed by univariate and multivariate analyses. A high proportion of activated fibroblasts (FAP +) was significantly associated with poor OS (HR = 2.33, 95%CI = 1.43-3.81, p = 0.001). CD8 T lymphocytes excluded from the epithelial compartment were significantly associated with worse OS (HR = 1.86, 95% CI = 1.07-3.22, p = 0.014). The combination of a high proportion of FAP + fibroblasts and CD8 T lymphocytes excluded from the epithelial compartment, observed in 21 cases (19%), was significantly associated with poor OS on univariate (HR = 2.49, 95% CI = 1.44-4.28, p = 0.001) and multivariate analyses (HR = 2.77, 95% CI = 1.56-4.92, p < 0.001). In these cases, CD8 T lymphocytes were predominantly located at the tumour/non-tumour interface (19/21, 90%), and an association with the transcriptomic inflammatory stroma class was observed (10/21, 48%). Our results confirm the TME prognostic role in iCCA, highlighting the impact in the process of spatial heterogeneity, especially cell colocalization of immune and fibroblastic cells creating a peritumoural fibro-immune interface.
Collapse
Affiliation(s)
- Gwladys Lubuela
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
| | - Aurélie Beaufrère
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France.
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, SIRIC InsiTu, DMU DREAM, Beaujon Hospital, 100 Boulevard du Général Leclerc, 92110, Clichy, France.
| | - Miguel Albuquerque
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, SIRIC InsiTu, DMU DREAM, Beaujon Hospital, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| | - Camille Pignollet
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
| | - Rémy Nicolle
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
| | - Mickael Lesurtel
- AP-HP.Nord, Department of HPB Surgery & Liver Transplantation, Beaujon Hospital, Université Paris Cité, Clichy, France
| | - Mohamed Bouattour
- AP-HP.Nord, Liver Cancer Unit, DMU DIGEST, Beaujon Hospital, Clichy, France
| | - Jérôme Cros
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, SIRIC InsiTu, DMU DREAM, Beaujon Hospital, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| | - Valérie Paradis
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, SIRIC InsiTu, DMU DREAM, Beaujon Hospital, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| |
Collapse
|
5
|
Chintamaneni PK, Pindiprolu SKSS, Swain SS, Karri VVSR, Nesamony J, Chelliah S, Bhaskaran M. Conquering chemoresistance in pancreatic cancer: Exploring novel drug therapies and delivery approaches amidst desmoplasia and hypoxia. Cancer Lett 2024; 588:216782. [PMID: 38453046 DOI: 10.1016/j.canlet.2024.216782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Pancreatic cancer poses a significant challenge within the field of oncology due to its aggressive behaviour, limited treatment choices, and unfavourable outlook. With a mere 10% survival rate at the 5-year mark, finding effective interventions becomes even more pressing. The intricate relationship between desmoplasia and hypoxia in the tumor microenvironment further complicates matters by promoting resistance to chemotherapy and impeding treatment efficacy. The dense extracellular matrix and cancer-associated fibroblasts characteristic of desmoplasia create a physical and biochemical barrier that impedes drug penetration and fosters an immunosuppressive milieu. Concurrently, hypoxia nurtures aggressive tumor behaviour and resistance to conventional therapies. a comprehensive exploration of emerging medications and innovative drug delivery approaches. Notably, advancements in nanoparticle-based delivery systems, local drug delivery implants, and oxygen-carrying strategies are highlighted for their potential to enhance drug accessibility and therapeutic outcomes. The integration of these strategies with traditional chemotherapies and targeted agents reveals the potential for synergistic effects that amplify treatment responses. These emerging interventions can mitigate desmoplasia and hypoxia-induced barriers, leading to improved drug delivery, treatment efficacy, and patient outcomes in pancreatic cancer. This review article delves into the dynamic landscape of emerging anticancer medications and innovative drug delivery strategies poised to overcome the challenges imposed by desmoplasia and hypoxia in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Pavan Kumar Chintamaneni
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM (Deemed to be University), Rudraram, 502329 Telangana, India.
| | | | - Swati Swagatika Swain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | | | - Jerry Nesamony
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo HSC, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Selvam Chelliah
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX-77004, USA
| | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo HSC, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
6
|
Guo S, Wang Z. Unveiling the immunosuppressive landscape of pancreatic ductal adenocarcinoma: implications for innovative immunotherapy strategies. Front Oncol 2024; 14:1349308. [PMID: 38590651 PMCID: PMC10999533 DOI: 10.3389/fonc.2024.1349308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), stands as the fourth leading cause of cancer-related deaths in the United States, marked by challenging treatment and dismal prognoses. As immunotherapy emerges as a promising avenue for mitigating PDAC's malignant progression, a comprehensive understanding of the tumor's immunosuppressive characteristics becomes imperative. This paper systematically delves into the intricate immunosuppressive network within PDAC, spotlighting the significant crosstalk between immunosuppressive cells and factors in the hypoxic acidic pancreatic tumor microenvironment. By elucidating these mechanisms, we aim to provide insights into potential immunotherapy strategies and treatment targets, laying the groundwork for future studies on PDAC immunosuppression. Recognizing the profound impact of immunosuppression on PDAC invasion and metastasis, this discussion aims to catalyze the development of more effective and targeted immunotherapies for PDAC patients.
Collapse
Affiliation(s)
- Songyu Guo
- First Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhenxia Wang
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
7
|
Bueno-Urquiza LJ, Godínez-Rubí M, Villegas-Pineda JC, Vega-Magaña AN, Jave-Suárez LF, Puebla-Mora AG, Aguirre-Sandoval GE, Martínez-Silva MG, Ramírez-de-Arellano A, Pereira-Suárez AL. Phenotypic Heterogeneity of Cancer Associated Fibroblasts in Cervical Cancer Progression: FAP as a Central Activation Marker. Cells 2024; 13:560. [PMID: 38606999 PMCID: PMC11010959 DOI: 10.3390/cells13070560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024] Open
Abstract
Cervical cancer (CC) is the fourth leading cancer among women and is one of the principal gynecological malignancies. In the tumor microenvironment, cancer-associated fibroblasts (CAFs) play a crucial role during malignant progression, exhibiting a variety of heterogeneous phenotypes. CAFs express phenotypic markers like fibroblast activation protein (FAP), vimentin, S100A4, α-smooth muscle actin (αSMA), and functional markers such as MMP9. This study aimed to evaluate the protein expression of vimentin, S100A4, αSMA, FAP, and MMP9 in mesenchymal stem cells (MSC)-CAF cells, as well as in cervical cancer samples. MSC cells were stimulated with HeLa and SiHa tumor cell supernatants, followed by protein evaluation and cytokine profile to confirm differentiation towards a CAF phenotype. In addition, automated immunohistochemistry (IHQa) was performed to evaluate the expression of these proteins in CC samples at different stages. Our findings revealed a high expression of FAP in stimulated MSC cells, accompanied by the secretion of pro/anti-inflammatory cytokines. In the other hand, CC samples were observed to have high expression of FAP, vimentin, αSMA, and MMP9. Most importantly, there was a high expression of their activation proteins αSMA and FAP during the different stages. In the early stages, a myofibroblast-like phenotype (CAFs αSMA+ FAP+), and in the late stages a protumoral phenotype (CAF αSMA- FAP+). In summary, FAP has a crucial role in the activation of CAFs during cervical cancer progression.
Collapse
Affiliation(s)
- Lesly Jazmin Bueno-Urquiza
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (L.J.B.-U.); (A.N.V.-M.); (A.R.-d.-A.)
| | - Marisol Godínez-Rubí
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.-R.); (J.C.V.-P.); (A.G.P.-M.); (G.E.A.-S.)
| | - Julio César Villegas-Pineda
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.-R.); (J.C.V.-P.); (A.G.P.-M.); (G.E.A.-S.)
| | - Alejandra Natali Vega-Magaña
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (L.J.B.-U.); (A.N.V.-M.); (A.R.-d.-A.)
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.-R.); (J.C.V.-P.); (A.G.P.-M.); (G.E.A.-S.)
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
| | - Ana Graciela Puebla-Mora
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.-R.); (J.C.V.-P.); (A.G.P.-M.); (G.E.A.-S.)
| | - Gloria Estefanía Aguirre-Sandoval
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.-R.); (J.C.V.-P.); (A.G.P.-M.); (G.E.A.-S.)
| | - María Guadalupe Martínez-Silva
- Departamento de Anatomía Patológica, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico;
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (L.J.B.-U.); (A.N.V.-M.); (A.R.-d.-A.)
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (L.J.B.-U.); (A.N.V.-M.); (A.R.-d.-A.)
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.-R.); (J.C.V.-P.); (A.G.P.-M.); (G.E.A.-S.)
| |
Collapse
|
8
|
Ora M, Soni N, Nazar AH, Dixit M, Singh R, Puri S, Graham MM, Gambhir S. Fibroblast Activation Protein Inhibitor-Based Radionuclide Therapies: Current Status and Future Directions. J Nucl Med 2023:jnumed.123.265594. [PMID: 37268422 DOI: 10.2967/jnumed.123.265594] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/30/2023] [Indexed: 06/04/2023] Open
Abstract
Metastatic malignancies have limited management strategies and variable treatment responses. Cancer cells develop beside and depend on the complex tumor microenvironment. Cancer-associated fibroblasts, with their complex interaction with tumor and immune cells, are involved in various steps of tumorigenesis, such as growth, invasion, metastasis, and treatment resistance. Prooncogenic cancer-associated fibroblasts emerged as attractive therapeutic targets. However, clinical trials have achieved suboptimal success. Fibroblast activation protein (FAP) inhibitor-based molecular imaging has shown encouraging results in cancer diagnosis, making them innovative targets for FAP inhibitor-based radionuclide therapies. This review summarizes the results of preclinical and clinical FAP-based radionuclide therapies. We will describe advances and FAP molecule modification in this novel therapy, as well as its dosimetry, safety profile, and efficacy. This summary may guide future research directions and optimize clinical decision-making in this emerging field.
Collapse
Affiliation(s)
- Manish Ora
- Department of Nuclear Medicine, SGPGIMS, Lucknow, India;
| | - Neetu Soni
- Department of Radiology, University of Rochester Medical Center, Rochester, New York
| | | | - Manish Dixit
- Department of Nuclear Medicine, SGPGIMS, Lucknow, India
| | - Rohit Singh
- Division of Hematology-Oncology, University of Vermont Medical Center, Burlington, Vermont; and
| | - Savita Puri
- Department of Radiology, University of Rochester Medical Center, Rochester, New York
| | - Michael M Graham
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Health Care, Iowa City, Iowa
| | | |
Collapse
|
9
|
Mai W, Liu Q, Li J, Zheng M, Yan F, Liu H, Lei Y, Xu J, Xu J. Comprehensive analysis of the oncogenic and immunological role of FAP and identification of the ceRNA network in human cancers. Aging (Albany NY) 2023; 15:3738-3758. [PMID: 37166418 PMCID: PMC10449273 DOI: 10.18632/aging.204707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/22/2023] [Indexed: 05/12/2023]
Abstract
Fibroblast activation protein-alpha (FAP) is a transmembrane serine protease involving in tissue remodeling. Previous studies report that FAP is highly expressed in certain tumors and participated in oncogenesis. However, there is still lack of systematic and in-depth analysis of FAP based on clinical big data. Here, we comprehensively map the FAP expression profile, prognostic outcome, genetic alteration, immune infiltration across over 30 types of human cancers through multiple datasets including TCGA, CPTAC, and cBioPortal. We find that FAP is up-regulated in most cancer types, and increased FAP expression is associated with advanced pathological stages or poor prognosis in several cancers. Furthermore, FAP is significantly correlated with the infiltration of cancer-associated fibroblasts, macrophages, myeloid dendritic cells, as well as endothelia cells. Immunosuppressive checkpoint proteins or cytokines expression, microsatellite instability and tumor mutational burden analysis also indicate the regulation role of FAP in tumor progression. Gene enrichment analysis demonstrates that ECM-receptor interaction as well as extracellular matrix and structure process are linked to the potential mechanism of FAP in tumor pathogenesis. The ceRNA network is also constructed and identified the involvement of LINC00707/hsa-miR-30e-5p/FAP, LINC02535/hsa-miR-30e-5p/FAP, LINC02535/hsa-miR-30d-5p/FAP, as well as AC026356.1/hsa-miR-30d-5p/FAP axis in tumor progression. In conclusion, our study offers new insights into the oncogenic and immunological role of FAP from a pan-cancer perspective, providing new clues for developing novel targeted anti-tumor strategies.
Collapse
Affiliation(s)
- Weiqian Mai
- School of Medicine, School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Qingyou Liu
- School of Medicine, School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Jiasheng Li
- School of Medicine, School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Mincheng Zheng
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Fuman Yan
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Hui Liu
- School of Medicine, School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Yuhe Lei
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518034, China
| | - Jinwen Xu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Jiean Xu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| |
Collapse
|