1
|
Liu J, Huang H, Zhang X, Shen Y, Jiang D, Hu S, Li S, Yan Z, Hu W, Luo J, Yao H, Chen Y, Tang B. Unveiling the Cuproptosis in Colitis and Colitis-Related Carcinogenesis: A Multifaceted Player and Immune Moderator. RESEARCH (WASHINGTON, D.C.) 2025; 8:0698. [PMID: 40370501 PMCID: PMC12076167 DOI: 10.34133/research.0698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/07/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025]
Abstract
Cuproptosis represents a novel mechanism of cellular demise characterized by the intracellular buildup of copper ions. Unlike other cell death mechanisms, its distinct process has drawn considerable interest for its promising applications in managing inflammatory bowel disease (IBD) and colorectal cancer (CRC). Emerging evidence indicates that copper metabolism and cuproptosis may exert dual regulatory effects within pathological cellular environments, specifically modulating oxidative stress responses, metabolic reprogramming, and immunotherapeutic efficacy. An appropriate level of copper may promote disease progression and exert synergistic effects, but exceeding a certain threshold, copper can inhibit disease development by inducing cuproptosis in pathological cells. This makes abnormal copper levels a potential new therapeutic target for IBD and CRC. This review emphasizes the dual function of copper metabolism and cuproptosis in the progression of IBD and CRC, while also exploring the potential application of copper-based therapies in disease treatment. The analysis further delineates the modulatory influence of tumor immune microenvironment on cuproptosis dynamics, while establishing the therapeutic potential of cuproptosis-targeted strategies in circumventing resistance to both conventional chemotherapeutic agents and emerging immunotherapies. This provides new research directions for the development of future cuproptosis inducers. Finally, this article discusses the latest advances in potential molecular targets of cuproptosis and their related genes in the treatment of IBD and CRC, highlighting future research priorities and unresolved issues.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Gastroenterology, the Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hairuo Huang
- China Medical University, Shenyang 110122, China
| | - Xiaojie Zhang
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Yang Shen
- Department of Radiation Oncology, Zhongshan Hospital,
Fudan University, Shanghai 200000, China
| | - DeMing Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering,
Zhejiang University, Hangzhou 310007, China
| | - Shurong Hu
- Department of Gastroenterology, the Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shuyan Li
- Department of Nursing, the Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zelin Yan
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University,
Zhejiang Provincial Key Laboratory of Gastrointestinal Diseases Pathophysiology, Hangzhou 310006, China
| | - Wen Hu
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University,
Zhejiang Provincial Key Laboratory of Gastrointestinal Diseases Pathophysiology, Hangzhou 310006, China
| | - Jinhua Luo
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Haibo Yao
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital,
Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou 310014, China
| | - Yan Chen
- Department of Gastroenterology, the Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Bufu Tang
- Department of Interventional Radiology, Zhongshan Hospital,
Fudan University, Shanghai 200000, China
| |
Collapse
|
2
|
Zhou Y, Deng X, Ruan H, Xue X, Hu Z, Gong J, Wu S, Liu L. Single-Cell RNA Sequencing Reveals the Immune Landscape of Granulomatous Mastitis. Inflammation 2025:10.1007/s10753-025-02310-8. [PMID: 40338490 DOI: 10.1007/s10753-025-02310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/09/2025]
Abstract
Granulomatous mastitis (GM) is a form of non-lactational breast inflammation that is closely associated with autoimmune processes, however its underlying pathogenesis remains elusive. In this study, we employed single-cell RNA sequencing (scRNA-seq) to conduct a comparative analysis of GM lesion tissues versus normal breast tissues, thereby unveiling the immune profile of GM tissues. Our investigation centered on T and NK cells, macrophages, epithelial cells, and endothelial cells. Notably, we observed a substantial infiltration of immune cells in GM tissues, accompanied by immune disorders, an elevation in Th1 cell counts, enrichment of the toll-like receptor (TLR) pathway, and upregulation of various factors including interferon-γ (IFN-γ), C-C motif chemokine ligand 3 (CCL3), CCL4, chemokine (C-X-C motif) ligand (CXCL) 13, CD69, signal transducer and activator of transcription 1 (STAT1), and heat shock protein family A member 1A (HSPA1A). Furthermore, the macrophage subpopulations in GM tissues exhibited a transition to a pro-inflammatory phenotype, enriched for pathways such as interferon-γ (IFN-γ), IFN-α, interleukin-6/janus kinase/signal transducer and activator of transcription 3 (IL-6/JAK/STAT3), and tumor necrosis factor-α/nuclear factor-κB (TNF-α/NF-κB). Mammary luminal cells demonstrated an impaired estrogenic profile yet displayed upregulation of prolactin downstream signaling pathways, namely the JAK/STAT and mitogen-activated protein kinase (MAPK) pathways. Additionally, vascular endothelial cells were found to recruit immune cells and exhibited a prominent angiogenic profile in GM tissues. Cellular interaction analysis unveiled an intricate network of interactions between mesenchymal and immune cells. This study provides a comprehensive immune landscape of granulomatous mastitis and offers some potential therapeutic targets for the disease.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, 410007, Hunan, China
- Hunan University of Chinese Medicine, Xueshi Road, Changsha, 410208, Hunan, China
| | - Xianguang Deng
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, 410007, Hunan, China
- Hunan University of Chinese Medicine, Xueshi Road, Changsha, 410208, Hunan, China
| | - Hui Ruan
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, 410007, Hunan, China
- Hunan University of Chinese Medicine, Xueshi Road, Changsha, 410208, Hunan, China
| | - Xing Xue
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, 410007, Hunan, China
- Hunan University of Chinese Medicine, Xueshi Road, Changsha, 410208, Hunan, China
| | - Zixuan Hu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, 410007, Hunan, China
- Hunan University of Chinese Medicine, Xueshi Road, Changsha, 410208, Hunan, China
| | - Jie Gong
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, 410007, Hunan, China
- Hunan University of Chinese Medicine, Xueshi Road, Changsha, 410208, Hunan, China
| | - Shiting Wu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, 410007, Hunan, China
| | - Lifang Liu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, 410007, Hunan, China.
| |
Collapse
|
3
|
Xu L, Cao X, Deng Y, Zhang B, Li X, Liu W, Ren W, Tang X, Kong X, Zhang D. Cuproptosis-related genes and agents: implications in tumor drug resistance and future perspectives. Front Pharmacol 2025; 16:1559236. [PMID: 40406488 PMCID: PMC12095339 DOI: 10.3389/fphar.2025.1559236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/23/2025] [Indexed: 05/26/2025] Open
Abstract
In the field of tumor treatment, drug resistance remains a significant challenge requiring urgent intervention. Recent developments in cell death research have highlighted cuproptosis, a mechanism of cell death induced by copper, as a promising avenue for understanding tumor biology and addressing drug resistance. Cuproptosis is initiated by the dysregulation of copper homeostasis, which in turn triggers mitochondrial metabolic disruptions and induces proteotoxic stress. This process specifically entails the accumulation of lipoylated proteins and the depletion of iron-sulfur cluster proteins within the context of the tricarboxylic acid cycle. Simultaneously, it is accompanied by the activation of distinct signaling pathways that collectively lead to cell death. Emerging evidence highlights the critical role of cuproptosis in addressing tumor drug resistance. However, the core molecular mechanisms of cuproptosis, regulation of the tumor microenvironment, and clinical translation pathways still require further exploration. This review examines the intersection of cuproptosis and tumor drug resistance, detailing the essential roles of cuproptosis-related genes and exploring the therapeutic potential of copper ionophores, chelators, and nanodelivery systems. These mechanisms offer promise for overcoming resistance and advancing tumor precision medicine. By elucidating the molecular mechanisms underlying cuproptosis, this study aims to identify novel therapeutic strategies and targets, thereby paving the way for the development of innovative anti-cancer drugs.
Collapse
Affiliation(s)
- Lingwen Xu
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xiaolan Cao
- Department of Radiotherapy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Yuxiao Deng
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Bin Zhang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xinzhi Li
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Wentao Liu
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Wenjie Ren
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xuan Tang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xiangyu Kong
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Daizhou Zhang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| |
Collapse
|
4
|
Zhang R, Tan Y, Xu K, Huang N, Wang J, Liu M, Wang L. Cuproplasia and cuproptosis in hepatocellular carcinoma: mechanisms, relationship and potential role in tumor microenvironment and treatment. Cancer Cell Int 2025; 25:137. [PMID: 40205387 PMCID: PMC11983883 DOI: 10.1186/s12935-025-03683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 02/08/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the main phenotype of liver cancer with a poor prognosis. Copper is vital in liver function, and HCC cells rely on it for growth and metastasis, leading to cuproplasia. Excessive copper can induce cell death, termed cuproptosis. Tumor microenvironment (TME) is pivotal in HCC, especially in immunotherapy, and copper is closely related to the TME pathogenesis. However, how these two mechanisms contribute to the TME is intriguing. MAIN BODY We conducted the latest progress literature on cuproplasia and cuproptosis in HCC, and summarized their specific roles in TME and treatment strategies. The mechanisms of cuproplasia and cuproptosis and their relationship and role in TME have been deeply summarized. Cuproplasia fosters TME formation, angiogenesis, and metastasis, whereas cuproptosis may alleviate mitochondrial dysfunction and hypoxic conditions in the TME. Inhibiting cuproplasia and enhancing cuproptosis in HCC are essential for achieving therapeutic efficacy in HCC. CONCLUSION An in-depth analysis of cuproplasia and cuproptosis mechanisms within the TME of HCC unveils their opposing nature and their impact on copper regulation. Grasping the equilibrium between these two factors is crucial for a deeper understanding of HCC mechanisms to shed light on novel directions in treating HCC.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Yunfei Tan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ke Xu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Ning Huang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, P.O. Box 2258, 100021, Beijing, People's Republic of China.
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
5
|
Li M, Tan Y, Li Z, Min L. Biological characterization and clinical significance of cuproptosis-related genes in lung adenocarcinoma. BMC Pulm Med 2025; 25:13. [PMID: 39799298 PMCID: PMC11725195 DOI: 10.1186/s12890-025-03477-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/02/2025] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Lung cancer has high morbidity and mortality rates, which results in a poor prognosis. Cuproptosis is a novel cell death mechanism. The aim of this study was to examine the biological characteristics and clinical significance of genes associated with cuproptosis in lung adenocarcinoma (LUAD), and to understand the molecular mechanisms underlying the occurrence and progression of LUAD. METHODS We targeted 10 cuproptosis-related genes from previous studies and used the datasets from GEO and TCGA databases to identify differential genes related to cuproptosis; then the data were analyzed by R package, Cytoscape, TISDB, cBioPortal, STRING, CancerSEA, and Disgenet; and finally, the data were detected by immunohistochemistry validation was performed. RESULTS CDKN2A and MTF1 were cuproptosis-associated LUAD differential genes and were differentially expressed in immune subtypes. The expression of CDKN2A and MTF1 showed correlation with multiple functional states of LUAD.CDKN2A was negatively correlated with LUAD survival prognosis. CONCLUSION CDKN2A and MTF1 were correlated with the diagnosis of LUAD, and CDKN2A was negatively correlated with the survival and prognosis of LUAD. CDKN2A has the potential to contribute to the early diagnosis and prognosis analysis of LUAD.
Collapse
Affiliation(s)
- Meilin Li
- Xiangtan Medicine & Health Vocational College, Xiangtan, China
| | - Yu Tan
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Zhixin Li
- Department of Pathology, Xiangtan Central Hospital, Xiangtan, China
| | - Lingfeng Min
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
| |
Collapse
|
6
|
Luo J, An J, Jia R, Liu C, Zhang Y. Identification and Verification of Metabolism-related Immunotherapy Features and Prognosis in Lung Adenocarcinoma. Curr Med Chem 2025; 32:1423-1441. [PMID: 38500277 DOI: 10.2174/0109298673293414240314043529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Lung cancer is a frequent malignancy with a poor prognosis. Extensive metabolic alterations are involved in carcinogenesis and could, therefore, serve as a reliable prognostic phenotype. AIMS Our study aimed to develop a prognosis signature and explore the relationship between metabolic characteristic-related signature and immune infiltration in lung adenocarcinoma (LUAD). OBJECTIVE TCGA-LUAD and GSE31210 datasets were used as a training set and a validation set, respectively. METHODS A total of 513 LUAD samples collected from The Cancer Genome Atlas database (TCGA-LUAD) were used as a training dataset. Molecular subtypes were classified by consensus clustering, and prognostic genes related to metabolism were analyzed based on Differentially Expressed Genes (DEGs), Protein-Protein Interaction (PPI) network, the univariate/multivariate- and Lasso- Cox regression analysis. RESULTS Two molecular subtypes with significant survival differences were divided by the metabolism gene sets. The DEGs between the two subtypes were identified by integrated analysis and then used to develop an 8-gene signature (TTK, TOP2A, KIF15, DLGAP5, PLK1, PTTG1, ECT2, and ANLN) for predicting LUAD prognosis. Overexpression of the 8 genes was significantly correlated with worse prognostic outcomes. RiskScore was an independent factor that could divide LUAD patients into low- and high-risk groups. Specifically, high-risk patients had poorer prognoses and higher immune escape. The Receiver Operating Characteristic (ROC) curve showed strong performance of the RiskScore model in estimating 1-, 3- and 5-year survival in both training and validation sets. Finally, an optimized nomogram model was developed and contributed the most to the prognostic prediction in LUAD. CONCLUSION The current model could help effectively identify high-risk patients and suggest the most effective drug and treatment candidates for patients with LUAD.
Collapse
Affiliation(s)
- Junfang Luo
- Department of Geriatric Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinlu An
- Department of Geriatric Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Rongyan Jia
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Cong Liu
- Department of Geriatric Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Zhang
- Department of Geriatric Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
7
|
Lan D, Wang J, Sun G, Jiang L, Chen Q, Li S, Qu H, Wang Y, Wu B. Abnormal upregulation of NUBP2 contributes to cancer progression in colorectal cancer. Mol Cell Biochem 2025; 480:399-410. [PMID: 38492158 PMCID: PMC11695649 DOI: 10.1007/s11010-024-04956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/03/2024] [Indexed: 03/18/2024]
Abstract
Colorectal cancer (CRC), a digestive tract malignancy with high mortality and morbidity, lacks effective biomarkers for clinical prognosis due to its complex molecular pathogenesis. Nucleotide binding protein 2 (NUBP2) plays a vital role in the assembly of cytosolic Fe/S protein and has been implicated in cancer progression. In this study, we found that NUBP2 was highly expressed in CRC by TCGA database analysis. Subsequently, we verified the expression of NUBP2 in CRC tumor tissues and para-carcinoma tissues using IHC staining, and further investigated its association with clinicopathological parameters. In vitro cell experiments were conducted to assess the role of NUBP2 in CRC by evaluating cell proliferation, migration, and apoptosis upon NUBP2 dysregulation. Furthermore, we established a subcutaneous CRC model to evaluate the impact of NUBP2 on tumor growth in vivo. Additionally, we performed mechanistic exploration using a Human Phospho-Kinase Array-Membrane. Our results showed higher expression of NUBP2 in CRC tissues, which positively correlated with the pathological stage, indicating its involvement in tumor malignancy. Functional studies demonstrated that NUBP2 knockdown reduced cell proliferation, increased apoptosis, and impaired migration ability. Moreover, NUBP2 knockdown inhibited tumor growth in mice. We also observed significant changes in the phosphorylation level of GSK3β upon NUBP2 knockdown or overexpression. Additionally, treatment with CHIR-99021 HCl, an inhibitor of GSK3β, reversed the malignant phenotype induced by NUBP2 overexpression. Overall, this study elucidated the functional role of NUBP2 in CRC progression both in vitro and in vivo, providing insights into the molecular mechanisms underlying CRC and potential implications for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Danfeng Lan
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Junyu Wang
- Department of General Surgery II, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China
| | - Guishun Sun
- Department of General Surgery II, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China
| | - Lixia Jiang
- Department of General Surgery II, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China
| | - Qiyun Chen
- Department of General Surgery II, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China
| | - Sha Li
- Department of General Surgery II, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China
| | - Haiyan Qu
- Department of General Surgery II, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China
| | - Yibo Wang
- Department of General Surgery II, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China
| | - Bian Wu
- Department of General Surgery II, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China.
| |
Collapse
|
8
|
Yang F, Yang Z, Yan Y, Gu Y, Wang P, Wang M, Chen J, Du X, Wang G. Exploring the mechanism of fibrates regulating HIF-1A in the treatment of ischemic stroke based on network pharmacology and molecular docking. BMC Res Notes 2024; 17:387. [PMID: 39726005 DOI: 10.1186/s13104-024-07031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
Fibrates can prevent and treat ischemic stroke (IS), the occurrence and development of IS is closely related to hypoxia-inducible factor-1A (HIF-1A). However, the exact mechanism by which fibrates regulate HIF-1A to treat IS remains unclear. So network pharmacology and molecular docking were used to explore the mechanism by which fibrates regulate HIF-1A to treat IS, firstly, the structure of five fibrates were obtained by reviewing the literature and pharmacopoeia, then the potential targets of fibrates, IS, HIF1A and HIF1A-related genes were obtained through various databases, their common targets were obtained through Venny 2.1.0. The PPI network diagram of fibrates, IS and HIF1A-related genes was plotted by String and Cytoscape3.8.1. The GO functional analysis results and KEGG pathways of fibrates, IS, HIF1A and HIF1A related genes were obtained by Metascape. Finally, the molecular docking of fibrates and HIF1A was performed by AutoDock. The common targets of five fibrates and IS showed that only 3 fibrates contained HIF1A, GO functional analysis, KEGG pathway analysis and molecular docking showed that fibrates can better regulate HIF1A to treat IS, its main action pathways are pathways in cancer, lipid and atherosclerosis and HIF-1 signaling pathway.
Collapse
Affiliation(s)
- Fengjiao Yang
- College of Clinical Medicine, Dali University, Dali, 671000, Yunnan, People's Republic of China
- Department of Pharmacy, The People's Hospital of Baoshan, Baoshan, 678000, Yunnan, People's Republic of China
| | - Zixuan Yang
- Department of Pharmacy, The People's Hospital of Baoshan, Baoshan, 678000, Yunnan, People's Republic of China
| | - Ya Yan
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, People's Republic of China
| | - Yun Gu
- Department of Pharmacy, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, People's Republic of China
| | - Pengyu Wang
- College of Clinical Medicine, Dali University, Dali, 671000, Yunnan, People's Republic of China
| | - Min Wang
- College of Clinical Medicine, Dali University, Dali, 671000, Yunnan, People's Republic of China
| | - Jianjie Chen
- College of Clinical Medicine, Dali University, Dali, 671000, Yunnan, People's Republic of China
| | - Xiaoshan Du
- Department of Geriatrics, South District of Hefei First People's Hospital, Hefei, 230000, Anhui, People's Republic of China
| | - Guangming Wang
- College of Clinical Medicine, Dali University, Dali, 671000, Yunnan, People's Republic of China.
| |
Collapse
|
9
|
You W, Luu H, Li M, Chen Z, Li F, Zhang Y, Cai M, He TC, Li J. Nuclear transmembrane protein 199 promotes immune escapes by up-regulating programmed death ligand 1. iScience 2024; 27:111485. [PMID: 39758995 PMCID: PMC11699465 DOI: 10.1016/j.isci.2024.111485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/05/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
The function of transmembrane protein 199 (TMEM199) in cancer development has rarely been studied thus far. We report the nuclear localization of the TMEM199 protein and further analyzed the truncated fractions that mediate its nuclear localization. Cut&Tag assay globally explores the nuclear-located TMEM199 functions and tests its influence on the immune checkpoint PD-L1 in vitro and in vivo. Nuclear-located TMEM199 regulates PD-L1 mRNA levels by binding to transcription factors such as IFNGR1, IRF1, MTMR9, and Trim28, which all promote PD-L1 mRNA expression. Our study demonstrates the nuclear localization of TMEM199 and its immune regulation functions in cancer development. We uncovered the nuclear localization of TMEM199. TMEM199 is involved in CD274 mRNA gene expression by the transcriptional regulation of the upstream transcription factors or cofactors of CD274, such as IFNGR1, IRF1, MTMR9, KAT8, and Trim28. The nuclear-located TMEM199 is reported to address the tumor immune microenvironment commanding function.
Collapse
Affiliation(s)
- Wulin You
- Department of Orthopedics, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province, China
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Hue Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Meili Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Zhiyu Chen
- Department of Orthopedics, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province, China
| | - Fangchao Li
- Affiliated Hospital, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Weifang, Shandong, China
| | - Yanfei Zhang
- Affiliated Hospital, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Weifang, Shandong, China
| | - Mingsheng Cai
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Tong-chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jingjing Li
- Affiliated Hospital, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Weifang, Shandong, China
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
10
|
Jin X, Chen X, Yu H, Liu Y, Lu X, Yin H, Dai W. COA6 promotes the oncogenesis and progression of breast cancer by oxidative phosphorylation pathway. J Cancer 2024; 15:5072-5084. [PMID: 39132153 PMCID: PMC11310882 DOI: 10.7150/jca.98570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) has long been considered the primary energy source in breast cancer cells. Cytochrome c oxidase assembly factor 6 (COA6), which functions as a metal chaperone to transport copper to complex Ⅳ during the OXPHOS process, plays a crucial role in the carcinogenesis of lung adenocarcinoma. Nevertheless, its specific function in breast cancer is undefined. The present investigation aimed to clarify COA6's expression profile and regulatory functions in breast cancer, as well as to unveil its underlying mechanisms. Initially, our findings revealed a significant upregulation of COA6 in breast cancer, as evidenced by an analysis of the TCGA database and tissue microarrays. This upregulation correlated with tumor size and histological grade. Additionally, survival analysis revealed that elevated COA6 amounts were correlated with decreased overall survival (OS) in breast cancer. To delve deeper into the functions of COA6, both COA6-overexpressing and COA6-knockdown breast cancer cell models were established. These experiments demonstrated COA6 is pivotal in regulating cell proliferation, apoptosis, migration, and invasion, thereby promoting cancer progression in vitro. Notably, functional enrichment analysis indicated COA6 might be involved in breast cancer progression by modulating oxidative phosphorylation (OXPHOS). Collectively, this study reveals an overt tumorigenic role for COA6 in breast cancer and sheds light on its potential mechanisms, offering valuable therapeutic targets for breast cancer therapy.
Collapse
Affiliation(s)
- Xiaoxia Jin
- Department of Pathology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xinyan Chen
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Haiyan Yu
- Department of Pathology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yushan Liu
- Department of Pathology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaoyun Lu
- Department of Pathology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Haibing Yin
- Department of Pathology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wencheng Dai
- Department of Head and Neck Surgery, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
11
|
Lou QM, Lai FF, Li JW, Mao KJ, Wan HT, He Y. Mechanisms of cuproptosis and its relevance to distinct diseases. Apoptosis 2024; 29:981-1006. [PMID: 38824478 DOI: 10.1007/s10495-024-01983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Copper is a trace element required by the organism, but once the level of copper exceeds the threshold, it becomes toxic and even causes death. The underlying mechanisms of copper-induced death are inconclusive, with different studies showing different opinions on the mechanism of copper-induced death. Multiple investigations have shown that copper induces oxidative stress, endoplasmic reticulum stress, nucleolar stress, and proteasome inhibition, all of which can result in cell death. The latest research elucidates a copper-dependent death and denominates it as cuproptosis. Cuproptosis takes place through the combination of copper and lipoylated proteins of the tricarboxylic acid cycle, triggering agglomeration of lipoylated proteins and loss of iron-sulfur cluster proteins, leading to proteotoxic stress and ultimately death. Given the toxicity and necessity of copper, abnormal levels of copper lead to diseases such as neurological diseases and cancer. The development of cancer has a high demand for copper, neurological diseases involve the change of copper contents and the binding of copper to proteins. There is a close relationship between these two kinds of diseases and copper. Here, we summarize the mechanisms of copper-related death, and the association between copper and diseases, to better figure out the influence of copper in cell death and diseases, thus advancing the clinical remedy of these diseases.
Collapse
Affiliation(s)
- Qiao-Mei Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fei-Fan Lai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing-Wei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Kun-Jun Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hai-Tong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
12
|
Zhu L, Kang X, Zhu S, Wang Y, Guo W, Zhu R. Cuproptosis-related DNA methylation signature predict prognosis and immune microenvironment in cutaneous melanoma. Discov Oncol 2024; 15:228. [PMID: 38874871 PMCID: PMC11178724 DOI: 10.1007/s12672-024-01089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
The prognosis for Cutaneous Melanoma (CM), a skin malignant tumor that is extremely aggressive, is not good. A recently identified type of controlled cell death that is intimately related to immunotherapy and the development of cancer is called cuproptosis. Using The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database, we developed and validated a DNA-methylation located in cuproptosis death-related gene prognostic signature (CRG-located DNA-methylation prognostic signature) to predict CM's prognosis. Kaplan-Meier analysis of our TCGA and GEO cohorts showed that high-risk patients had a shorter overall survival. The area under the curve (AUC) for the TCGA cohort was 0.742, while for the GEO cohort it was 0.733, according to the receiver operating characteristic (ROC) analysis. Furthermore, this signature was discovered as an independent prognostic indicator over CM patients based on Cox-regression analysis. Immunogenomic profiling indicated that majority immune-checkpoints got an opposite relationship with the signature, and patients in the group at low risk got higher immunophenoscore. Several immune pathways were enriched, according to functional enrichment analysis. In conclusion, a prognostic methylation signature for CM patients was established and confirmed. Because of its close relationship to the immune landscape, this signature may help clinicians make more accurate and individualized choices regarding therapy.
Collapse
Affiliation(s)
- Liucun Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xudong Kang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Shuting Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanna Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.
| | - Rui Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China.
| |
Collapse
|
13
|
Song D, Yang Q, Li L, Wei Y, Zhang C, Du H, Ren G, Li H. Novel prognostic biomarker TBC1D1 is associated with immunotherapy resistance in gliomas. Front Immunol 2024; 15:1372113. [PMID: 38529286 PMCID: PMC10961388 DOI: 10.3389/fimmu.2024.1372113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Background Glioma, an aggressive brain tumor, poses a challenge in understanding the mechanisms of treatment resistance, despite promising results from immunotherapy. Methods We identified genes associated with immunotherapy resistance through an analysis of The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO) databases. Subsequently, qRT-PCR and western blot analyses were conducted to measure the mRNA and protein levels of TBC1 Domain Family Member 1 (TBC1D1), respectively. Additionally, Gene Set Enrichment Analysis (GSEA) was employed to reveal relevant signaling pathways, and the expression of TBC1D1 in immune cells was analyzed using single-cell RNA sequencing (scRNA-seq) data from GEO database. Tumor Immune Dysfunction and Exclusion (TIDE) database was utilized to assess T-cell function, while Tumor Immunotherapy Gene Expression Resource (TIGER) database was employed to evaluate immunotherapy resistance in relation to TBC1D1. Furthermore, the predictive performance of molecules on prognosis was assessed using Kaplan-Meier plots, nomograms, and ROC curves. Results The levels of TBC1D1 were significantly elevated in tumor tissue from glioma patients. Furthermore, high TBC1D1 expression was observed in macrophages compared to other cells, which negatively impacted T cell function, impaired immunotherapy response, promoted treatment tolerance, and led to poor prognosis. Inhibition of TBC1D1 was found to potentially synergistically enhance the efficacy of immunotherapy and prolong the survival of cancer patients with gliomas. Conclusion Heightened expression of TBC1D1 may facilitate an immunosuppressive microenvironment and predict a poor prognosis. Blocking TBC1D1 could minimize immunotherapy resistance in cancer patients with gliomas.
Collapse
Affiliation(s)
- Daqiang Song
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qian Yang
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liuying Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxian Wei
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chong Zhang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huimin Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Mo JQ, Zhang SY, Li Q, Chen MX, Zheng YQ, Xie X, Zhang R, Wang SS. Immunomodulation of cuproptosis and ferroptosis in liver cancer. Cancer Cell Int 2024; 24:22. [PMID: 38200525 PMCID: PMC10777659 DOI: 10.1186/s12935-023-03207-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
According to statistics, the incidence of liver cancer is increasing yearly, and effective treatment of liver cancer is imminent. For early liver cancer, resection surgery is currently the most effective treatment. However, resection does not treat the disease in advanced patients, so finding a method with a better prognosis is necessary. In recent years, ferroptosis and cuproptosis have been gradually defined, and related studies have proved that they show excellent results in the therapy of liver cancer. Cuproptosis is a new form of cell death, and the use of cuproptosis combined with ferroptosis to inhibit the production of hepatocellular carcinoma cells has good development prospects and is worthy of in-depth discussion by researchers. In this review, we summarize the research progress on cuproptosis combined with ferroptosis in treating liver cancer, analyze the value of cuproptosis and ferroptosis in the immune of liver cancer, and propose potential pathways in oncotherapy with the combination of cuproptosis and ferroptosis, which can provide background knowledge for subsequent related research.
Collapse
Affiliation(s)
- Jia-Qian Mo
- School of Life Sciences and Biopharmaceutics, Guang Dong Pharmaceutical University, Guangzhou, 51006, China
| | - Shen-Yan Zhang
- School of Life Sciences and Biopharmaceutics, Guang Dong Pharmaceutical University, Guangzhou, 51006, China
| | - Qiang Li
- School of Life Sciences and Biopharmaceutics, Guang Dong Pharmaceutical University, Guangzhou, 51006, China
| | - Mo-Xian Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China and College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Yue-Qing Zheng
- Guang Zhou Zengcheng District Centre for Disease Control and Prevention, Guang Dong, 511300, China
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guang Dong Pharmaceutical University, Guangzhou, 51006, China.
| | - Shan-Shan Wang
- School of Life Sciences and Biopharmaceutics, Guang Dong Pharmaceutical University, Guangzhou, 51006, China.
| |
Collapse
|
15
|
Zhu L, Yuan F, Wang X, Zhu R, Guo W. Cuproptosis-related gene-located DNA methylation in lower-grade glioma: Prognosis and tumor microenvironment. Cancer Biomark 2024; 40:185-198. [PMID: 38578883 PMCID: PMC11307024 DOI: 10.3233/cbm-230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/01/2024] [Indexed: 04/07/2024]
Abstract
Cuproptosis a novel copper-dependent cell death modality, plays a crucial part in the oncogenesis, progression and prognosis of tumors. However, the relationships among DNA-methylation located in cuproptosis-related genes (CRGs), overall survival (OS) and the tumor microenvironment remain undefined. In this study, we systematically assessed the prognostic value of CRG-located DNA-methylation for lower-grade glioma (LGG). Clinical and molecular data were sourced from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We employed Cox hazard regression to examine the associations between CRG-located DNA-methylation and OS, leading to the development of a prognostic signature. Kaplan-Meier survival and time-dependent receiver operating characteristic (ROC) analyses were utilized to gauge the accuracy of the signature. Gene Set Enrichment Analysis (GSEA) was applied to uncover potential biological functions of differentially expressed genes between high- and low-risk groups. A three CRG-located DNA-methylation prognostic signature was established based on TCGA database and validated in GEO dataset. The 1-year, 3-year, and 5-year area under the curve (AUC) of ROC curves in the TCGA dataset were 0.884, 0.888, and 0.859 while those in the GEO dataset were 0.943, 0.761 and 0.725, respectively. Cox-regression-analyses revealed the risk signature as an independent risk factor for LGG patients. Immunogenomic profiling suggested that the signature was associated with immune infiltration level and immune checkpoints. Functional enrichment analysis indicated differential enrichment in cell differentiation in the hindbrain, ECM receptor interactions, glycolysis and reactive oxygen species pathway across different groups. We developed and verified a novel CRG-located DNA-methylation signature to predict the prognosis in LGG patients. Our findings emphasize the potential clinical implications of CRG-located DNA-methylation indicating that it may serve as a promising therapeutic target for LGG patients.
Collapse
Affiliation(s)
- Liucun Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Fa Yuan
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xue Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Zhao Q, Yu M, Du X, Li Y, Lv J, Jiang X, Chen X, Wang A, Yang X. The Role of Cuproptosis Key Factor FDX1 in Gastric Cancer. Curr Pharm Biotechnol 2024; 26:132-142. [PMID: 38918976 DOI: 10.2174/0113892010301997240527162423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Gastric cancer is a common malignant tumor of the digestive tract, both domestically and internationally. It has high incidence and mortality rates, posing a significant threat to human health. The levels of blood copper are elevated in patients with gastric cancer. However, the exact relationship between copper overload and the malignant phenotype of gastric cancer is still unclear. This study aims to investigate the role of the Cuproptosis-related factor FDX1 in the conversion of gastric cancer to a malignant phenotype. METHODS Firstly, the relative mRNA and protein expression levels of FDX1 in gastric cancer were detected. Secondly, lentiviral transfection of gastric cancer cell lines was performed, and the effects of FDX1 functional intervention on the proliferation, invasion and migration of gastric cancer cells were assessed by CCK-8, colony formation, EdU proliferation, cell scratch and Transwell assays. Thirdly, the differential alteration of genes after overexpression of FDX1 was also analyzed by transcriptome sequencing. Finally, we assessed the tumour-forming capacity in vivo by the xenograft model. RESULTS FDX1 is significantly upregulated in gastric cancer. The inhibition of FDX1 function results in the suppression of malignant phenotypic transformation in gastric cancer cells. Conversely, overexpression of FDX1 function leads to alterations in tumor-related signaling pathways and the tumor microenvironment. CONCLUSION FDX1 plays a significant role in the malignant phenotypic transformation of gastric cancer cells. Further investigation into the regulatory mechanism of FDX1 in the malignant transformation of gastric cancer will enhance our understanding of the involvement of Cuproptosis in gastric cancer.
Collapse
Affiliation(s)
- Qiqi Zhao
- Clinical Medical College of Ningxia Medical University, 1160 Shengli Street Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- Department of General Surgery, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Miao Yu
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- Phase Ⅰ Clinical & Research Ward, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, China
| | - Xueqin Du
- Department of General Surgery, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Yuan Li
- Department of General Surgery, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Juantao Lv
- Department of Pharmacy, Gansu Provincial Hospital, 204 West Donggang Road,Lanzhou 730000, Gansu, China
| | - Xianglai Jiang
- School of Basic Medicine Sciences and Life Sciences Hainan Medical University, 3 College Road, Haikou 571199, Hainan, China
| | - Xiaomei Chen
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Anqi Wang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Xiaojun Yang
- Department of General Surgery, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- The First Clinical Medical College of Lanzhou University, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- Gansu Research Center of Prevention and Control Project for Digestive Oncology, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- Key Laboratory of Gastrointestinal Tumor Diagnosis and Treatment, National Health and Wellness Commission, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| |
Collapse
|
17
|
Chen L, Liu D, Tan Y. Research progress in cuproptosis in liver cancer. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1368-1376. [PMID: 38044648 PMCID: PMC10929866 DOI: 10.11817/j.issn.1672-7347.2023.230083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Indexed: 12/05/2023]
Abstract
Copper, like iron, is an essential trace metal element for human cells. The role of iron overload and ferroptosis has been gradually clarified in tumors, but the role of copper overload and cuproptosis is still being explored. Cuproptosis is a novel mode of cell death, secondary to impaired mitochondrial function induced by copper overload, and characterized by copper-dependent and programmed. The excessive copper leads to protein toxicity stress by binding to sulfhydryl proteins in the tricarboxylic acid (TCA) cycle of mitochondria, disrupting cellular homeostasis and triggering cuproptosis. Copper accumulation has carcinogenic effects on normal cells, dual effects on tumor cells. Liver cancer is one of the most common malignant tumors in China and even globally, with hepatocellular carcinoma (HCC) being the most common histological subtype. Copper exhibits dualism in HCC, as it both contributes to the growth and invasion of HCC cells, and exerts anticancer effects by inducing cuproptosis. Also, cuproptosis-related genes can be the evaluation of immunotherapy effect and the construction of prognostic models. Clarifying the role of copper death in liver cancer can help explore new methods for liver cancer screening, treatment, and prognosis evaluation.
Collapse
Affiliation(s)
- Leijie Chen
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Deliang Liu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yuyong Tan
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
18
|
Cao F, Qi Y, Wu W, Li X, Yang C. Single-cell and genetic multi-omics analysis combined with experiments confirmed the signature and potential targets of cuproptosis in hepatocellular carcinoma. Front Cell Dev Biol 2023; 11:1240390. [PMID: 37745297 PMCID: PMC10516581 DOI: 10.3389/fcell.2023.1240390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Cuproptosis, as a recently discovered type of programmed cell death, occupies a very important role in hepatocellular carcinoma (HCC) and provides new methods for immunotherapy; however, the functions of cuproptosis in HCC are still unclear. Methods: We first analyzed the transcriptome data and clinical information of 526 HCC patients using multiple algorithms in R language and extensively described the copy number variation, prognostic and immune infiltration characteristics of cuproptosis related genes (CRGs). Then, the hub CRG related genes associated with prognosis through LASSO and Cox regression analyses and constructed a prognostic prediction model including multiple molecular markers and clinicopathological parameters through training cohorts, then this model was verified by test cohorts. On the basis of the model, the clinicopathological indicators, immune infiltration and tumor microenvironment characteristics of HCC patients were further explored via bioinformation analysis. Then, We further explored the key gene biological function by single-cell analysis, cell viability and transwell experiments. Meantime, we also explored the molecular docking of the hub genes. Results: We have screened 5 hub genes associated with HCC prognosis and constructed a prognosis prediction scoring model. And the model results showed that patients in the high-risk group had poor prognosis and the expression levels of multiple immune markers, including PD-L1, CD276 and CTLA4, were higher than those patients in the low-risk group. We found a significant correlation between risk score and M0 macrophages and memory CD4+ T cells. And the single-cell analysis and molecular experiments showed that BEX1 were higher expressed in HCC tissues and deletion inhibited the proliferation, invasion and migration and EMT pathway of HCC cells. Finally, it was observed that BEX1 could bind to sorafenib to form a stable conformation. Conclusion: The study not only revealed the multiomics characteristics of CRGs in HCC but also constructed a new high-accuracy prognostic prediction model. Meanwhile, BEX1 were also identified as hub genes that can mediate the cuproptosis of hepatocytes as potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Feng Cao
- Department of General, Visceral and Transplantation Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Yong Qi
- Department of General Surgery, The First Hospital of Anhui Medical University, Hefei, China
| | - Wenyong Wu
- Department of General Surgery, The First Hospital of Anhui Medical University, Hefei, China
| | - Xutong Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chuang Yang
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| |
Collapse
|
19
|
Zhu Y, Tan JK, Goon JA. Cuproptosis- and m6A-Related lncRNAs for Prognosis of Hepatocellular Carcinoma. BIOLOGY 2023; 12:1101. [PMID: 37626987 PMCID: PMC10451969 DOI: 10.3390/biology12081101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Cuproptosis and N6-methyladenosine (m6A) have potential as prognostic predictors in cancer patients, but their roles in hepatocellular carcinoma (HCC) are unclear. This study aimed to screen a total of 375 HCC samples were retrieved from the TCGA database, and lncRNAs related to cuproptosis and m6A were obtained through correlation analysis. To construct a risk assessment model, univariate Cox regression analysis and LASSO Cox regression were employed. Analyze the regulatory effect of relevant risk assessment models on tumor mutation load (TMB) and immune microenvironment. A total of five lncRNAs (AC007405.3, AL031985.3, TMCC1-AS1, MIR210HG, TMEM220-AS1) with independent overall survival-related risk models were obtained by LASSO survival regression. TP53 and CTNNB1 were the three genes found to have the most mutations in high-risk group patients. The high-risk group with low TMB had the worst survival, whereas the low-risk group with high TMB had the best survival. KEGG pathway analysis revealed that the high-risk group was enriched with cell cycle, oocyte meiosis, cell senescence, and glycolysis/glucose production pathways. We constructed a reliable cuproptosis- and m6A-related lncRNA model for the prognosis of HCC. The model may provide new insights into managing HCC patients, but further research is needed to validate it.
Collapse
Affiliation(s)
| | | | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
20
|
Pang L, Wang Q, Wang L, Hu Z, Yang C, Li Y, Wang Z, Li Y. Development and validation of cuproptosis-related lncRNA signatures for prognosis prediction in colorectal cancer. BMC Med Genomics 2023; 16:58. [PMID: 36949429 PMCID: PMC10031908 DOI: 10.1186/s12920-023-01487-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/11/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Cuproptosis, a novel form of programmed cell death, plays an essential role in various cancers. However, studies of the function of cuproptosis lncRNAs (CRLs) in colorectal cancer (CRC) remain limited. Thus, this study aims to identify the cuprotosis-related lncRNAs (CRLs) in CRC and to construct the potential prognostic CRLs signature model in CRC. METHODS First, we downloaded RNA-Seq data and clinical information of CRC patients from TCGA database and obtained the prognostic CRLs based on typical expression analysis of cuproptosis-related genes (CRGs) and univariate Cox regression. Then, we constructed a prognostic model using the Least Absolute Shrinkage and Selection Operator algorithm combined with multiple Cox regression methods (Lasso-Cox). Next, we generated Kaplan-Meier survival and receiver operating characteristic curves to estimate the performance of the prognostic model. In addition, we also analysed the relationships between risk signatures and immune infiltration, mutation, and drug sensitivity. Finally, we performed quantitative reverse transcription polymerase chain reaction (qRT -PCR) to verify the prognostic model. RESULT Lasso-Cox analysis revealed that four CRLs, SNHG16, LENG8-AS1, LINC0225, and RPARP-AS1, were related to CRC prognosis. Receiver operating characteristic (ROC) and Kaplan-Meier analysis curves indicated that this model performs well in prognostic predictions of CRC patients. The DCA results also showed that the model included four gene signatures was better than the traditional model. In addition, GO and KEGG analyses revealed that DE-CRLs are enriched in critical signalling pathway, such as chemical carcinogenesis-DNA adducts and basal cell carcinoma. Immune infiltration analysis revealed significant differences in immune infiltration cells between the high-risk and low-risk groups. Furthermore, significant differences in somatic mutations were noted between the high-risk and low-risk groups. Finally, we also validated the expression of four CRLs in FHCs cell lines and CRC cell lines using qRT-PCR. CONCLUSION The signature composed of SNHG16, LENG8-AS1, LINC0225, and RPARP-AS1, which has better performance in predicting colorectal cancer prognosis and are promising biomarkers for prognosis prediction of CRC.
Collapse
Affiliation(s)
- Lin Pang
- Department of Colorectal and Anal Surgery, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, China
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Qingqing Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Lingxiao Wang
- Department of Colorectal and Anal Surgery, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, China
| | - Zhen Hu
- Department of Colorectal and Anal Surgery, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, China
| | - Chong Yang
- Department of Colorectal and Anal Surgery, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, China
| | - Yiqun Li
- Department of Colorectal and Anal Surgery, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, China
| | - Zhenqi Wang
- Department of Colorectal and Anal Surgery, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, China
| | - Yaoping Li
- Department of Colorectal and Anal Surgery, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, China.
| |
Collapse
|
21
|
Yang C, Guo Y, Wu Z, Huang J, Xiang B. Comprehensive Analysis of Cuproptosis-Related Genes in Prognosis and Immune Infiltration of Hepatocellular Carcinoma Based on Bulk and Single-Cell RNA Sequencing Data. Cancers (Basel) 2022; 14:cancers14225713. [PMID: 36428805 PMCID: PMC9688556 DOI: 10.3390/cancers14225713] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Studies on prognostic potential and tumor immune microenvironment (TIME) characteristics of cuproptosis-related genes (CRGs) in hepatocellular carcinoma (HCC) are limited. Methods: A multigene signature model was constructed using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. The cuproptosis-related multivariate cox regression analysis and bulk RNA-seq-based immune infiltration analysis were performed. The results were verified using two cohorts. The enrichment of CRGs in T cells based on single-cell RNA sequencing (scRNA-seq) was performed. Real-time polymerase chain reaction (RT-PCR) and multiplex immunofluorescence staining were performed to verify the reliability of the conclusions. Results: A four-gene risk scoring model was constructed. Kaplan−Meier curve analysis showed that the high-risk group had a worse prognosis (p < 0.001). The time-dependent receiver operating characteristic (ROC) curve showed that the OS risk score prediction performance was good. These results were further confirmed in the validation queue. Meanwhile, the Tregs and macrophages were enriched in the cuproptosis-related TIME of HCC. Conclusions: The CRGs-based signature model could predict the prognosis of HCC. Treg and macrophages were significantly enriched in cuproptosis-related HCC, which was associated with the depletion of proliferating T cells.
Collapse
Affiliation(s)
- Chenglei Yang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning 530021, China
| | - Yanlin Guo
- School of Basic Medicine, Guangxi Medical University, Nanning 530021, China
| | - Zongze Wu
- The First Clinical School of Guangxi Medical University, Nanning 530021, China
| | - Juntao Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning 530021, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning 530021, China
- Correspondence: ; Tel.: +86-771-533-0855
| |
Collapse
|