1
|
Bucher-Johannessen C, Senthakumaran T, Avershina E, Birkeland E, Hoff G, Bemanian V, Tunsjø H, Rounge TB. Species-level verification of Phascolarctobacterium association with colorectal cancer. mSystems 2024; 9:e0073424. [PMID: 39287376 PMCID: PMC11494908 DOI: 10.1128/msystems.00734-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024] Open
Abstract
We have previously demonstrated an association between increased abundance of Phascolarctobacterium and colorectal cancer (CRC) and adenomas in two independent Norwegian cohorts. Here we seek to verify our previous findings using new cohorts and methods. In addition, we characterize lifestyle and sex specificity, the functional potential of the Phascolarctobacterium species, and their interaction with other microbial species. We analyze Phascolarctobacterium with 16S rRNA sequencing, shotgun metagenome sequencing, and species-specific qPCR, using 2350 samples from three Norwegian cohorts-CRCAhus, NORCCAP, and CRCbiome-and a large publicly available data set, curatedMetagenomicData. Using metagenome-assembled genomes from the CRCbiome study, we explore the genomic characteristics and functional potential of the Phascolarctobacterium pangenome. Three species of Phascolarctobacterium associated with adenoma/CRC were consistently detected by qPCR and sequencing. Positive associations with adenomas/CRC were verified for Phascolarctobacterium succinatutens and negative associations were shown for Phascolarctobacterium faecium and adenoma in curatedMetagenomicData. Men show a higher prevalence of P. succinatutens across cohorts. Co-occurrence among Phascolarctobacterium species was low (<6%). Each of the three species shows distinct microbial composition and forms distinct correlation networks with other bacterial taxa, although Dialister invisus was negatively correlated to all investigated Phascolarctobacterium species. Pangenome analyses showed P. succinatutens to be enriched for genes related to porphyrin metabolism and degradation of complex carbohydrates, whereas glycoside hydrolase enzyme 3 was specific to P. faecium.IMPORTANCEUntil now Phascolarctobacterium has been going under the radar as a CRC-associated genus despite having been noted, but overseen, as such for over a decade. We found not just one, but two species of Phascolarctobacterium to be associated with CRC-Phascolarctobacterium succinatutens was more abundant in adenoma/CRC, while Phascolarctobacterium faecium was less abundant in adenoma. Each of them represents distinct communities, constituted by specific microbial partners and metabolic capacities-and they rarely occur together in the same patients. We have verified that P. succinatutens is increased in adenoma and CRC and this species should be recognized among the most important CRC-associated bacteria.
Collapse
Affiliation(s)
- Cecilie Bucher-Johannessen
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
- Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
- Center for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | | - Ekaterina Avershina
- Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
- Center for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Einar Birkeland
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Geir Hoff
- Section for Colorectal Cancer Screening, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
- Telemark Hospital, Skien, Norway
| | - Vahid Bemanian
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Hege Tunsjø
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - Trine B. Rounge
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
- Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
- Center for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Okazawa-Sakai M, Sakai SA, Hyodo I, Horasawa S, Sawada K, Fujisawa T, Yamamoto Y, Boku S, Hayasaki Y, Isobe M, Shintani D, Hasegawa K, Egawa-Takata T, Ito K, Ihira K, Watari H, Takehara K, Yagi H, Kato K, Chiyoda T, Harano K, Nakamura Y, Yamashita R, Yoshino T, Aoki D. Gut microbiome associated with PARP inhibitor efficacy in patients with ovarian cancer. J Gynecol Oncol 2024; 36:36.e38. [PMID: 39453391 DOI: 10.3802/jgo.2025.36.e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/10/2024] [Accepted: 08/28/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVE To investigate an association between the gut microbiome and efficacy of poly(ADP-ribose) polymerase inhibitors (PARPi) in ovarian cancer. METHODS This study conducted fecal microbiome analysis (16S rRNA gene sequencing) and circulating tumor DNA (ctDNA) profiling for ovarian cancer patients who underwent PARPi maintenance therapy. Fecal and blood samples were collected at the baseline and the progressive disease (PD) or last follow-up. The relative abundance of gut microbes and progression-free survival (PFS) were analyzed using linear discriminant analysis of effect size and the Cox proportional hazard model according to BRCA1/2 mutation (BRCA1/2mut) status detected by ctDNA sequencing. RESULTS Baseline samples were available from 23 BRCA1/2mut-positive patients and 33 BRCA1/2mut-negative patients. The microbes enriched in the baseline samples with long PFS were Bifidobacterium, Roseburia, Dialister, Butyricicoccus, and Bilophila for BRCA1/2mut-positive patients and Phascolarctobacterium for BRCA1/2mut-negative patients. In multivariate analyses dividing patients by the median values of relative abundances, no bacteria were associated with PFS in BRCA1/2mut-positive patients, whereas high Phascolarctobacterium abundances (≥1.11%) was significantly associated with longer PFS in BRCA1/2mut-negative patients (median 14.0 vs. 5.9 months, hazard ratio=0.28; 95% confidence interval=0.11-0.69; p=0.014). In the last samples, the relative abundances of Phascolarctobacterium were significantly higher in patients without PD (n=5) than those with PD (n=15) (median 1.25% vs. 0.06%; p=0.016). CONCLUSION High fecal composition of Phascolarctobacterium was associated with prolonged PFS in patients with BRCA1/2mut-negative ovarian cancer receiving PARPi therapy. Our results would provide new insights for future research.
Collapse
Affiliation(s)
- Mika Okazawa-Sakai
- Department of Gynecologic Oncology, NHO Shikoku Cancer Center, Matsuyama, Japan
- Department of Cancer Genomic Medicine, NHO Shikoku Cancer Center, Matsuyama, Japan
| | - Shunsuke A Sakai
- Department of Integrated Biosciences, Graduate School of Frontier Science, University of Tokyo, Kashiwa, Japan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Ichinosuke Hyodo
- Department of Gastrointestinal Medical Oncology, NHO Shikoku Cancer Center, Matsuyama, Japan
| | - Satoshi Horasawa
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kentaro Sawada
- Department of Medical Oncology, Kushiro Rosai Hospital, Kushiro, Japan
| | - Takao Fujisawa
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yasuko Yamamoto
- Department of Hereditary Tumors, NHO Shikoku Cancer Center, Matsuyama, Japan
| | - Shogen Boku
- Cancer Treatment Center, Kansai Medical University Hospital, Hirakata, Japan
| | - Yoh Hayasaki
- Department of Obstetrics and Gynecology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masanori Isobe
- Department of Obstetrics and Gynecology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Daisuke Shintani
- Department of Gynecology Oncology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Kosei Hasegawa
- Department of Gynecology Oncology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Tomomi Egawa-Takata
- Department of Obstetrics and Gynecology, Kansai Rosai Hospital, Amagasaki, Japan
| | - Kimihiko Ito
- Department of Obstetrics and Gynecology, Kansai Rosai Hospital, Amagasaki, Japan
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University Hospital, Sapporo, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University Hospital, Sapporo, Japan
| | - Kazuhiro Takehara
- Department of Gynecologic Oncology, NHO Shikoku Cancer Center, Matsuyama, Japan
| | - Hiroshi Yagi
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuyuki Chiyoda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kenichi Harano
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshiaki Nakamura
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- International Research Promotion Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Riu Yamashita
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, University of Tokyo, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
- International University of Health and Welfare Graduate School.
| |
Collapse
|
3
|
Wang T, Luo Y, Kong X, Yu B, Zheng P, Huang Z, Mao X, Yu J, Luo J, Yan H, He J. Genetic- and fiber-diet-mediated changes in virulence factors in pig colon contents and feces and their driving factors. Front Vet Sci 2024; 11:1351962. [PMID: 38689852 PMCID: PMC11058638 DOI: 10.3389/fvets.2024.1351962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Virulence factors (VFs) are key factors for microorganisms to establish defense mechanisms in the host and enhance their pathogenic potential. However, the spectrum of virulence factors in pig colon and feces, as well as the influence of dietary and genetic factors on them, remains unreported. In this study, we firstly revealed the diversity, abundance and distribution characteristics of VFs in the colonic contents of different breeds of pigs (Taoyuan, Xiangcun and Duroc pig) fed with different fiber levels by using a metagenomic analysis. The analysis resulted in the identification of 1,236 virulence factors, which could be grouped into 16 virulence features. Among these, Taoyuan pigs exhibited significantly higher levels of virulence factors compared to Duroc pigs. The high-fiber diet significantly reduced the abundance of certain virulence factor categories, including iron uptake systems (FbpABC, HitABC) and Ig protease categories in the colon, along with a noteworthy decrease in the relative abundance of plasmid categories in mobile genetic elements (MGEs). Further we examined VFs in feces using absolute quantification. The results showed that high-fiber diets reduce fecal excretion of VFs and that this effect is strongly influenced by MGEs and short-chain fatty acids (SCFAs). In vitro fermentation experiments confirmed that acetic acid (AA) led to a decrease in the relative abundance of VFs (p < 0.1). In conclusion, our findings reveal for the first time how fiber diet and genetic factors affect the distribution of VFs in pig colon contents and feces and their driving factors. This information provides valuable reference data to further improve food safety and animal health.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| |
Collapse
|
4
|
Istvan P, Birkeland E, Avershina E, Kværner AS, Bemanian V, Pardini B, Tarallo S, de Vos WM, Rognes T, Berstad P, Rounge TB. Exploring the gut DNA virome in fecal immunochemical test stool samples reveals associations with lifestyle in a large population-based study. Nat Commun 2024; 15:1791. [PMID: 38424056 PMCID: PMC10904388 DOI: 10.1038/s41467-024-46033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Stool samples for fecal immunochemical tests (FIT) are collected in large numbers worldwide as part of colorectal cancer screening programs. Employing FIT samples from 1034 CRCbiome participants, recruited from a Norwegian colorectal cancer screening study, we identify, annotate and characterize more than 18000 DNA viruses, using shotgun metagenome sequencing. Only six percent of them are assigned to a known taxonomic family, with Microviridae being the most prevalent viral family. Linking individual profiles to comprehensive lifestyle and demographic data shows 17/25 of the variables to be associated with the gut virome. Physical activity, smoking, and dietary fiber consumption exhibit strong and consistent associations with both diversity and relative abundance of individual viruses, as well as with enrichment for auxiliary metabolic genes. We demonstrate the suitability of FIT samples for virome analysis, opening an opportunity for large-scale studies of this enigmatic part of the gut microbiome. The diverse viral populations and their connections to the individual lifestyle uncovered herein paves the way for further exploration of the role of the gut virome in health and disease.
Collapse
Affiliation(s)
- Paula Istvan
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Einar Birkeland
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Ekaterina Avershina
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Ane S Kværner
- Section for Colorectal Cancer Screening, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Vahid Bemanian
- Pathology Department, Akershus University Hospital, Lørenskog, Norway
| | - Barbara Pardini
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy
| | - Sonia Tarallo
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Torbjørn Rognes
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Paula Berstad
- Section for Colorectal Cancer Screening, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Trine B Rounge
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway.
- Centre for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway.
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
5
|
Zeber-Lubecka N, Kulecka M, Jagiełło-Gruszfeld A, Dąbrowska M, Kluska A, Piątkowska M, Bagińska K, Głowienka M, Surynt P, Tenderenda M, Mikula M, Ostrowski J. Breast cancer but not the menopausal status is associated with small changes of the gut microbiota. Front Oncol 2024; 14:1279132. [PMID: 38327745 PMCID: PMC10848918 DOI: 10.3389/fonc.2024.1279132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024] Open
Abstract
Background Possible relationships between gut dysbiosis and breast cancer (BC) development and progression have been previously reported. However, the results of these metagenomics studies are inconsistent. Our study involved 88 patients diagnosed with breast cancer and 86 cancer-free control women. Participants were divided into groups based on their menopausal status. Fecal samples were collected from 47 and 41 pre- and postmenopausal newly diagnosed breast cancer patients and 51 and 35 pre- and postmenopausal controls, respectively. In this study, we performed shotgun metagenomic analyses to compare the gut microbial community between pre- and postmenopausal BC patients and the corresponding controls. Results Firstly, we identified 12, 64, 158, and 455 bacterial taxa on the taxonomy level of phyla, families, genera, and species, respectively. Insignificant differences of the Shannon index and β-diversity were found at the genus and species levels between pre- and postmenopausal controls; the differences concerned only the Chao index at the species level. No differences in α-diversity indexes were found between pre- and postmenopausal BC patients, although β-diversity differed these subgroups at the genus and species levels. Consistently, only the abundance of single taxa differed between pre- and postmenopausal controls and cases, while the abundances of 14 and 23 taxa differed or tended to differ between premenopausal cases and controls, and between postmenopausal cases and controls, respectively. There were similar differences in the distribution of enterotypes. Of 460 bacterial MetaCyc pathways discovered, no pathways differentiated pre- and postmenopausal controls or BC patients, while two and one pathways differentiated cases from controls in the pre- and postmenopausal subgroups, respectively. Conclusion While our findings did not reveal an association of changes in the overall microbiota composition and selected taxa with the menopausal status in cases and controls, they confirmed differences of the gut microbiota between pre- and postmenopausal BC patients and the corresponding controls. However, these differences were less extensive than those described previously.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Agnieszka Jagiełło-Gruszfeld
- Department of Breast Cancer & Reconstructive Surgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Piątkowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Katarzyna Bagińska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Głowienka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Piotr Surynt
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michał Tenderenda
- Department of Oncological Surgery and Neuroendocrine Tumors, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
6
|
Pérez-Castro S, D’Auria G, Llambrich M, Fernández-Barrés S, Lopez-Espinosa MJ, Llop S, Regueiro B, Bustamante M, Francino MP, Vrijheid M, Maitre L. Influence of perinatal and childhood exposure to tobacco and mercury in children's gut microbiota. Front Microbiol 2024; 14:1258988. [PMID: 38249448 PMCID: PMC10799562 DOI: 10.3389/fmicb.2023.1258988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Background Early life determinants of the development of gut microbiome composition in infants have been widely investigated; however, if early life pollutant exposures, such as tobacco or mercury, have a persistent influence on the gut microbial community, its stabilization at later childhood remains largely unknown. Objective In this exposome-wide study, we aimed at identifying the contribution of exposure to tobacco and mercury from the prenatal period to childhood, to individual differences in the fecal microbiome composition of 7-year-old children, considering co-exposure to a width of established lifestyle and clinical determinants. Methods Gut microbiome was studied by 16S rRNA amplicon sequencing in 151 children at the genus level. Exposure to tobacco was quantified during pregnancy through questionnaire (active tobacco consumption, second-hand smoking -SHS) and biomonitoring (urinary cotinine) at 4 years (urinary cotinine, SHS) and 7 years (SHS). Exposure to mercury was quantified during pregnancy (cord blood) and at 4 years (hair). Forty nine other potential environmental determinants (12 at pregnancy/birth/infancy, 15 at 4 years and 22 at 7 years, such as diet, demographics, quality of living/social environment, and clinical records) were registered. We used multiple models to determine microbiome associations with pollutants including multi-determinant multivariate analysis of variance and linear correlations (wUnifrac, Bray-Curtis and Aitchison ß-diversity distances), single-pollutant permutational multivariate analysis of variance adjusting for co-variates (Aitchison), and multivariable association model with single taxa (MaAsLin2; genus). Sensitivity analysis was performed including genetic data in a subset of 107 children. Results Active smoking in pregnancy was systematically associated with microbiome composition and ß-diversity (R2 2-4%, p < 0.05, Aitchison), independently of other co-determinants. However, in the adjusted single pollutant models (PERMANOVA), we did not find any significant association. An increased relative abundance of Dorea and decreased relative abundance of Akkermansia were associated with smoking during pregnancy (q < 0.05). Discussion Our findings suggest a long-term sustainable effect of prenatal tobacco exposure on the children's gut microbiota. This effect was not found for mercury exposure or tobacco exposure during childhood. Assessing the role of these exposures on the children's microbiota, considering multiple environmental factors, should be further investigated.
Collapse
Affiliation(s)
- Sonia Pérez-Castro
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), Vigo, Spain
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Giuseppe D’Auria
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Sequencing and Bioinformatics Service, Fundació per al Foment de la Investigació Sanitària i Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Maria Llambrich
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sílvia Fernández-Barrés
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO–Universitat Jaume I–Universitat de València, Valencia, Spain
- Faculty of Nursing and Chiropody, University of Valencia, Valencia, Spain
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO–Universitat Jaume I–Universitat de València, Valencia, Spain
| | - Benito Regueiro
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Mariona Bustamante
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Àrea de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO)-Salut Pública, Valencia, Spain
| | - M. Pilar Francino
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Àrea de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO)-Salut Pública, Valencia, Spain
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Léa Maitre
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|