1
|
Udemgba C, Pillay B, Shafer S, Alberstadt A, Abers M, Gilliaux O, Chen K, Rae W, Hanitsch L, Von Bernuth H, Neves JF, Raje N, Moens L, van Hagen PM, Bergerson J, Hartog N, Niehues T, Dückers G, Falcone E, Keller M, Hsu A, Meyts I, Holland SM. IRF2BP2 deficiency: An important form of common variable immunodeficiency with inflammation. J Allergy Clin Immunol 2025:S0091-6749(25)00275-1. [PMID: 40090425 DOI: 10.1016/j.jaci.2025.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND IRF2BP2 is a transcription factor that plays an important role in regulating immune pathways, angiogenesis, apoptosis, and cell differentiation. Defects in this gene have been implicated in immunodeficiency. OBJECTIVES To deepen the understanding of the clinical implications of IRF2BP2 variants, we sought to clinically characterize and functionally test 34 individuals with IRF2BP2 variants. METHODS We collected 34 subjects across 18 families with mutations in IRF2BP2. Records were abstracted for clinical phenotypes. Functional testing was performed on PBMCs. NFAT luciferase gene reporter constructs and quantitative cDNA determinations were used to evaluate repressor activity associated with ectopic expression of various IRF2BP2 mutant constructs in Jurkat cells. RESULTS Most subjects had immunodeficiency (91%, n = 30 of 33) with variable gastrointestinal (65%, n = 20 of 31) and inflammatory or autoimmune features (57%, n = 17 of 30), including chronic abdominal pain, colitis, diarrhea, constipation, vitiligo, alopecia, and migratory rashes. There was a reduced frequency of memory B cells with poor immunoglobulin production and reduced calcium flux in response to B-cell receptor stimuli. PBMCs had increased apoptosis in vitro compared to healthy controls. Impaired IRF2BP2 repression of NFAT activation was observed using patient-derived mutant IRF2BP2 constructs compared to wild-type constructs. Similarly, TNF-α transcript levels were higher using patient-derived mutations compared to wild-type IRF2BP2 constructs. CONCLUSIONS IRF2BP2 deficiency causes a complex immunodeficiency including gastrointestinal and inflammatory disorders as well as impaired B-cell maturation. Impaired repression of the NFAT pathway appears to enhance proinflammatory signaling through proinflammatory cytokine expression.
Collapse
Affiliation(s)
- Chioma Udemgba
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Bethany Pillay
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium; Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology, and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Samantha Shafer
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Angelika Alberstadt
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael Abers
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Olivier Gilliaux
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium; Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology, and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Karin Chen
- Division of Immunology, Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, Wash
| | - William Rae
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Leif Hanitsch
- Berlin-Brandenburg Center for Regenerative Therapies, Berlin Institute of Health at Charité, Berlin, Germany
| | - Horst Von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Joao Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Nikita Raje
- Division of Allergy, Immunology, Pulmonology, and Sleep Medicine, Department of Pediatrics, Children's Mercy Kansas City, University of Missouri Kansas City, Washington, DC
| | - Leen Moens
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium; Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology, and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium
| | - P Martin van Hagen
- Division of Clinical Immunology, Department of Internal Medicine, Rotterdam, The Netherlands; Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jenna Bergerson
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Nicholas Hartog
- Michigan State University College of Human Medicine Corewell Health and Helen DeVos Children's Hospital, Grand Rapids, Mich
| | - Tim Niehues
- Centre for Child and Adolescent Health, Helios Klinikum Krefeld, affiliated with Rheinisch-Westfälische Technische Hochschule University Aachen, Aachen, Germany
| | - Gregor Dückers
- Centre for Child and Adolescent Health, Helios Klinikum Krefeld, affiliated with Rheinisch-Westfälische Technische Hochschule University Aachen, Aachen, Germany
| | - Emilia Falcone
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael Keller
- Division of Allergy and Immunology, Children's National Hospital, Washington, DC
| | - Amy Hsu
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium; Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology, and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Steven M Holland
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
2
|
Szczawińska-Popłonyk A, Ciesielska W, Konarczak M, Opanowski J, Orska A, Wróblewska J, Szczepankiewicz A. Immunogenetic Landscape in Pediatric Common Variable Immunodeficiency. Int J Mol Sci 2024; 25:9999. [PMID: 39337487 PMCID: PMC11432681 DOI: 10.3390/ijms25189999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic antibody deficiency, characterized by heterogeneous genetic, immunological, and clinical phenotypes. It is no longer conceived as a sole disease but as an umbrella diagnosis comprising a spectrum of clinical conditions, with defects in antibody biosynthesis as their common denominator and complex pathways determining B and T cell developmental impairments due to genetic defects of many receptors and ligands, activating and co-stimulatory molecules, and intracellular signaling molecules. Consequently, these genetic variants may affect crucial immunological processes of antigen presentation, antibody class switch recombination, antibody affinity maturation, and somatic hypermutation. While infections are the most common features of pediatric CVID, variants in genes linked to antibody production defects play a role in pathomechanisms of immune dysregulation with autoimmunity, allergy, and lymphoproliferation reflecting the diversity of the immunogenetic underpinnings of CVID. Herein, we have reviewed the aspects of genetics in CVID, including the monogenic, digenic, and polygenic models of inheritance exemplified by a spectrum of genes relevant to CVID pathophysiology. We have also briefly discussed the epigenetic mechanisms associated with micro RNA, DNA methylation, chromatin reorganization, and histone protein modification processes as background for CVID development.
Collapse
Affiliation(s)
- Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland
| | - Wiktoria Ciesielska
- Student Scientific Society, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Marta Konarczak
- Student Scientific Society, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Jakub Opanowski
- Student Scientific Society, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Aleksandra Orska
- Student Scientific Society, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Julia Wróblewska
- Student Scientific Society, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Aleksandra Szczepankiewicz
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland
| |
Collapse
|
3
|
Houen G. Auto-immuno-deficiency syndromes. Autoimmun Rev 2024; 23:103610. [PMID: 39209011 DOI: 10.1016/j.autrev.2024.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Autoimmune diseases constitute a broad, heterogenous group with many diverse and often overlapping symptoms. Even so, they are traditionally classified as either systemic, rheumatic diseases or organ-directed diseases. Several theories exist about autoimmune diseases, including defective self-recognition, altered self, molecular mimicry, bystander activation and epitope spreading. While there is no consensus about these theories, it is generally accepted that genetic, pre-disposing factors in combination with environmental factors can result in autoimmune disease. The relative contribution of genetic and environmental factors varies between diseases, as does the significance of individual contributing factors within related diseases. Among the genetic factors, molecules involved in antigen (Ag) recognition, processing, and presentation stand out (e.g., MHC I and II) together with molecules involved in immune signaling and regulation of cellular interactions (i.e., immuno-phenotypes). Also, various immuno-deficiencies have been linked to development of autoimmune diseases. Among the environmental factors, infections (e.g., viruses) have attracted most attention, but factors modulating the immune system have also been the subject of much research (e.g., sunlight and vitamin D). Multiple sclerosis currently stands out due to a very strong and proven association with Epstein-Barr virus infection, notably in cases of late infection and in cases of EBV-associated mononucleosis. Thus, a common picture is emerging that both systemic and organ-directed autoimmune diseases may appropriately be described as auto-immuno-deficiency syndromes (AIdeSs), a concept that emphasizes and integrates existing knowledge on the role of immuno-deficiencies and chronic infections with development of overlapping disease syndromes with variable frequencies of autoantibodies and/or autoreactive T cells. This review integrates and exemplifies current knowledge on the interplay of genetically determined immuno-phenotypes and chronic infections in the development of AIdeSs.
Collapse
Affiliation(s)
- Gunnar Houen
- Department of Neurology and Translational Research Center (TRACE), Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.
| |
Collapse
|
4
|
Costagliola G, Legitimo A, Bertini V, Alberio AMQ, Valetto A, Consolini R. Distinct Immunophenotypic Features in Patients Affected by 22q11.2 Deletion Syndrome with Immune Dysregulation and Infectious Phenotype. J Clin Med 2023; 12:7579. [PMID: 38137647 PMCID: PMC10743584 DOI: 10.3390/jcm12247579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The clinical expression of 22q11.2 deletion syndrome (22q11.2 DS) is extremely variable, as patients can present with recurrent or severe infections, immune dysregulation, atopic diseases, or extra-immunological manifestations. The immunological background underlying the different disease manifestations is not completely elucidated. The aim of this study was to identify the immunophenotypic peculiarities of 22q11.2 DS patients presenting with different disease expressions. This study included 34 patients with 22q11.2 DS, divided into three groups according to the clinical phenotype: isolated extra-immunological manifestations (G1), infectious phenotype with increased/severe infections (G2), and immune dysregulation (G3). The patients underwent extended immunophenotyping of the T and B lymphocytes and analysis of the circulating dendritic cells (DCs). In patients with an infectious phenotype, a significant reduction in CD3+ and CD4+ cells and an expansion of CD8 naïve cells was evidenced. On the other hand, the immunophenotype of the patients with immune dysregulation showed a skewing toward memory T cell populations, and reduced levels of recent thymic emigrants (RTEs), while the highest levels of RTEs were detected in the patients with isolated extra-immunological manifestations. This study integrates the current literature, contributing to elucidating the variability in the immune status of patients with 22q11.2DS with different phenotypic expressions, particularly in those with infectious phenotype and immune dysregulation.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy;
| | - Annalisa Legitimo
- Section of Clinical and Laboratory Immunology, Pediatric Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Veronica Bertini
- Section of Cytogenetics, Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (V.B.); (A.V.)
| | | | - Angelo Valetto
- Section of Cytogenetics, Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (V.B.); (A.V.)
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Pediatric Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
5
|
Rokkam SK, Mas-Rosario JA, Joshi BP, Joshi M, Choudhury AR, Kar S, Golakoti NR, Farkas ME. Diarylidene-N-Methyl-4-Piperidones and Spirobibenzopyrans as Antioxidant and Anti-Inflammatory Agents. Chem Biodivers 2023; 20:e202300822. [PMID: 37537138 PMCID: PMC10634312 DOI: 10.1002/cbdv.202300822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Curcumin has antioxidant properties resulting from its radical scavenging ability and inhibition of inflammation-associated factors. However, its lack of solubility, instability, and poor bioavailability are impediments to its therapeutic use. As potential alternatives, we synthesized and performed chemical analysis of thirty diarylidene-N-methyl-4-piperidone (DANMP), diheteroarylidene-N-methyl-4-piperidone (DHANMP), and spirobibenzopyran (SBP) derivatives, one of which was also characterized by single crystal X-ray diffraction. All compounds were evaluated for antioxidant activity via 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and for drug-like properties in silico. A subset of five compounds was investigated in terms of aqueous solubilities, which were significantly improved compared to that of curcumin. In vitro assessments of cellular and anti-inflammatory effects were conducted via real time polymerase chain reaction (RT-PCR) and Griess assays to evaluate the presence of inflammatory/activated (M1) markers and production of nitric oxide (NO) species, which are associated with inflammation. The five compounds reduced levels of markers and NO to extents similar to or better than curcumin in inflamed cells, and showed no adverse effects on cell viability. We show that these compounds possess anti-inflammatory properties and may be used as curcumin-substitutes with improved characteristics.
Collapse
Affiliation(s)
- Siva Kumar Rokkam
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam 515134(AP), India
| | - Javier A. Mas-Rosario
- Molecular & Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Rd, Amherst, MA 01003, USA
| | - Bishnu P. Joshi
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003 USA
| | - Mayank Joshi
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, S. A. S. Nagar, Knowledge City, Manauli P. O. Mohali, Punjab, 140306, India
- College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Angshuman Roy Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, S. A. S. Nagar, Knowledge City, Manauli P. O. Mohali, Punjab, 140306, India
| | - Swayamsiddha Kar
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam 515134(AP), India
| | - Nageswara Rao Golakoti
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam 515134(AP), India
| | - Michelle E. Farkas
- Molecular & Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Rd, Amherst, MA 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003 USA
| |
Collapse
|
6
|
Padron GT, Hernandez-Trujillo VP. Autoimmunity in Primary Immunodeficiencies (PID). Clin Rev Allergy Immunol 2022:10.1007/s12016-022-08942-0. [PMID: 35648371 DOI: 10.1007/s12016-022-08942-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
Abstract
Primary immunodeficiency (PID) may impact any component of the immune system. The number of PID and immune dysregulation disorders is growing steadily with advancing genetic detection methods. These expansive recognition methods have changed the way we characterize PID. While PID were once characterized by their susceptibility to infection, the increase in genetic analysis has elucidated the intertwined relationship between PID and non-infectious manifestations including autoimmunity. The defects permitting opportunistic infections to take hold may also lead the way to the development of autoimmune disease. In some cases, it is the non-infectious complications that may be the presenting sign of PID autoimmune diseases, such as autoimmune cytopenia, enteropathy, endocrinopathies, and arthritis among others, have been reported in PID. While autoimmunity may occur with any PID, this review will look at certain immunodeficiencies most often associated with autoimmunity, as well as their diagnosis and management strategies.
Collapse
Affiliation(s)
- Grace T Padron
- Nicklaus Children's Hospital, Miami, FL, USA.
- Allergy and Immunology Care Center of South Florida, Miami Lakes, FL, USA.
| | - Vivian P Hernandez-Trujillo
- Nicklaus Children's Hospital, Miami, FL, USA
- Allergy and Immunology Care Center of South Florida, Miami Lakes, FL, USA
| |
Collapse
|
7
|
Xu XY, Dhandapani S, Mi XJ, Park HR, Kim YJ. Immune-enhancing efficacy of Curtobacterium proimmune K3 lysates isolated from Panax ginseng beverages in cyclophosphamide-induced immunosuppressed mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Romano R, Cillo F, Moracas C, Pignata L, Nannola C, Toriello E, De Rosa A, Cirillo E, Coppola E, Giardino G, Brunetti-Pierri N, Riccio A, Pignata C. Epigenetic Alterations in Inborn Errors of Immunity. J Clin Med 2022; 11:1261. [PMID: 35268351 PMCID: PMC8910960 DOI: 10.3390/jcm11051261] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
The epigenome bridges environmental factors and the genome, fine-tuning the process of gene transcription. Physiological programs, including the development, maturation and maintenance of cellular identity and function, are modulated by intricate epigenetic changes that encompass DNA methylation, chromatin remodeling, histone modifications and RNA processing. The collection of genome-wide DNA methylation data has recently shed new light into the potential contribution of epigenetics in pathophysiology, particularly in the field of immune system and host defense. The study of patients carrying mutations in genes encoding for molecules involved in the epigenetic machinery has allowed the identification and better characterization of environment-genome interactions via epigenetics as well as paving the way for the development of new potential therapeutic options. In this review, we summarize current knowledge of the role of epigenetic modifications in the immune system and outline their potential involvement in the pathogenesis of inborn errors of immunity.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Francesca Cillo
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Cristina Moracas
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Chiara Nannola
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Elisabetta Toriello
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Antonio De Rosa
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Emma Coppola
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Nicola Brunetti-Pierri
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Claudio Pignata
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| |
Collapse
|
9
|
Valdes AZ. Immunological tolerance and autoimmunity. TRANSLATIONAL AUTOIMMUNITY 2022:325-345. [DOI: 10.1016/b978-0-12-822564-6.00009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Costagliola G, Peroni DG, Consolini R. Beyond Infections: New Warning Signs for Inborn Errors of Immunity in Children. Front Pediatr 2022; 10:855445. [PMID: 35757131 PMCID: PMC9226481 DOI: 10.3389/fped.2022.855445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Patients with inborn errors of immunity (IEI) are susceptible to developing a severe infection-related clinical phenotype, but the clinical consequences of immune dysregulation, expressed with autoimmunity, atopy, and lymphoproliferation could represent the first sign in a significant percentage of patients. Therefore, during the diagnostic work-up patients with IEI are frequently addressed to different specialists, including endocrinologists, rheumatologists, and allergologists, often resulting in a delayed diagnosis. In this paper, the most relevant non-infectious manifestations of IEI are discussed. Particularly, we will focus on the potential presentation of IEI with autoimmune cytopenia, non-malignant lymphoproliferation, severe eczema or erythroderma, autoimmune endocrinopathy, enteropathy, and rheumatologic manifestations, including vasculitis and systemic lupus erythematosus. This paper aims to identify new warning signs to suspect IEI and help in the identification of patients presenting with atypical/non-infectious manifestations.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Diego G Peroni
- Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused extreme concern for patients with inborn errors of immunity (IEIs). In the first 6 months of the pandemic, the case fatality rate among patients with IEIs resembled that of the general population (9%). This review aims at summarizing what we have learned about the course and outcome of coronavirus disease 2019 (COVID-19) in patients with different IEIs and what this can potentially teach us about the immune mechanisms that could confer protection or predisposition to severe disease. RECENT FINDINGS A total of 649 patients with IEI and COVID-19 have been reported in the last year and a half, spanning all groups of the International Union of Immunological Societies classification of IEIs. For most patients, the underlying IEI does not represent an independent risk factor for severe COVID-19. In fact, some IEI may even be protective against the severe disease due to impaired inflammation resulting in less immune-mediated collateral tissue damage. SUMMARY We review the characteristics of SARS-CoV-2 infection in a large number of patients with IEI. Overall, we found that combined immunodeficiencies, immune dysregulation disorders, and innate immune defects impairing type I interferon responses are associated with severe disease course.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven
- Childhood Immunology, Department of Pediatrics, UZ Leuven, Leuven, Belgium
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst
- St Vincent's Clinical School, UNSW Sydney, Randwick, New South Wales, Australia
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven
- Childhood Immunology, Department of Pediatrics, UZ Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Malik A, Stringer E, Warner N, van Limbergen J, Vandersteen A, Muise A, Derfalvi B. Multisystem Autoimmune Inflammatory Disease, Including Colitis, Due to Inborn Error of Immunity. Pediatrics 2021; 148:peds.2021-050614. [PMID: 34686572 PMCID: PMC9359614 DOI: 10.1542/peds.2021-050614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 01/30/2023] Open
Abstract
Our understanding of inflammatory bowel disease is changing as we identify genetic variants associated with immune dysregulation. Inflammatory bowel disease undetermined, even when diagnosed in older children and adolescents, in the setting of multiple inflammatory and infectious diseases should raise the suspicion of complex immune dysregulation with a monogenic basis. We report a case of inflammatory bowel disease undetermined triggered by exposure to a nonsteroidal antiinflammatory drug in a 16-year-old girl with a background history of juvenile idiopathic arthritis, cytopenias, recurrent respiratory tract and middle ear infections, and esophageal candidiasis. Immunologic assessment included measurement of immunoglobulin levels, lymphocyte immunophenotyping, B-cell functional tests, and whole-exome sequencing. Laboratory investigation revealed defects of humoral immunity, including mild persistent hypogammaglobulinemia affecting all 3 isotypes and absent isohemagglutinins. Whole exome sequencing revealed a heterozygous TNFRSF13B (Tumor Necrosis Factor Receptor Superfamily Member 13B, or Transmembrane Activator and Calcium-modulating cyclophilin ligand Interactor, TACI) gene variant, which is associated with common variable immunodeficiency and the development of autoimmune diseases. In conclusion, a clinical history of recurrent infections, atypical histologic features of inflammatory bowel disease, additional autoimmune manifestations, and an inadequate response to conventional therapy should prompt the physician to refer to an immunologist with the query of inborn error of immunity. We report how extensive immune evaluation and genetic diagnosis can individualize care and facilitate a multidisciplinary team approach.
Collapse
Affiliation(s)
- Aniko Malik
- Department of Pediatrics, Dalhousie University and IWK Health Center, Halifax, Nova Scotia, Canada
| | - Elizabeth Stringer
- Department of Pediatrics, Dalhousie University and IWK Health Center, Halifax, Nova Scotia, Canada
| | - Neil Warner
- International Early Onset Pediatric Inflammatory Bowel Disease Cohort Study, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Johan van Limbergen
- Department of Pediatrics, Dalhousie University and IWK Health Center, Halifax, Nova Scotia, Canada
| | - Anthony Vandersteen
- Department of Pediatrics, Dalhousie University and IWK Health Center, Halifax, Nova Scotia, Canada
| | - Aleixo Muise
- International Early Onset Pediatric Inflammatory Bowel Disease Cohort Study, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Beata Derfalvi
- Department of Pediatrics, Dalhousie University and IWK Health Center, Halifax, Nova Scotia, Canada
| |
Collapse
|
13
|
Costagliola G, Cappelli S, Consolini R. Autoimmunity in Primary Immunodeficiency Disorders: An Updated Review on Pathogenic and Clinical Implications. J Clin Med 2021; 10:jcm10204729. [PMID: 34682853 PMCID: PMC8538991 DOI: 10.3390/jcm10204729] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022] Open
Abstract
During the last years, studies investigating the intriguing association between immunodeficiency and autoimmunity led to the discovery of new monogenic disorders, the improvement in the knowledge of the pathogenesis of autoimmunity, and the introduction of targeted treatments. Autoimmunity is observed with particular frequency in patients with primary antibody deficiencies, such as common variable immunodeficiency (CVID) and selective IgA deficiency, but combined immunodeficiency disorders (CIDs) and disorders of innate immunity have also been associated with autoimmunity. Among CIDs, the highest incidence of autoimmunity is described in patients with autoimmune polyendocrine syndrome 1, LRBA, and CTLA-4 deficiency, and in patients with STAT-related disorders. The pathogenesis of autoimmunity in patients with immunodeficiency is far to be fully elucidated. However, altered germ center reactions, impaired central and peripheral lymphocyte negative selection, uncontrolled lymphocyte proliferation, ineffective cytoskeletal function, innate immune defects, and defective clearance of the infectious agents play an important role. In this paper, we review the main immunodeficiencies associated with autoimmunity, focusing on the pathogenic mechanisms responsible for autoimmunity in each condition and on the therapeutic strategies. Moreover, we provide a diagnostic algorithm for the diagnosis of PIDs in patients with autoimmunity.
Collapse
|
14
|
Su G, Lai J, Zhu J, Zhang D, Hou J, Xu Y, Zhou Z. Analysis of five cases of monogenic lupus related to primary immunodeficiency diseases. Inflamm Res 2021; 70:1211-1216. [PMID: 34559261 DOI: 10.1007/s00011-021-01479-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE AND DESIGN We studied five cases of PID-related monogenic lupus to explore the characteristics. MATERIAL OR SUBJECTS Among 42 cases of PID patients between 2017-2020, 5 patients were diagnosed as PID-related monogenic lupus, including 2 males and 3 females, with age range from 2 years 3 months to 13 years old. TREATMENTS DMARDs, biological agents and stem cell transplantation were used to treat different patients. METHODS We collected the clinical observation indicators, auxiliary examination and treatment of the five patients. RESULTS Patient 1 was diagnosed with monogenic lupus secondary to severe combined immunodeficiency and received prednisone and methotrexate treatment. Patient 2 was diagnosed with monogenic lupus secondary to activated phosphoinositide 3-kinase δ syndrome. Allogeneic stem cell transplantation was conducted. Patient 3 was diagnosed with monogenic lupus secondary to RAS-associated lymphoproliferative disease. The child was treated with prednisone and rituximab. Patient 4 was diagnosed with monogenic lupus secondary to PSTPIP1-associated myeloid-related proteinaemia inflammatory syndrome. The child was given methylprednisolone, methotrexate, and infliximab. Patient 5 was diagnosed with monogenic lupus secondary to A20 haploinsufficiency. The child was treated with methylprednisolone and infliximab. CONCLUSIONS Multiple PIDs can lead to monogenic lupus. Different PID-related monogenic lupus has different suitable targeted drugs.
Collapse
Affiliation(s)
- Gaixiu Su
- Department of Rheumatology and Immunology, Capital Institute of Pediatrics, No.2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Jianming Lai
- Department of Rheumatology and Immunology, Capital Institute of Pediatrics, No.2 Yabao Road, Chaoyang District, Beijing, 100020, China.
| | - Jia Zhu
- Department of Rheumatology and Immunology, Capital Institute of Pediatrics, No.2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Dan Zhang
- Department of Rheumatology and Immunology, Capital Institute of Pediatrics, No.2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Jun Hou
- Department of Rheumatology and Immunology, Capital Institute of Pediatrics, No.2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Yingjie Xu
- Department of Rheumatology and Immunology, Capital Institute of Pediatrics, No.2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Zhixuan Zhou
- Department of Rheumatology and Immunology, Capital Institute of Pediatrics, No.2 Yabao Road, Chaoyang District, Beijing, 100020, China
| |
Collapse
|
15
|
Hogendorf A, Szymańska M, Krasińska J, Baranowska-Jaźwiecka A, Ancuta M, Charubczyk A, Wyka K, Drozdz I, Sokolowska-Gadoux M, Zarebska J, Michalak A, Szadkowska A, Jarosz-Chobot P, Młynarski W. Clinical heterogeneity among pediatric patients with autoimmune type 1 diabetes stratified by immunoglobulin deficiency. Pediatr Diabetes 2021; 22:707-716. [PMID: 33840156 DOI: 10.1111/pedi.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) may coexist with primary immunodeficiencies, indicating a shared genetic background. OBJECTIVE To evaluate the prevalence and clinical characteristics of immunoglobulin deficiency (IgD) among children with T1D. METHODS Serum samples and medical history questionnaires were obtained during routine visits from T1D patients aged 4-18 years. IgG, IgA, IgM, and IgE were measured by nephelometry and enzyme-linked immunosorbent assay (ELISA). IgG and IgM deficiency (IgGD, IgMD) were defined as IgG/IgM >2 standard deviations (SD) below age-adjusted mean. IgE deficiency was defined as IgE <2 kIU/L. IgA deficiency (IgAD) was defined as IgA >2 SD below age-adjusted mean irrespective of other immunoglobulin classes (absolute if <0.07 g/L, partial otherwise) and as selective IgAD when IgA >2 SD below age-adjusted mean with normal IgG and IgM (absolute if <0.07 g/L, partial otherwise). RESULTS Among 395 patients (53.4% boys) with the median age of 11.2 (8.4-13.7) and diabetes duration 3.6 (1.1-6.0) years, 90 (22.8%) were found to have hypogammaglobulinemia. The IgGD and IgAD were the most common each in 40/395 (10.1%). Complex IgD was found in seven patients. Increased odds of infection-related hospitalization (compared to children without any IgD) was related to having any kind of IgD and IgAD; OR (95%CI) = 2.1 (1.2-3.7) and 3.7 (1.8-7.5), respectively. Furthermore, IgAD was associated with having a first-degree relative with T1D OR (95%CI) = 3.3 (1.4-7.6) and suffering from non-autoimmune comorbidities 3.3 (1.4-7.6), especially neurological disorders 3.5 (1.2-10.5). CONCLUSIONS IgDs frequently coexist with T1D and may be associated with several autoimmune and nonimmune related disorders suggesting their common genetic background.
Collapse
Affiliation(s)
- Anna Hogendorf
- Department of Pediatrics, Diabetology, Endocrinology, and Nephrology, Medical University of Łódź, Łódź, Poland
| | - Małgorzata Szymańska
- Department of Pediatrics, Diabetology, Endocrinology, and Nephrology, Medical University of Łódź, Łódź, Poland
| | - Joanna Krasińska
- Department of Pediatrics, Oncology, and Hematology, Medical University of Łódź, Łódź, Poland
| | - Anna Baranowska-Jaźwiecka
- Department of Pediatrics, Diabetology, Endocrinology, and Nephrology, Medical University of Łódź, Łódź, Poland
| | - Marta Ancuta
- Department of Pediatrics, Diabetology, Endocrinology, and Nephrology, Medical University of Łódź, Łódź, Poland
| | - Anna Charubczyk
- Department of Pediatrics, Diabetology, Endocrinology, and Nephrology, Medical University of Łódź, Łódź, Poland
| | - Krystyna Wyka
- Department of Pediatrics, Oncology, and Hematology, Medical University of Łódź, Łódź, Poland
| | - Izabela Drozdz
- Department of Pediatrics, Oncology, and Hematology, Medical University of Łódź, Łódź, Poland.,Department of Clinical Genetics, Medical University of Łódź, Łódź, Poland
| | | | - Joanna Zarebska
- Department of Children's Diabetology, John Paul II Upper Silesian Child Health Centre, Katowice, Poland
| | - Arkadiusz Michalak
- Department of Pediatrics, Diabetology, Endocrinology, and Nephrology, Medical University of Łódź, Łódź, Poland.,Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Agnieszka Szadkowska
- Department of Pediatrics, Diabetology, Endocrinology, and Nephrology, Medical University of Łódź, Łódź, Poland
| | | | - Wojciech Młynarski
- Department of Pediatrics, Oncology, and Hematology, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
16
|
Alzyoud R, Alansari S, Maaitah H, AlDossari H, Monies D, Al-Mayouf SM. Familial Clustering of Juvenile Psoriatic Arthritis Associated with a Hemizygous FOXP3 Mutation. Curr Rheumatol Rep 2021; 23:64. [PMID: 34216291 DOI: 10.1007/s11926-021-01026-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW We describe the clinical and genetic findings in four patients from a single family who presented with refractory psoriatic arthritis and were hemizygous in the forkhead box protein 3 (FOXP3) gene (c.1222G>A). RECENT FINDINGS We report four siblings with hemizygous mutation in the FOXP3 gene (c.1222G>A) who presented with type 1 diabetes mellitus and psoriatic arthritis poorly responsive to treatment. Our findings expand the phenotype spectrum of FOXP3 mutations. Immune dysregulation, polyendocrinopathy, and enteropathy, X-linked (IPEX) syndrome is a rare disorder caused by mutations in FOXP3 gene, which lead to early onset of constellation of autoimmune manifestations. This report highlights the influence of immune dysregulation in juvenile arthritis.
Collapse
Affiliation(s)
- Raed Alzyoud
- Department of Pediatric Rheumatology, Immunology & Allergy, Queen Rania Children Hospital, Amman, Jordan
| | - Shahad Alansari
- Department of Pediatric Rheumatology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Heba Maaitah
- Department of Pediatric Rheumatology, Immunology & Allergy, Queen Rania Children Hospital, Amman, Jordan
| | - Haya AlDossari
- Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sulaiman M Al-Mayouf
- Department of Pediatric Rheumatology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
17
|
Shen S, Dai H, Fei Z, Chai Y, Hao Y, Fan Q, Dong Z, Zhu Y, Xu J, Ma Q, Han X, Xu L, Peng F, Liu Z, Wang C. Immunosuppressive Nanoparticles for Management of Immune-Related Adverse Events in Liver. ACS NANO 2021; 15:9111-9125. [PMID: 33988024 DOI: 10.1021/acsnano.1c02391] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Immune checkpoint blockade (ICB) therapy has been considered as an effective way to boost immune cells to recognize and attack tumors. However, side effects known as immune-related adverse events (irAEs) should be carefully managed. Here, we engineer immunosuppressive nanoparticles by coating PD-L1 overexpressed mesenchymal stem cells (MSCs) plasma membrane on poly lactic-co-glycolic acid nanoparticles (MSC-PD-L1+ NPs) for managing and reducing irAEs induced by immune checkpoint inhibitors. The nanoparticles can enrich at liver site after intravenous administration. In the high dose of anti-PD-L1 mAb-induced irAEs clinically relevant mouse model, a low dose of MSC-PD-L1+ NPs (2 mg/kg) sufficiently rescues hepatitis by inactivating T cells and macrophages in the liver tissue. More intriguingly, due to the dose threshold for nanoparticles to the tumor site, we unexpectedly find that the injected NPs do not affect the efficiency of ICB therapy to inhibit solid tumor growth. Such a strategy shows potential for managing the various cancer immunotherapy associated irAEs in clinical applications.
Collapse
Affiliation(s)
- Shufang Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ziying Fei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yu Chai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yu Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qin Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yujie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingle Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiao Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ligeng Xu
- The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Fei Peng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02114, United States
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
18
|
Segundo GRS, Condino-Neto A. Treatment of patients with immunodeficiency: Medication, gene therapy, and transplantation. J Pediatr (Rio J) 2021; 97 Suppl 1:S17-S23. [PMID: 33181112 PMCID: PMC9432285 DOI: 10.1016/j.jped.2020.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES To provide an overview of drug treatment, transplantation, and gene therapy for patients with primary immunodeficiencies. SOURCE OF DATA Non-systematic review of the literature in the English language carried out at PubMed. SYNTHESIS OF DATA The treatment of patients with primary immunodeficiencies aims to control their disease, especially the treatment and prevention of infections through antibiotic prophylaxis and/or immunoglobulin replacement therapy. In several diseases, it is possible to use specific medications for the affected pathway with control of the condition, especially in autoimmune or autoinflammatory processes associated with inborn immunity errors. In some diseases, treatment can be curative through hematopoietic stem cell transplantation (HSCT); more recently, gene therapy has opened new horizons through new technologies. CONCLUSIONS Immunoglobulin replacement therapy remains the main therapeutic tool. Precision medicine with specific drugs for altered immune pathways is already a reality for several immune defects. Advances in the management of HSCT and gene therapy have expanded the capacity for curative treatments in patients with primary immunodeficiencies.
Collapse
Affiliation(s)
| | - Antonio Condino-Neto
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Imunologia, São Paulo, SP, Brazil
| |
Collapse
|
19
|
Montamat G, Leonard C, Poli A, Klimek L, Ollert M. CpG Adjuvant in Allergen-Specific Immunotherapy: Finding the Sweet Spot for the Induction of Immune Tolerance. Front Immunol 2021; 12:590054. [PMID: 33708195 PMCID: PMC7940844 DOI: 10.3389/fimmu.2021.590054] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023] Open
Abstract
Prevalence and incidence of IgE-mediated allergic diseases have increased over the past years in developed and developing countries. Allergen-specific immunotherapy (AIT) is currently the only curative treatment available for allergic diseases that has long-term efficacy. Although AIT has been proven successful as an immunomodulatory therapy since its beginnings, it still faces several unmet needs and challenges today. For instance, some patients can experience severe side effects, others are non-responders, and prolonged treatment schedules can lead to lack of patient adherence and therapy discontinuation. A common strategy to improve AIT relies on the use of adjuvants and immune modulators to boost its effects and improve its safety. Among the adjuvants tested for their clinical efficacy, CpG oligodeoxynucleotide (CpG-ODN) was investigated with limited success and without reaching phase III trials for clinical allergy treatment. However, recently discovered immune tolerance-promoting properties of CpG-ODN place this adjuvant again in a prominent position as an immune modulator for the treatment of allergic diseases. Indeed, it has been shown that the CpG-ODN dose and concentration are crucial in promoting immune regulation through the recruitment of pDCs. While low doses induce an inflammatory response, high doses of CpG-ODN trigger a tolerogenic response that can reverse a pre-established allergic milieu. Consistently, CpG-ODN has also been found to stimulate IL-10 producing B cells, so-called B regulatory cells (Bregs). Accordingly, CpG-ODN has shown its capacity to prevent and revert allergic reactions in several animal models showing its potential as both preventive and active treatment for IgE-mediated allergy. In this review, we describe how CpG-ODN-based therapies for allergic diseases, despite having shown limited success in the past, can still be exploited further as an adjuvant or immune modulator in the context of AIT and deserves additional attention. Here, we discuss the past and current knowledge, which highlights CpG-ODN as a potential adjuvant to be reevaluated for the enhancement of AIT when used in appropriate conditions and formulations.
Collapse
Affiliation(s)
- Guillem Montamat
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Cathy Leonard
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Aurélie Poli
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Ludger Klimek
- Centre for Rhinology and Allergology, Wiesbaden, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| |
Collapse
|
20
|
El-Hefnawy SM, Maraee AH, Tayel N, El-Shenawy W, El-Naidany SS, Shehata WA. Impact of missense mutation (rs1990760) at interferon-induced helicase (1) gene on non-segmental vitiligo. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Caldirola MS, Martínez MP, Bezrodnik L, Zwirner NW, Gaillard MI. Immune Monitoring of Patients With Primary Immune Regulation Disorders Unravels Higher Frequencies of Follicular T Cells With Different Profiles That Associate With Alterations in B Cell Subsets. Front Immunol 2020; 11:576724. [PMID: 33193371 PMCID: PMC7658009 DOI: 10.3389/fimmu.2020.576724] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022] Open
Abstract
Primary immune regulation disorders lead to autoimmunity, allergy and inflammatory conditions due to defects in the immune homeostasis affecting different T, B and NK cell subsets. To improve our understanding of these conditions, in this work we analyzed the T and B cell compartments of 15 PID patients with dysregulation, including 3 patients with STAT1 GOF mutation, 7 patients with CVID with dysregulation, 3 patients with mutations in CTLA4, 1 patient with CD25 mutation and 1 patient with STAT5b mutation and compared them with healthy donors and with CVID patients without dysregulation. CD4+ and CD8+ T cells from the patients exhibited a significant decreased frequency of naïve and regulatory T cells with increased frequencies of activated cells, central memory CD4+ T cells, effector memory CD8+ T cells and terminal effector CD8+ T cells. Patients also exhibited a significantly increased frequency of circulating CD4+ follicular helper T cells, with altered frequencies of cTfh cell subsets. Such cTfh cells were skewed toward cTfh1 cells in STAT1 GOF, CTLA4, and CVID patients, while the STAT5b deficient patient presented a skew toward cTfh17 cells. These alterations confirmed the existence of an imbalance in the cTfh1/cTfh17 ratio in these diseases. In addition, we unraveled a marked dysregulation in the B cell compartment, characterized by a prevalence of transitional and naïve B cells in STAT1 GOF and CVID patients, and of switched-memory B cells and plasmablast cells in the STAT5b deficient patient. Moreover, we observed a significant positive correlation between the frequencies cTfh17 cells and switched-memory B cells and between the frequency of switched-memory B cells and the serum IgG. Therefore, primary immunodeficiencies with dysregulation are characterized by a skew toward an activated/memory phenotype within the CD4+ and CD8+ T cell compartment, accompanied by abnormal frequencies of Tregs, cTfh, and their cTfh1 and cTfh17 subsets that likely impact on B cell help for antibody production, which likely contributes to their autoimmune and inflammatory conditions. Therefore, assessment of these alterations by flow cytometry constitutes a simple and straightforward manner to improve diagnosis of these complex clinical entities that may impact early diagnosis and patients' treatment. Also, our findings unravel phenotypic alterations that might be associated, at least in part, with some of the clinical manifestations observed in these patients.
Collapse
Affiliation(s)
- María Soledad Caldirola
- Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - María Paula Martínez
- Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Liliana Bezrodnik
- Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina.,Centro de Inmunología Clínica Dra. Bezrodnik, Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Fisiopatología de la Inmunidad Innata, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Isabel Gaillard
- Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina.,Sección Citometría-Laboratorio Stamboulian, Buenos Aires, Argentina
| |
Collapse
|