1
|
Shi TC, Durham K, Marsh R, Pagliaccio D. Differences in Head Motion During Functional Magnetic Resonance Imaging Across Pediatric Neuropsychiatric Disorders. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100446. [PMID: 40041281 PMCID: PMC11875158 DOI: 10.1016/j.bpsgos.2024.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 03/06/2025] Open
Abstract
Background Robust correction for head motion during functional magnetic resonance imaging is critical to avoid artifact-driven findings. Despite head motion differences across neuropsychiatric disorders, pediatric head motion across a range of diagnoses and covariates has not yet been evaluated. We tested 4 preregistered hypotheses: 1) externalizing disorder diagnoses will associate with more head motion during scanning; 2) internalizing disorder diagnoses will associate with less motion; 3) among children without attention-deficit/hyperactivity disorder, externalizing disorders will associate with more motion; and 4) among children with attention-deficit/hyperactivity disorder, comorbid internalizing disorders will associate with less motion. Methods Healthy Brain Network data releases 1.0-7.0 (n = 971) were analyzed in a discovery phase, and additional data released by February 29, 2024 (n = 437) were used in confirmatory analyses. Linear mixed-effects models were fitted with in-scanner head motion as the dependent variable. Binary independent variables of interest assessed for the presence or absence of externalizing or internalizing disorders. Results The confirmatory sample did not show significant associations between head motion and externalizing or internalizing disorders or support for the preregistered hypotheses. Across samples, there was a consistent interaction between age and neurodevelopmental diagnoses such that age-related decreases in head motion were attenuated in children with neurodevelopmental disorders. Conclusions Head motion remains an important confound in pediatric neuroimaging that may be associated with many factors, including neuropsychiatric symptoms, age, cognitive and physical attributes, and interactions among these variables. This work takes a step toward parsing these complex associations, focusing on neuropsychiatric diagnoses, age, and their interaction.
Collapse
Affiliation(s)
- Tracey C. Shi
- Columbia University Irving Medical Center, New York, New York
| | | | - Rachel Marsh
- Columbia University Irving Medical Center, New York, New York
- New York State Psychiatric Institute, New York, New York
| | - David Pagliaccio
- Columbia University Irving Medical Center, New York, New York
- New York State Psychiatric Institute, New York, New York
| |
Collapse
|
2
|
Sun Y, Wang L, Li G, Lin W, Wang L. A foundation model for enhancing magnetic resonance images and downstream segmentation, registration and diagnostic tasks. Nat Biomed Eng 2025; 9:521-538. [PMID: 39638876 DOI: 10.1038/s41551-024-01283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/17/2024] [Indexed: 12/07/2024]
Abstract
In structural magnetic resonance (MR) imaging, motion artefacts, low resolution, imaging noise and variability in acquisition protocols frequently degrade image quality and confound downstream analyses. Here we report a foundation model for the motion correction, resolution enhancement, denoising and harmonization of MR images. Specifically, we trained a tissue-classification neural network to predict tissue labels, which are then leveraged by a 'tissue-aware' enhancement network to generate high-quality MR images. We validated the model's effectiveness on a large and diverse dataset comprising 2,448 deliberately corrupted images and 10,963 images spanning a wide age range (from foetuses to elderly individuals) acquired using a variety of clinical scanners across 19 public datasets. The model consistently outperformed state-of-the-art algorithms in improving the quality of MR images, handling pathological brains with multiple sclerosis or gliomas, generating 7-T-like images from 3 T scans and harmonizing images acquired from different scanners. The high-quality, high-resolution and harmonized images generated by the model can be used to enhance the performance of models for tissue segmentation, registration, diagnosis and other downstream tasks.
Collapse
Affiliation(s)
- Yue Sun
- Developing Brain Computing Lab, Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Limei Wang
- Developing Brain Computing Lab, Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li Wang
- Developing Brain Computing Lab, Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Zensho K, Itami K, Matsuda N, Akaike H, Kubota M, Asakawa T, Tokumasu H, Mimaki N. Risk factors for sedation and MRI failure in children with neurodevelopmental disorders undergoing head MRI with oral triclofos sodium and/or rectal chloral hydrate. Brain Dev 2025; 47:104353. [PMID: 40153912 DOI: 10.1016/j.braindev.2025.104353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Head magnetic resonance imaging (MRI) is of critical importance in the diagnosis and management of neurodevelopmental disorders. However, the use of sedation in affected children can present a significant challenge. AIMS To identify the factors associated with sedation and MRI failure in children with neurodevelopmental disorders undergoing head MRI with oral triclofos sodium or rectal chloral hydrate. METHODS This retrospective study analyzed 215 MRI sessions of children with neurodevelopmental disorders from January 2020 to December 2021. Sedation was administered via oral triclofos sodium or rectal chloral hydrate. Multivariate logistic regression was used to determine the factors associated with sedation failure and MRI failure. RESULTS The sedation failure rate was 38.1 % (82/215). Factors significantly associated with sedation failure were older age (odds ratio [OR] 1.59, 95 % confidence interval [CI] 1.30-1.95, p < 0.001) and stranger anxiety (OR 4.07, 95 % CI 1.95-8.49, p < 0.001). The age cut-off for increased sedation failure risk was 4.0 years (p < 0.01). The MRI failure rate was 21.9 % (47/215), associated with autism spectrum disorder (ASD) diagnosis (OR 19.00, 95 % CI 2.43-149.00, p < 0.01), stranger anxiety (OR 3.66, 95 % CI 1.62-8.24, p < 0.01), and place anxiety (OR 3.18, 95 % CI 1.33-7.57, p < 0.01). CONCLUSIONS Older age and stranger anxiety are significant risk factors for sedation failure, while ASD diagnosis, stranger anxiety, and place anxiety increase MRI failure risk in children with neurodevelopmental disorders undergoing head MRI.
Collapse
Affiliation(s)
- Kazumasa Zensho
- Department of Pediatrics, Kurashiki Medical Center, Okayama 710-8522, Japan; Department of Pediatrics, Okayama University Hospital, Okayama 700-8558, Japan.
| | - Keisuke Itami
- Department of Radiologic Technology, Kurashiki Medical Center, Okayama 710-8522, Japan
| | - Natsuko Matsuda
- Department of Rehabilitation, Kurashiki Medical Center, Okayama 710-8522, Japan
| | - Hiroto Akaike
- Department of Pediatrics, Kurashiki Medical Center, Okayama 710-8522, Japan
| | - Masamichi Kubota
- Department of Pediatrics, Kurashiki Medical Center, Okayama 710-8522, Japan
| | - Toru Asakawa
- Department of Radiology, Kurashiki Medical Center, Okayama 710-8522, Japan
| | - Hironobu Tokumasu
- Department of Clinical Research, Kurashiki Central Hospital, Okayama, Japan
| | - Nobuyoshi Mimaki
- Department of Pediatrics, Kurashiki Medical Center, Okayama 710-8522, Japan; Department of Pediatrics, Okayama University Hospital, Okayama 700-8558, Japan
| |
Collapse
|
4
|
Mason KN, Gampper T, Black J. Achieving Clinical Success in Nonsedated Velopharyngeal Magnetic Resonance Imaging: Optimizing Data Quality and Patient Selection. Plast Reconstr Surg 2025; 155:562e-572e. [PMID: 38991113 PMCID: PMC11845073 DOI: 10.1097/prs.0000000000011619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND The ability of magnetic resonance imaging (MRI) to visualize the velopharyngeal (VP) musculature in vivo makes it the only imaging modality available for this purpose. This underscores a need for exploration into clinical translation of this imaging modality for craniofacial teams. The purpose of this study was to assess outcomes of a clinically feasible VP MRI protocol and describe the ideal patient population for use of this imaging protocol. METHODS Sixty children (2 to 12 years of age) with VP insufficiency underwent a nonsedated, child-friendly MRI protocol. No exclusions based on syndromic conditions were made. Logistic regression assessed predictors of VP MRI success and multinomial logistic regression evaluated factors influencing quality of anatomic data. RESULTS An 85% overall success rate was achieved, including children as young as 2 years and those with syndromic diagnoses. Stratifying by age revealed a 97.5% success rate in children ages 4 and up. The regression model (χ 2 [5] = 37.443; P < 0.001) explained 81.4% of success rate variance, correctly classifying 93.3% of cases. Increased age significantly predicted success ( P = 0.046); sex and syndromic conditions did not. Multinomial regression identified preparatory materials ( P = 0.011) and audio/video during the scan ( P = 0.024) as predictors for improved image quality. CONCLUSIONS Implementation of VP MRI is feasible for a broad population of children with VP insufficiency, including those with concomitant syndromic diagnoses. Quality is improved by incorporating prescan preparation and audiovisual stimuli during scans. This underscores the potential of VP MRI as a valuable tool in clinical settings, especially for presurgical assessments.
Collapse
Affiliation(s)
- Kazlin N. Mason
- From the Department of Human Services, University of Virginia
| | - Thomas Gampper
- Department of Plastic Surgery, Maxillofacial, and Oral Health, University of Virginia School of Medicine
| | - Jonathan Black
- Department of Plastic Surgery, Maxillofacial, and Oral Health, University of Virginia School of Medicine
| |
Collapse
|
5
|
Garic D, Al-Ali KW, Nasir A, Azrak O, Grzadzinski RL, McKinstry RC, Wolff JJ, Lee CM, Pandey J, Schultz RT, St John T, Dager SR, Estes AM, Gerig G, Zwaigenbaum L, Marrus N, Botteron KN, Piven J, Styner M, Hazlett HC, Shen MD. White matter microstructure in school-age children with down syndrome. Dev Cogn Neurosci 2025; 73:101540. [PMID: 40043413 PMCID: PMC11928993 DOI: 10.1016/j.dcn.2025.101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability, but our understanding of white matter microstructure in children with DS remains limited. Previous studies have reported reductions in white matter integrity, but nearly all studies to date have been conducted in adults or relied solely on diffusion tensor imaging (DTI), which lacks the ability to disentangle underlying properties of white matter organization. This study examined white matter microstructural differences in 7- to 12-year-old children with DS (n = 23), autism (n = 27), and typical development (n = 50) using DTI as well as High Angular Resolution Diffusion Imaging, and Neurite Orientation and Dispersion Imaging. There was a spatially specific pattern of results that showed a dissociation between intra- and inter-hemispheric pathways. Intra-hemispheric pathways (e.g., inferior fronto-occipital fasciculus, superior longitudinal fasciculus) exhibited reduced organization and structural integrity. Inter-hemispheric pathways (e.g., corpus callosum projections) and motor pathways (e.g., corticospinal tract) showed denser neurite packing and lower neurite dispersion. The current findings provide early insight into white matter development in school-aged children with DS and have the potential to further elucidate microstructural differences and inform more targeted clinical trials than what has previously been observed through DTI models alone.
Collapse
Affiliation(s)
- Dea Garic
- Carolina Institute for Developmental Disabilities, 101 Renee Lynne Ct, Carrboro, NC 27510, USA; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, 101 Manning Dr #1, Chapel Hill, NC 27514, USA.
| | - Khalid W Al-Ali
- Department of Psychiatry, Indiana University School of Medicine, N Senate Ave, Indianapolis, IN 46202, USA.
| | - Aleeshah Nasir
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, 101 Manning Dr #1, Chapel Hill, NC 27514, USA.
| | - Omar Azrak
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, 101 Manning Dr #1, Chapel Hill, NC 27514, USA.
| | - Rebecca L Grzadzinski
- Carolina Institute for Developmental Disabilities, 101 Renee Lynne Ct, Carrboro, NC 27510, USA; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, 101 Manning Dr #1, Chapel Hill, NC 27514, USA.
| | - Robert C McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kings Highway Blvd, St. Louis, MO 63110, USA.
| | - Jason J Wolff
- Department of Educational Psychology, University of Minnesota Twin Cities College of Education and Human Development, 250 Education Sciences Bldg, 56 E River Rd, Minneapolis, MN 55455, USA.
| | - Chimei M Lee
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota Twin Cities Medical School, 2025 E. River Parkway 7962A, Minneapolis, MN 55414, USA.
| | - Juhi Pandey
- Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, 2716 South St #5, Philadelphia, PA 19104, USA.
| | - Robert T Schultz
- Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, 2716 South St #5, Philadelphia, PA 19104, USA.
| | - Tanya St John
- University of Washington Autism Center, University of Washington, 1701 NE Columbia Rd, Seattle, WA 98195, USA; Department of Speech and Hearing Science, University of Washington, 1417 NE 42nd St, Seattle, WA 98105, USA.
| | - Stephen R Dager
- Department of Radiology, University of Washington Medical Center, 1959 NE Pacific St, Seattle, WA 98195, USA.
| | - Annette M Estes
- University of Washington Autism Center, University of Washington, 1701 NE Columbia Rd, Seattle, WA 98195, USA; Department of Speech and Hearing Science, University of Washington, 1417 NE 42nd St, Seattle, WA 98105, USA.
| | - Guido Gerig
- Department of Computer Science and Engineering, New York University, 251 Mercer Street, Room 305, New York, NY 10012, USA.
| | - Lonnie Zwaigenbaum
- Department of Pediatrics, University of Alberta, 11405-87 Avenue, Edmonton, Alberta, Canada.
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S Euclid Ave, St. Louis, MO 63110, USA.
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S Euclid Ave, St. Louis, MO 63110, USA.
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, 101 Renee Lynne Ct, Carrboro, NC 27510, USA; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, 101 Manning Dr #1, Chapel Hill, NC 27514, USA.
| | - Martin Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, 101 Manning Dr #1, Chapel Hill, NC 27514, USA.
| | - Heather C Hazlett
- Carolina Institute for Developmental Disabilities, 101 Renee Lynne Ct, Carrboro, NC 27510, USA; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, 101 Manning Dr #1, Chapel Hill, NC 27514, USA.
| | - Mark D Shen
- Carolina Institute for Developmental Disabilities, 101 Renee Lynne Ct, Carrboro, NC 27510, USA; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, 101 Manning Dr #1, Chapel Hill, NC 27514, USA.
| |
Collapse
|
6
|
Behm L, Yates TS, Trach JE, Choi D, Du H, Osumah C, Deen B, Kosakowski HL, Chen EM, Kamps FS, Olson HA, Ellis CT, Saxe R, Turk-Browne NB. Data retention in awake infant fMRI: Lessons from more than 750 scanning sessions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.636736. [PMID: 40060490 PMCID: PMC11888208 DOI: 10.1101/2025.02.20.636736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Functional magnetic resonance imaging (fMRI) in awake infants has the potential to reveal how the early developing brain gives rise to cognition and behavior. However, awake infant fMRI poses significant methodological challenges that have hampered wider adoption. The present work takes stock after the collection of a substantial amount of awake infant fMRI data across multiple studies from two labs at different institutions. We leveraged these data to glean insights on participant recruitment, experimental design, and data acquisition that could be useful to consider for future studies. Across 766 awake infant fMRI sessions, we explored the factors that influenced how much usable data were obtained per session (average of 9 minutes). The age of an infant predicted whether they would successfully enter the scanner (younger was more likely) and, if they did enter, the number of minutes of functional data retained after preprocessing. The amount of functional data retained was also influenced by assigned sex (female more), experimental paradigm (movies better than blocks and events), and stimulus content (social better than abstract). In addition, we assessed the value of attempting to collect multiple experiments per session, an approach that yielded more than one usable experiment averaging across all sessions (including those with no data). Although any given scan is unpredictable, these findings support the feasibility of awake infant fMRI and suggest practices to optimize future research.
Collapse
Affiliation(s)
| | | | | | | | - Haoyu Du
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Camille Osumah
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Ben Deen
- Department of Psychology and Brain Institute, Tulane University
| | | | | | - Frederik S Kamps
- Department of Psychology, School of Philosophy, Psychology, and Language Sciences, University of Edinburgh
| | - Halie A Olson
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
- McGovern Institute for Brain Research, Massachusetts Institute of Technology
| | | | - Rebecca Saxe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
- McGovern Institute for Brain Research, Massachusetts Institute of Technology
| | | |
Collapse
|
7
|
England-Mason G, Reardon AJF, Reynolds JE, Grohs MN, MacDonald AM, Kinniburgh DW, Martin JW, Lebel C, Dewey D. Maternal concentrations of perfluoroalkyl sulfonates and alterations in white matter microstructure in the developing brains of young children. ENVIRONMENTAL RESEARCH 2025; 267:120638. [PMID: 39681179 DOI: 10.1016/j.envres.2024.120638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Maternal exposure to per- and polyfluoroalkyl substances (PFAS) has been linked to child neurodevelopmental difficulties. Neuroimaging research has linked these neurodevelopmental difficulties to white matter microstructure alterations, but the effects of PFAS on children's white matter microstructure remains unclear. We investigated associations between maternal blood concentrations of six common perfluoroalkyl sulfonates and white matter alterations in young children using longitudinal neuroimaging data. METHODS This study included 84 maternal-child pairs from a Canadian pregnancy cohort. Maternal second trimester blood concentrations of perfluorohexanesulfonate (PFHxS) and five perfluorooctane sulfonate (PFOS) isomers were quantified. Children underwent magnetic resonance imaging scans between ages two and six (279 scans total). Adjusted linear mixed models investigated associations between each exposure and white matter fractional anisotropy (FA) and mean diffusivity (MD). RESULTS Higher maternal concentrations of perfluoroalkyl sulfonates were associated with higher MD and lower FA in the body and splenium of the corpus callosum of young children. Multiple sex-specific associations were found. In males, PFHxS was negatively associated with FA in the superior longitudinal fasciculus, while PFOS isomers were positively associated with MD in the inferior longitudinal fasciculus (ILF). In females, PFOS isomers were positively associated with FA in the pyramidal fibers and MD in the fornix, but negatively associated with MD in the ILF. CONCLUSION Maternal exposure to perfluoroalkyl sulfonates may alter sex-specific white matter development in young children, potentially contributing to neurodevelopmental difficulties. Larger studies are needed to replicate these findings and examine the neurotoxicity of these chemicals.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anthony J F Reardon
- Division of Analytical and Environmental Toxicology, University of Alberta, Edmonton, Alberta, Canada
| | - Jess E Reynolds
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Melody N Grohs
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Catherine Lebel
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
8
|
Nagaraj UD, Dillman JR, Tkach JA, Greer JS, Leach JL. Evaluation of 3D T1-weighted spoiled gradient echo MR image quality using artificial intelligence image reconstruction techniques in the pediatric brain. Neuroradiology 2024; 66:1849-1857. [PMID: 38967815 PMCID: PMC11424660 DOI: 10.1007/s00234-024-03417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
PURPOSE To assess image quality and diagnostic confidence of 3D T1-weighted spoiled gradient echo (SPGR) MRI using artificial intelligence (AI) reconstruction. MATERIALS AND METHODS This prospective, IRB-approved study enrolled 50 pediatric patients (mean age = 11.8 ± 3.1 years) undergoing clinical brain MRI. In addition to standard of care (SOC) compressed SENSE (CS = 2.5), 3D T1-weighted SPGR images were obtained with higher CS acceleration factors (5 and 8) to evaluate the ability of AI reconstruction to improve image quality and reduce scan time. Images were reviewed independently on dedicated research PACS workstations by two neuroradiologists. Quantitative analysis of signal intensities to calculate apparent grey and white matter signal to noise (aSNR) and grey-white matter apparent contrast to noise ratios (aCNR) was performed. RESULTS AI improved overall image quality compared to standard CS reconstruction in 35% (35/100) of evaluations in CS = 2.5 (average scan time = 221 ± 6.9 s), 100% (46/46) of CS = 5 (average scan time = 113.3 ± 4.6 s) and 94% (47/50) of CS = 8 (average scan time = 74.1 ± 0.01 s). Quantitative analysis revealed significantly higher grey matter aSNR, white matter aSNR and grey-white matter aCNR with AI reconstruction compared to standard reconstruction for CS 5 and 8 (all p-values < 0.001), however not for CS 2.5. CONCLUSIONS AI reconstruction improved overall image quality and gray-white matter qualitative and quantitative aSNR and aCNR in highly accelerated (CS = 5 and 8) 3D T1W SPGR images in the majority of pediatric patients.
Collapse
Affiliation(s)
- Usha D Nagaraj
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA.
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Jonathan R Dillman
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jean A Tkach
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joshua S Greer
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
- Philips Healthcare, Cincinnati, OH, USA
| | - James L Leach
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
9
|
Song Z, Jiang Z, Zhang Z, Wang Y, Chen Y, Tang X, Li H. Evolving brain network dynamics in early childhood: Insights from modular graph metrics. Neuroimage 2024; 297:120740. [PMID: 39047590 DOI: 10.1016/j.neuroimage.2024.120740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
Modular dynamic graph theory metrics effectively capture the patterns of dynamic information interaction during human brain development. While existing research has employed modular algorithms to examine the overall impact of dynamic changes in community structure throughout development, there is a notable gap in understanding the cross-community dynamic changes within different functional networks during early childhood and their potential contributions to the efficiency of brain information transmission. This study seeks to address this gap by tracing the trajectories of cross-community structural changes within early childhood functional networks and modeling their contributions to information transmission efficiency. We analyzed 194 functional imaging scans from 83 children aged 2 to 8 years, who participated in passive viewing functional magnetic resonance imaging sessions. Utilizing sliding windows and modular algorithms, we evaluated three spatiotemporal metrics-temporal flexibility, spatiotemporal diversity, and within-community spatiotemporal diversity-and four centrality metrics: within-community degree centrality, eigenvector centrality, between-community degree centrality, and between-community eigenvector centrality. Mixed-effects linear models revealed significant age-related increases in the temporal flexibility of the default mode network (DMN), executive control network (ECN), and salience network (SN), indicating frequent adjustments in community structure within these networks during early childhood. Additionally, the spatiotemporal diversity of the SN also displayed significant age-related increases, highlighting its broad pattern of cross-community dynamic interactions. Conversely, within-community spatiotemporal diversity in the language network exhibited significant age-related decreases, reflecting the network's gradual functional specialization. Furthermore, our findings indicated significant age-related increases in between-community degree centrality across the DMN, ECN, SN, language network, and dorsal attention network, while between-community eigenvector centrality also increased significantly for the DMN, ECN, and SN. However, within-community eigenvector centrality remained stable across all functional networks during early childhood. These results suggest that while centrality of cross-community interactions in early childhood functional networks increases, centrality within communities remains stable. Finally, mediation analysis was conducted to explore the relationships between age, brain dynamic graph metrics, and both global and local efficiency based on community structure. The results indicated that the dynamic graph metrics of the SN primarily mediated the relationship between age and the decrease in global efficiency, while those of the DMN, language network, ECN, dorsal attention network, and SN primarily mediated the relationship between age and the increase in local efficiency. This pattern suggests a developmental trajectory in early childhood from global information integration to local information segregation, with the SN playing a pivotal role in this transformation. This study provides novel insights into the mechanisms by which early childhood brain functional development impacts information transmission efficiency through cross-community adjustments in functional networks.
Collapse
Affiliation(s)
- Zeyu Song
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zhenqi Jiang
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Zhao Zhang
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yifei Wang
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yu Chen
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Hanjun Li
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
10
|
Ran Q, Chen X, Li X, He L, Zhang K, Tang S. Application of eye and hand interventions in brain magnetic resonance imaging of young children. Heliyon 2024; 10:e35613. [PMID: 39170568 PMCID: PMC11336866 DOI: 10.1016/j.heliyon.2024.e35613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Objective To explore the feasibility of eye and hand interventions in young children during brain magnetic resonance imaging (MRI). Methods A total of 414 4- to 6-year-old children who underwent brain MRI at our hospital were randomly divided into 4 groups: the routine posture group (n = 105), eye mask group (n = 102), fixed hand apron group (n = 108), and eye mask and fixed hand apron group (n = 99). All the children underwent brain MRI when they were awake (without using sedatives). The success rate of brain MRI and the quality of brain MR images were compared among the four groups. Results The success rate of brain MRI was the highest in the eye mask and fixed hand apron group (94.9 %), followed by the eye mask group (85.3 %) (P < 0.05). The brain MR image quality was the best for children wearing eye masks and fixed hand aprons (5 points, 69 patients), followed by those wearing eye masks (5 points, 53 patients) (P < 0.05). Conclusion When children undergo brain MRI, simultaneous eye and hand interventions can greatly improve the success rate of the examination and the quality of MR images. This study protocol was registered at the Chinese clinical trial registry (ChiCTR2100050248).
Collapse
Affiliation(s)
- Qiying Ran
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Xi Chen
- Department of Equipment Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiang Li
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Ling He
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Ke Zhang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Shilong Tang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| |
Collapse
|
11
|
Corn E, Andringa-Seed R, Williams ME, Arroyave-Wessel M, Tarud R, Vezina G, Podolsky RH, Kapse K, Limperopoulos C, Berl MM, Cure C, Mulkey SB. Feasibility and success of a non-sedated brain MRI training protocol in 7-year-old children from rural and semi-rural Colombia. Pediatr Radiol 2024; 54:1513-1522. [PMID: 38970708 PMCID: PMC11482647 DOI: 10.1007/s00247-024-05964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Brain magnetic resonance imaging (MRI) is a crucial tool for clinical evaluation of the brain and neuroscience research. Obtaining successful non-sedated MRI in children who live in resource-limited settings may be an additional challenge. OBJECTIVE To present a feasibility study of a novel, low-cost MRI training protocol used in a clinical research study in a rural/semi-rural region of Colombia and to examine neurodevelopmental factors associated with successful scans. MATERIALS AND METHODS Fifty-seven typically developing Colombian children underwent a training protocol and non-sedated brain MRI at age 7. Group training utilized a customized booklet, an MRI toy set, and a simple mock scanner. Children attended MRI visits in small groups of two to three. Resting-state functional and structural images were acquired on a 1.5-Tesla scanner with a protocol duration of 30-40 minutes. MRI success was defined as the completion of all sequences and no more than mild motion artifact. Associations between the Wechsler Preschool and Primary Scale of Intelligence (WPPSI), Movement Assessment Battery for Children (MABC), Behavioral Rating Inventory of Executive Function (BRIEF), Child Behavior Checklist (CBCL), and Adaptive Behavior Assessment System (ABAS) scores and MRI success were analyzed. RESULTS Mean (SD) age at first MRI attempt was 7.2 (0.2) years (median 7.2 years, interquartile range 7.1-7.3 years). Twenty-six (45.6%) participants were male. Fifty-one (89.5%) children were successful across two attempts; 44 (77.2%) were successful on their first attempt. Six (10.5%) were unsuccessful due to refusal or excessive motion. Age, sex, and scores across all neurodevelopmental assessments (MABC, TVIP, ABAS, BRIEF, CBCL, NIH Toolbox Flanker, NIH Toolbox Pattern Comparison, WPPSI) were not associated with likelihood of MRI success (P=0.18, 0.19, 0.38, 0.92, 0.84, 0.80, 1.00, 0.16, 0.75, 0.86, respectively). CONCLUSION This cohort of children from a rural/semi-rural region of Colombia demonstrated comparable MRI success rates to other published cohorts after completing a low-cost MRI familiarization training protocol suitable for low-resource settings. Achieving non-sedated MRI success in children in low-resource and international settings is important for the continuing diversification of pediatric research studies.
Collapse
Affiliation(s)
- Elizabeth Corn
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington DC, USA
| | - Regan Andringa-Seed
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington DC, USA
| | - Meagan E Williams
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington DC, USA
| | | | - Raul Tarud
- Sabbag Radiólogos, Barranquilla, Colombia
| | - Gilbert Vezina
- Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington DC, USA
| | - Robert H Podolsky
- Division of Biostatistics and Study Methodology, Children's National Hospital, Washington DC, USA
| | - Kushal Kapse
- Developing Brain Institute, Children's National Hospital, Washington DC, USA
| | - Catherine Limperopoulos
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington DC, USA
- Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington DC, USA
- Developing Brain Institute, Children's National Hospital, Washington DC, USA
- Department of Radiology, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Madison M Berl
- Division of Pediatric Neuropsychology, Children's National Hospital, Washington DC, USA
- Department of Psychiatry and Behavioral Sciences, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | | | - Sarah B Mulkey
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington DC, USA.
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington DC, USA.
- Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington DC, USA.
| |
Collapse
|
12
|
Rodriguez KA, Mattox N, Desme C, Hall LV, Wu Y, Pruden SM. Harnessing technology to measure individual differences in spatial thinking in early childhood from a relational developmental systems perspective. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2024; 67:236-272. [PMID: 39260905 DOI: 10.1016/bs.acdb.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
According to the Relational Developmental Systems perspective, the development of individual differences in spatial thinking (e.g., mental rotation, spatial reorientation, and spatial language) are attributed to various psychological (e.g., children's cognitive strategies), biological (e.g., structure and function of hippocampus), and cultural systems (e.g., caregiver spatial language input). Yet, measuring the development of individual differences in spatial thinking in young children, as well as the psychological, biological, and cultural systems that influence the development of these abilities, presents unique challenges. The current paper outlines ways to harness available technology including eye-tracking, eye-blink conditioning, MRI, Zoom, and LENA technology, to study the development of individual differences in young children's spatial thinking. The technologies discussed offer ways to examine children's spatial thinking development from different levels of analyses (i.e., psychological, biological, cultural), thereby allowing us to advance the study of developmental theory. We conclude with a discussion of the use of artificial intelligence.
Collapse
Affiliation(s)
- Karinna A Rodriguez
- Florida International University, Department of Psychology, Miami, FL, United States.
| | - Nick Mattox
- Florida International University, Department of Psychology, Miami, FL, United States
| | - Carlos Desme
- Florida International University, Department of Psychology, Miami, FL, United States
| | - LaTreese V Hall
- Florida International University, Department of Psychology, Miami, FL, United States
| | - Yinbo Wu
- Florida International University, Department of Psychology, Miami, FL, United States
| | - Shannon M Pruden
- Florida International University, Department of Psychology, Miami, FL, United States
| |
Collapse
|
13
|
Shoop-Worrall SJW, Macintyre VG, Ciurtin C, Cleary G, McErlane F, Wedderburn LR, Hyrich KL. Overlap of International League of Associations for Rheumatology and Preliminary Pediatric Rheumatology International Trials Organization Classification Criteria for Nonsystemic Juvenile Idiopathic Arthritis in an Established UK Multicentre Inception Cohort. Arthritis Care Res (Hoboken) 2024; 76:831-840. [PMID: 38212149 DOI: 10.1002/acr.25296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
OBJECTIVE The goal was to assess the degree of overlap between existing International League of Associations for Rheumatology (ILAR) and preliminary Paediatric Rheumatology International Trials Organisation (PRINTO) classification criteria for juvenile idiopathic arthritis (JIA). METHODS Participants from the Childhood Arthritis Prospective Study, a multicenter UK JIA inception cohort, were classified using the PRINTO and ILAR classification criteria into distinct categories. Systemic JIA was excluded because several classification items were not collected in this cohort. Adaptations to PRINTO criteria were required to apply to a UK health care setting, including limiting the number of blood biomarker tests required. The overlap between categories under the two systems was determined, and any differences in characteristics between groups were described. RESULTS A total of 1,223 children and young people with a physician's diagnosis of JIA were included. Using PRINTO criteria, the majority of the patients had "other JIA" (69.5%). There was a high degree of overlap (91%) between the PRINTO enthesitis/spondylitis- and ILAR enthesitis-related JIA categories. The PRINTO rheumatoid factor (RF)-positive category was composed of 48% ILAR RF-positive polyarthritis and 52% undifferentiated JIA. The early-onset antinuclear antibodies-positive PRINTO category was largely composed of ILAR oligoarthritis (50%), RF-negative polyarthritis (24%), and undifferentiated JIA (23%). A few patients were unclassified under PRINTO (n = 3) and would previously have been classified as enthesitis-related JIA (n = 1) and undifferentiated JIA (n = 2) under ILAR. CONCLUSION Under the preliminary PRINTO classification criteria for childhood arthritis, most children are not yet classified into a named category. These data can help support further delineation of the PRINTO criteria to ensure homogenous groups of children can be identified.
Collapse
Affiliation(s)
| | | | - Coziana Ciurtin
- University College London, University College London Hospital, and Great Ormond Street Hospital, London, UK
| | | | - Flora McErlane
- Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Lucy R Wedderburn
- University College London, University College London Hospital, Great Ormond Street Hospital, and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Kimme L Hyrich
- The University of Manchester and Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| |
Collapse
|
14
|
Long M, Kar P, Forkert ND, Landman BA, Gibbard WB, Tortorelli C, McMorris CA, Huo Y, Lebel CA. Sex and age effects on gray matter volume trajectories in young children with prenatal alcohol exposure. Front Hum Neurosci 2024; 18:1379959. [PMID: 38660010 PMCID: PMC11039858 DOI: 10.3389/fnhum.2024.1379959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Prenatal alcohol exposure (PAE) occurs in ~11% of North American pregnancies and is the most common known cause of neurodevelopmental disabilities such as fetal alcohol spectrum disorder (FASD; ~2-5% prevalence). PAE has been consistently associated with smaller gray matter volumes in children, adolescents, and adults. A small number of longitudinal studies show altered gray matter development trajectories in late childhood/early adolescence, but patterns in early childhood and potential sex differences have not been characterized in young children. Using longitudinal T1-weighted MRI, the present study characterized gray matter volume development in young children with PAE (N = 42, 84 scans, ages 3-8 years) compared to unexposed children (N = 127, 450 scans, ages 2-8.5 years). Overall, we observed altered global and regional gray matter development trajectories in the PAE group, wherein they had attenuated age-related increases and more volume decreases relative to unexposed children. Moreover, we found more pronounced sex differences in children with PAE; females with PAE having the smallest gray matter volumes and the least age-related changes of all groups. This pattern of altered development may indicate reduced brain plasticity and/or accelerated maturation and may underlie the cognitive/behavioral difficulties often experienced by children with PAE. In conjunction with previous research on older children, adolescents, and adults with PAE, our results suggest that gray matter volume differences associated with PAE vary by age and may become more apparent in older children.
Collapse
Affiliation(s)
- Madison Long
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Preeti Kar
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Nils D. Forkert
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Bennett A. Landman
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Computer Science, Vanderbilt University, Nashville, TN, United States
| | - W. Ben Gibbard
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Paediatrics, University of Calgary, Calgary, AB, Canada
| | - Christina Tortorelli
- Department of Child Studies and Social Work, Mount Royal University, Calgary, AB, Canada
| | - Carly A. McMorris
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Paediatrics, University of Calgary, Calgary, AB, Canada
- Werklund School of Education, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Yuankai Huo
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Catherine A. Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Greer MLC, Gee MS, Pace E, Sotardi S, Morin CE, Chavhan GB, Jaimes C. A survey of non-sedate practices when acquiring pediatric magnetic resonance imaging examinations. Pediatr Radiol 2024; 54:239-249. [PMID: 38112762 DOI: 10.1007/s00247-023-05828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Improving access to magnetic resonance imaging (MRI) in childhood can be facilitated by making it faster and cheaper and reducing need for sedation or general anesthesia (GA) to mitigate motion. Some children achieve diagnostic quality MRI without GA through the use of non- practices fostering their cooperation and/or alleviating anxiety. Employed before and during MRI, these variably educate, distract, and/or desensitize patients to this environment. OBJECTIVE To assess current utilization of non-sedate practices in pediatric MRI, including variations in practice and outcomes. MATERIALS AND METHODS A survey-based study was conducted with 1372 surveys emailed to the Society for Pediatric Radiology members in February 2021, inviting one response per institution. RESULTS Responses from 50 unique institutions in nine countries revealed 49/50 (98%) sites used ≥ 1 non-sedate practice, 48/50 (96%) sites in infants < 6 months, and 11/50 (22%) for children aged 6 months to 3 years. Non-sedate practices per site averaged 4.5 (range 0-10), feed and swaddle used at 47/49 (96%) sites, and child life specialists at 35/49 (71%). Average success rates were moderate (> 50-75%) across all sites and high (> 75-100%) for 20% of sites, varying with specific techniques. Commonest barriers to use were scheduling conflicts and limited knowledge. CONCLUSION Non-sedate practice utilization in pediatric MRI was near-universal but widely variable across sites, ages, and locales, with room for broader adoption. Although on average non-sedate practice success rates were similar, the range in use and outcomes suggest a need for standardized implementation guidelines, including patient selection and outcome metrics, to optimize utilization and inform educational initiatives.
Collapse
Affiliation(s)
- Mary-Louise C Greer
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Department of Medical Imaging, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| | - Michael S Gee
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Erika Pace
- Department of Radiology, Royal Marsden NHS Foundation Trust, London, England, UK
| | - Susan Sotardi
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cara E Morin
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Govind B Chavhan
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Department of Medical Imaging, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Camilo Jaimes
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Thestrup J, Hybschmann J, Madsen TW, Bork NE, Sørensen JL, Afshari A, Borgwardt L, Berntsen M, Born AP, Aunsholt L, Larsen VA, Gjærde LK. Nonpharmacological Interventions to Reduce Sedation and General Anesthesia in Pediatric MRI: A Meta-analysis. Hosp Pediatr 2023; 13:e301-e313. [PMID: 37727937 DOI: 10.1542/hpeds.2023-007289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
CONTEXT Nonpharmacological strategies are increasingly used in pediatric procedures, but in pediatric MRI, sedation and general anesthesia are still commonly required. OBJECTIVES To evaluate the effectiveness of nonpharmacological interventions in reducing use of sedation and general anesthesia in pediatric patients undergoing MRI, and to investigate effects on scan time, image quality, and anxiety. DATA SOURCES We searched Ovid Medline, CINAHL, Embase, and CENTRAL from inception through October 10, 2022. STUDY SELECTION We included randomized controlled trials and quasi-experimental designs comparing the effect of a nonpharmacological intervention with standard care on use of sedation or general anesthesia, scan time, image quality, or child and parental anxiety among infants (<2 years), children, and adolescents (2-18 years) undergoing MRI. DATA EXTRACTION Standardized instruments were used to extract data and assess study quality. RESULTS Forty-six studies were eligible for the systematic review. Limited to studies on children and adolescents, the meta-analysis included 20 studies with 33 873 patients. Intervention versus comparator analysis showed that nonpharmacological interventions were associated with reduced need for sedation and general anesthesia in the randomized control trials (risk ratio, 0.68; 95% confidence interval, 0.48-0.95; l2 = 35%) and nonrandomized studies (risk ratio, 0.58; 95% confidence interval, 0.51-0.66; l2 = 91%). The effect was largest among children aged 3 to 10 years when compared with older children and adolescents aged 11 to 18 years. LIMITATIONS There was substantial heterogeneity among nonrandomized studies. CONCLUSIONS Nonpharmacological interventions must be considered as standard procedure in infants, children, and adolescents undergoing MRI.
Collapse
Affiliation(s)
| | | | | | | | - Jette L Sørensen
- Juliane Marie Centre and Mary Elizabeth's Hospital
- Department of Clinical Medicine, Faculty of Health and Medicine Sciences
| | | | | | | | | | - Lise Aunsholt
- Neonatology
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vibeke A Larsen
- Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Line K Gjærde
- Juliane Marie Centre and Mary Elizabeth's Hospital
- Pediatrics and Adolescent Medicine, Neuropaediatric Unit
| |
Collapse
|
17
|
Retrouvey M. To Sedate or Not to Sedate: The Future of Pediatric Imaging. Acad Radiol 2023; 30:1989-1990. [PMID: 37474349 DOI: 10.1016/j.acra.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Affiliation(s)
- Michele Retrouvey
- Florida Atlantic University Charles E Schmidt College of Medicine, Boca Raton, Florida.
| |
Collapse
|
18
|
Chen JV, Zapala MA, Zhou A, Vu N, Meyer L, Smith MD, Kelleher C, Glenn OA, Courtier J, Li Y. Factors and Labor Cost Savings Associated with Successful Pediatric Imaging without Anesthesia: a Single-Institution Study. Acad Radiol 2023; 30:1979-1988. [PMID: 36641347 DOI: 10.1016/j.acra.2022.12.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/13/2022] [Accepted: 12/25/2022] [Indexed: 01/15/2023]
Abstract
RATIONALE AND OBJECTIVES In pediatric imaging, sedation is often necessary to obtain diagnostic quality imaging. We aim to quantify patient and imaging-specific factors associated with successful pediatric scans without anesthesia and to evaluate labor cost savings associated with our institutional Scan Without Anesthesia Program (SWAP). MATERIALS AND METHODS Patients who participated in SWAP between 2019-2022 were identified. Chart review was conducted to obtain sociodemographic and clinical information. Radiology database was used to obtain scan duration, modality/body part of examination, and administration of contrast. Mann-Whitney U and Chi-Square tests were used for univariate analysis of factors associated with success. Multivariate logistic regression was used to evaluate independent contributions to success. Associated hospital labor cost savings were estimated using salary information obtained through publicly available resources. RESULTS Of 731 patients, 698 had successful and 33 had unsuccessful scans (95% success rate). In univariate analysis, older age, female sex, absence of developmental delay, and administration of contrast were significantly associated with successful scans. Multivariate analyses revealed that older age, female sex, and absence of developmental delay were significant independent factors lending toward success. Imaging-related factors were not associated with outcome in multivariate analysis. Estimated labor cost savings were $139,367.80 per year for the medical center. CONCLUSION SWAP had an overall success rate of 95%. Older age, absence of developmental delay, and female sex were independently significantly associated with successful outcome. Cost analysis reveals substantial labor cost savings to the institution compared with imaging under anesthesia.
Collapse
Affiliation(s)
- Joshua Vic Chen
- School of Medicine, University of California, San Francisco, CA
| | - Matthew A Zapala
- Department of Radiology and Biomedical Imaging, University of California, Neuroradiology Section, 505 Parnassus Avenue, M-391, San Francisco, California, 94143-0628
| | - Alice Zhou
- Department of Radiology and Biomedical Imaging, University of California, Neuroradiology Section, 505 Parnassus Avenue, M-391, San Francisco, California, 94143-0628
| | - Nola Vu
- School of Public Health, University of California, Berkeley, CA
| | - Lauren Meyer
- Department of Radiology and Biomedical Imaging, University of California, Neuroradiology Section, 505 Parnassus Avenue, M-391, San Francisco, California, 94143-0628
| | - Mikaela Demartini Smith
- Department of Radiology and Biomedical Imaging, University of California, Neuroradiology Section, 505 Parnassus Avenue, M-391, San Francisco, California, 94143-0628
| | - Chloe Kelleher
- Department of Radiology and Biomedical Imaging, University of California, Neuroradiology Section, 505 Parnassus Avenue, M-391, San Francisco, California, 94143-0628
| | - Orit A Glenn
- Department of Radiology and Biomedical Imaging, University of California, Neuroradiology Section, 505 Parnassus Avenue, M-391, San Francisco, California, 94143-0628
| | - Jesse Courtier
- Department of Radiology and Biomedical Imaging, University of California, Neuroradiology Section, 505 Parnassus Avenue, M-391, San Francisco, California, 94143-0628
| | - Yi Li
- Department of Radiology and Biomedical Imaging, University of California, Neuroradiology Section, 505 Parnassus Avenue, M-391, San Francisco, California, 94143-0628.
| |
Collapse
|
19
|
Ostertag C, Reynolds JE, Kar P, Dewey D, Gibbard WB, Tortorelli C, Lebel C. Arcuate fasciculus and pre-reading language development in children with prenatal alcohol exposure. Front Neurosci 2023; 17:1174165. [PMID: 37332878 PMCID: PMC10272404 DOI: 10.3389/fnins.2023.1174165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Prenatal alcohol exposure (PAE) contributes to widespread neurodevelopmental challenges, including reading, and has been associated with altered white matter. Here, we aimed to investigate whether arcuate fasciculus (AF) development is associated with pre-reading language skills in young children with PAE. Methods A total of 51 children with confirmed PAE (25 males; 5.6 ± 1.1 years) and 116 unexposed controls (57 males; 4.6 ± 1.2 years) underwent longitudinal diffusion tensor imaging (DTI), for a total of 111 scans from participants with PAE and 381 scans in the unexposed control group. We delineated the left and right AF and extracted mean fractional anisotropy (FA) and mean diffusivity (MD). Pre-reading language ability was assessed using age-standardized phonological processing (PP) and speeded naming (SN) scores of the NEPSY-II. Linear mixed effects models were run to determine the relationship between diffusion metrics and age, group, sex, and age-by-group interactions, with subject modeled as a random factor. A secondary mixed effect model analysis assessed the influence of white matter microstructure and PAE on pre-reading language ability using diffusion metric-by-age-by-group interactions, with 51 age- and sex-matched unexposed controls. Results Phonological processing (PP) and SN scores were significantly lower in the PAE group (p < 0.001). In the right AF, there were significant age-by-group interactions for FA (p < 0.001) and MD (p = 0.0173). In the left AF, there was a nominally significant age-by-group interaction for MD that failed to survive correction (p = 0.0418). For the pre-reading analysis, a significant diffusion-by-age-by-group interaction was found for left FA (p = 0.0029) in predicting SN scores, and for the right FA (p = 0.00691) in predicting PP scores. Discussion Children with PAE showed altered developmental trajectories for the AF, compared with unexposed controls. Children with PAE, regardless of age, showed altered brain-language relationships that resembled those seen in younger typically developing children. Our findings support the contention that altered developmental trajectories in the AF may be associated with functional outcomes in young children with PAE.
Collapse
Affiliation(s)
- Curtis Ostertag
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Jess E. Reynolds
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Preeti Kar
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah Dewey
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - W. Ben Gibbard
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | | | - Catherine Lebel
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Fletcher S, Lardner D, Bagshawe M, Carsolio L, Sherriff M, Smith C, Lebel C. Effectiveness of training before unsedated MRI scans in young children: a randomized control trial. Pediatr Radiol 2023; 53:1476-1484. [PMID: 37010547 DOI: 10.1007/s00247-023-05647-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/17/2023] [Accepted: 03/10/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Young children requiring clinical magnetic resonance imaging (MRI) may be given general anesthesia. General anesthesia has potential side effects, is costly, and introduces logistical challenges. Thus, methods that allow children to undergo awake MRI scans are desirable. OBJECTIVES To compare the effectiveness of mock scanner training with a child life specialist, play-based training with a child life specialist, and home book and video preparation by parents to allow non-sedated clinical MRI scanning in children aged 3-7 years. MATERIALS AND METHODS Children (3-7 years, n=122) undergoing clinical MRI scans at the Alberta Children's Hospital were invited to participate and randomized to one of three groups: home-based preparation materials, training with a child life specialist (no mock MRI), or training in a mock MRI with a child life specialist. Training occurred a few days prior to their MRI. Self- and parent-reported functioning (PedsQL VAS) were assessed pre/post-training (for the two training groups) and pre/post-MRI. Scan success was determined by a pediatric radiologist. RESULTS Overall, 91% (111/122) of children successfully completed an awake MRI. There were no significant differences between the mock scanner (89%, 32/36), child life (88%, 34/39), and at-home (96%, 45/47) groups (P=0.34). Total functioning scores were similar across groups; however, the mock scanner group had significantly lower self-reported fear (F=3.2, P=0.04), parent-reported sadness (F=3.3, P=0.04), and worry (F=3.5, P=0.03) prior to MRI. Children with unsuccessful scans were younger (4.5 vs. 5.7 years, P<0.001). CONCLUSIONS Most young children can tolerate awake MRI scans and do not need to be routinely anesthetized. All preparation methods tested, including at-home materials, were effective.
Collapse
Affiliation(s)
- Sarah Fletcher
- Faculty of Medicine, University of British Columbia, T3B6A8, Vancouver, Canada
| | - David Lardner
- Alberta Children's Hospital, T3B6A8, Calgary, Canada
| | | | - Lisa Carsolio
- Alberta Children's Hospital, T3B6A8, Calgary, Canada
| | | | - Cathy Smith
- Alberta Children's Hospital, T3B6A8, Calgary, Canada
| | | |
Collapse
|
21
|
Abramson ZR, Nagaraj UD, Lai LM, Liu CCY, Schroeder JW, Khanna PC, Chuang NA, Strauss S, Gomez G, Clarke R, Singh S, Choudhri AF, Whitehead MT. Imaging of pediatric head and neck tumors: A COG Diagnostic Imaging Committee/SPR Oncology Committee/ASPNR White Paper. Pediatr Blood Cancer 2023; 70 Suppl 4:e30151. [PMID: 36546312 PMCID: PMC10644272 DOI: 10.1002/pbc.30151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Zachary R Abramson
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Usha D Nagaraj
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lillian M Lai
- Department of Radiology, University of Iowa Hospitals and Clinics and Stead Family Children's Hospital, Iowa City, Iowa, USA
| | - Christopher Cheng-Yu Liu
- Department of Otolaryngology, Pediatric Otolaryngology Division, UT Southwestern Medical Center and Children's Health Dallas, Dallas, Texas, USA
| | - Jason W Schroeder
- Department of Radiology, Children's National Hospital, Washington, District of Columbia, USA
| | - Paritosh C Khanna
- Department of Radiology, Rady Children's Hospital, University of California, San Diego, California, USA
| | - Nathaniel A Chuang
- Department of Radiology, Rady Children's Hospital, University of California, San Diego, California, USA
| | - Sara Strauss
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Gabriel Gomez
- University of Southern California, Keck School of Medicine, Department of Otolaryngology-Head and Neck Surgery, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Rebekah Clarke
- Department of Radiology, University of Texas Southwestern Medical Center and Children's Health Dallas, Dallas, Texas, USA
| | - Sumit Singh
- Department of Radiology, University of Texas Southwestern Medical Center and Children's Health Dallas, Dallas, Texas, USA
| | - Asim F Choudhri
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Departments of Radiology, Ophthalmology, and Neurosurgery, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Matthew T Whitehead
- Department of Radiology, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
22
|
Perdue MV, DeMayo MM, Bell TK, Boudes E, Bagshawe M, Harris AD, Lebel C. Changes in brain metabolite levels across childhood. Neuroimage 2023; 274:120087. [PMID: 37080345 DOI: 10.1016/j.neuroimage.2023.120087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
Metabolites play important roles in brain development and their levels change rapidly in the prenatal period and during infancy. Metabolite levels are thought to stabilize during childhood, but the development of neurochemistry across early-middle childhood remains understudied. We examined the developmental changes of key metabolites (total N-acetylaspartate, tNAA; total choline, tCho; total creatine, tCr; glutamate+glutamine, Glx; and myo-inositol, mI) using short echo-time magnetic resonance spectroscopy (MRS) in the anterior cingulate cortex (ACC) and the left temporo-parietal cortex (LTP) using a mixed cross-sectional/longitudinal design in children aged 2-11 years (ACC: N=101 children, 112 observations; LTP: N=95 children, 318 observations). We found age-related effects for all metabolites. tNAA increased with age in both regions, while tCho decreased with age in both regions. tCr increased with age in the LTP only, and mI decreased with age in the ACC only. Glx did not show linear age effects in either region, but a follow-up analysis in only participants with ≥3 datapoints in the LTP revealed a quadratic effect of age following an inverted U-shape. These substantial changes in neurochemistry throughout childhood likely underlie various processes of structural and functional brain development.
Collapse
Affiliation(s)
- Meaghan V Perdue
- Department of Radiology, University of Calgary; Alberta Children's Hospital Research Institute; Hotchkiss Brain Institute, University of Calgary
| | - Marilena M DeMayo
- Department of Radiology, University of Calgary; Alberta Children's Hospital Research Institute; Hotchkiss Brain Institute, University of Calgary; Mathison Centre for Mental Health Research and Education; Department of Psychiatry, University of Calgary
| | - Tiffany K Bell
- Department of Radiology, University of Calgary; Alberta Children's Hospital Research Institute; Hotchkiss Brain Institute, University of Calgary
| | | | - Mercedes Bagshawe
- Alberta Children's Hospital Research Institute; Werklund School of Education, University of Calgary
| | - Ashley D Harris
- Department of Radiology, University of Calgary; Alberta Children's Hospital Research Institute; Hotchkiss Brain Institute, University of Calgary
| | - Catherine Lebel
- Department of Radiology, University of Calgary; Alberta Children's Hospital Research Institute; Hotchkiss Brain Institute, University of Calgary.
| |
Collapse
|
23
|
Woodward K, Spencer APC, Jary S, Chakkarapani E. Factors associated with MRI success in children cooled for neonatal encephalopathy and controls. Pediatr Res 2023; 93:1017-1023. [PMID: 35906304 PMCID: PMC10033414 DOI: 10.1038/s41390-022-02180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To investigate if an association exists between motion artefacts on brain MRI and comprehension, co-ordination, or hyperactivity scores in children aged 6-8 years, cooled for neonatal encephalopathy (cases) and controls. METHODS Case children (n = 50) without cerebral palsy were matched with 43 controls for age, sex, and socioeconomic status. Children underwent T1-weighted (T1w), diffusion-weighted image (DWI) brain MRI and cognitive, behavioural, and motor skills assessment. Stepwise multivariable logistic regression assessed associations between unsuccessful MRI and comprehension (including Weschler Intelligence Scale for Children (WISC-IV) verbal comprehension, working memory, processing speed and full-scale IQ), co-ordination (including Movement Assessment Battery for Children (MABC-2) balance, manual dexterity, aiming and catching, and total scores) and hyperactivity (including Strengths and Difficulties Questionnaire (SDQ) hyperactivity and total difficulties scores). RESULTS Cases had lower odds of completing both T1w and DWIs (OR: 0.31, 95% CI 0.11-0.89). After adjusting for case-status and sex, lower MABC-2 balance score predicted unsuccessful T1w MRI (OR: 0.81, 95% CI 0.67-0.97, p = 0.022). Processing speed was negatively correlated with relative motion on DWI (r = -0.25, p = 0.026) and SDQ total difficulties score was lower for children with successful MRIs (p = 0.049). CONCLUSIONS Motion artefacts on brain MRI in early school-age children are related to the developmental profile. IMPACT Children who had moderate/severe neonatal encephalopathy are less likely to have successful MRI scans than matched controls. Motion artefact on MRI is associated with lower MABC-2 balance scores in both children who received therapeutic hypothermia for neonatal encephalopathy and matched controls, after controlling for case-status and sex. Exclusion of children with motion artefacts on brain MRI can introduce sampling bias, which impacts the utility of neuroimaging to understand the brain-behaviour relationship in children with functional impairments.
Collapse
Affiliation(s)
- Kathryn Woodward
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Arthur P C Spencer
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Clinical Research and Imaging Centre, University of Bristol, Bristol, UK
| | - Sally Jary
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ela Chakkarapani
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
24
|
Weiler-Wichtl LJ, Fries J, Fohn-Erhold V, Schwarzinger A, Holzer AE, Pletschko T, Furtner-Srajer J, Prayer D, Bär P, Slavc I, Peyrl A, Azizi A, Hansl R, Leiss U. Initial Evidence for Positive Effects of a Psychological Preparation Program for MRI "iMReady" in Children with Neurofibromatosis Type I and Brain Tumors-How to Meet the Patients' Needs Best. J Clin Med 2023; 12:jcm12051902. [PMID: 36902689 PMCID: PMC10003409 DOI: 10.3390/jcm12051902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
To provide an effective alternative to sedation during MRI examinations in pediatric cancer and NF1 patients, the aims of the present study were to (1) exploratively evaluate a behavioral MRI training program, to (2) investigate potential moderators, as well as to (3) assess the patients' well-being over the course of the intervention. A total of n = 87 patients of the neuro-oncology unit (mean age: 6.83 years) underwent a two-step MRI preparation program, including training inside the scanner, and were recorded using a process-oriented screening. In addition to the retrospective analysis of all data, a subset of 17 patients were also analyzed prospectively. Overall, 80% of the children receiving MRI preparation underwent the MRI scan without sedation, making the success rate almost five times higher than that of a group of 18 children that opted out of the training program. Memory, attentional difficulties, and hyperactivity were significant neuropsychological moderators for successful scanning. The training was associated with favorable psychological well-being. These findings suggest that our MRI preparation could present an alternative to sedation of young patients undergoing MRI examinations as well as a promising tool for improving patients' treatment-related well-being.
Collapse
Affiliation(s)
- Liesa Josephine Weiler-Wichtl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40400-34262
| | - Jonathan Fries
- Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - Verena Fohn-Erhold
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Agathe Schwarzinger
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Angelika Elisabeth Holzer
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Interdisciplinary Follow-Up Clinic for Childhood Cancer Survivors (IONA), Österreichische Gesundheitskasse (ÖGK), 1060 Vienna, Austria
| | - Thomas Pletschko
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Furtner-Srajer
- Department of Radiology and Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Prayer
- Department of Radiology and Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Paul Bär
- Department of Radiology and Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Amedeo Azizi
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Rita Hansl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Ulrike Leiss
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
25
|
Behavioral-play familiarization for non-sedated magnetic resonance imaging in young children with mild traumatic brain injury. Pediatr Radiol 2023; 53:1153-1162. [PMID: 36823374 DOI: 10.1007/s00247-023-05592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 01/10/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Mild traumatic brain injury (mTBI) sustained in early childhood affects the brain at a peak developmental period and may disrupt sensitive stages of skill acquisition, thereby compromising child functioning. However, due to the challenges of collecting non-sedated neuroimaging data in young children, the consequences of mTBI on young children's brains have not been systematically studied. In typically developing preschool children (of age 3-5years), a brief behavioral-play familiarization provides an effective alternative to sedation for acquiring awake magnetic resonance imaging (MRI) in a time- and resource-efficient manner. To date, no study has applied such an approach for acquiring non-sedated MRI in preschool children with mTBI who may present with additional MRI acquisition challenges such as agitation or anxiety. OBJECTIVE The present study aimed to compare the effectiveness of a brief behavioral-play familiarization for acquiring non-sedated MRI for research purposes between young children with and without mTBI, and to identify factors associated with successful MRI acquisition. MATERIALS AND METHODS Preschool children with mTBI (n=13) and typically developing children (n=24) underwent a 15-minutes behavioral-play MRI familiarization followed by a 35-minutes non-sedated MRI protocol. Success rate was compared between groups, MRI quality was assessed quantitatively, and factors predicting success were documented. RESULTS Among the 37 participants, 15 typically developing children (63%) and 10 mTBI (77%) reached the MRI acquisition success criteria (i.e., completing the two first sequences). The success rate was not significantly different between groups (p=.48; 95% CI [-0.36 14.08]; Cramer's V=.15). The images acquired were of high-quality in 100% (for both groups) of the structural images, and 60% (for both groups) of the diffusion images. Factors associated with success included older child age (Β=0.73, p=.007, exp(B)=3.11, 95% CI [1.36 7.08]) and fewer parental concerns (Β=-1.56, p=.02, exp(Β)=0.21, 95% CI [0.05 0.82]) about the MRI procedure. CONCLUSION Using brief behavioral-play familiarization allows acquisition of high-quality non-sedated MRI in young children with mTBI with success rates comparable to those of non-injured peers.
Collapse
|
26
|
Hilliard F, Goldstein E, Nervik K, Croes K, Ossorio PN, Zgierska AE. Voices of Women With Lived Experience of Substance Use During Pregnancy: A Qualitative Study of Motivators and Barriers to Recruitment and Retention in Research. FAMILY & COMMUNITY HEALTH 2023; 46:1-12. [PMID: 36383229 PMCID: PMC10321245 DOI: 10.1097/fch.0000000000000349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Despite concerns about negative neurocognitive effects of in utero substance exposure on child and brain development, research in this area is limited. This study gathered perspectives of persons with lived experience of substance use (eg, alcohol, prescription and illicit opioids, and other illicit substances) during a previous pregnancy to determine facilitators and barriers to research engagement in this vulnerable population. We conducted structured, in-depth, individual interviews and 2 focus groups of adult persons with lived experience of substance use during a previous pregnancy. Questions were developed by clinical, research, bioethics, and legal experts, with input from diverse stakeholders. They inquired about facilitators and barriers to research recruitment and retention, especially in long-term studies, with attention to bio-sample and neuroimaging data collection and legal issues. Interviews and focus groups were audio-recorded, transcribed, and analyzed using inductive coding qualitative analysis methods. Ten participants completed in-depth interviews and 7 participated in focus groups. Three main themes emerged as potential barriers to research engagement: shame of using drugs while pregnant, fear of punitive action, and mistrust of health care and research professionals. Facilitative factors included trustworthiness, compassion, and a nonjudgmental attitude among research personnel. Inclusion of gender-concordant recovery peer support specialists as research team members was the most frequently identified facilitator important for helping participants reduce fears and bolster trust in research personnel. In this qualitative study, persons with lived experience of substance use during a previous pregnancy identified factors critical for engaging this population in research, emphasizing the involvement of peer support specialists as research team members.
Collapse
Affiliation(s)
- Florence Hilliard
- University of Wisconsin, School of Medicine and Public Health, Department of Family Medicine and Community Health, 1100 Delaplaine Ct, Madison, WI 53715
| | - Ellen Goldstein
- University of Wisconsin, School of Medicine and Public Health, Department of Family Medicine and Community Health, 1100 Delaplaine Ct, Madison, WI 53715
| | - Kendra Nervik
- University of Wisconsin, Department of Sociology, 8128 William H. Sewell Social Sciences Building, 1180 Observatory Drive, Madison, WI, 53706-1393
| | - Kenneth Croes
- University of Wisconsin Survey Center, Sterling Hall, 475 N. Charter Street, Madison, WI 53706
| | - Pilar N. Ossorio
- University of Wisconsin Law School, 975 Bascom Mall, Rm. 9103, Madison, WI 53706-1399
- Morgridge Institute for Research, 330 N. Orchard St, Madison, WI 53715
| | - Aleksandra E. Zgierska
- Pennsylvania State University, College of Medicine, Departments of Family and Community Medicine, Anesthesiology and Perioperative Medicine, and Public Health Sciences, 700 HMC Crescent Road, Hershey, PA 17033
| |
Collapse
|
27
|
Suzuki A, Yamaguchi R, Kim L, Kawahara T, Ishii-Takahashi A. Effectiveness of mock scanners and preparation programs for successful magnetic resonance imaging: a systematic review and meta-analysis. Pediatr Radiol 2023; 53:142-158. [PMID: 35699762 DOI: 10.1007/s00247-022-05394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/31/2022] [Accepted: 05/03/2022] [Indexed: 01/24/2023]
Abstract
This review aimed to summarise the effectiveness of preparation programs for magnetic resonance imaging (MRI) in children using mock scanners and the success rates by systematically reviewing the current literature. We initially identified 67 articles using the search terms "MRI," "mock" and "child" on online databases. All studies involving a preparation programme for MRI on children ages 18 years or younger, healthy children and those with medical diagnoses were included. The authors extracted data on study design, participant data, details of the MRI protocol and the total numbers of patients who underwent preparation programs and were scanned while awake, without sedation or general anesthesia. Twenty-three studies were included in this review. Preparation programs included in-home and hospital/research facility components; these consisted of a mock scanner, explanatory booklets, recorded MRI scan sounds and other educational materials. The success rate of MRI after the preparation programme reported in each study ranged from 40% to 100%. When all participants from studies that specifically assessed the efficacy of preparation programs were combined, participants who underwent a preparation programme (n = 196) were more likely to complete a successful MRI than those who did not undergo a preparation programme (n = 263) (odds ratio [OR] = 1.98). Our results suggest that preparation programs may help reduce the risk of children failing MRI scans.
Collapse
Affiliation(s)
- Akane Suzuki
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Child Psychiatry, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Rio Yamaguchi
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Leesa Kim
- Department of Child Psychiatry, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan.,Division of Clinical Psychology, Graduate School of Education, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takuya Kawahara
- Clinical Research Promotion Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ayaka Ishii-Takahashi
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Department of Child Psychiatry, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan. .,Department of Developmental Disorders, National Center of Neurology and Psychiatry, National Institute of Mental Health, Kodaira, Tokyo, Japan.
| |
Collapse
|
28
|
Zheng J, Reynolds JE, Long M, Ostertag C, Pollock T, Hamilton M, Dunn JF, Liu J, Martin J, Grohs M, Landman B, Huo Y, Dewey D, Kurrasch D, Lebel C. The effects of prenatal bisphenol A exposure on brain volume of children and young mice. ENVIRONMENTAL RESEARCH 2022; 214:114040. [PMID: 35952745 PMCID: PMC11959573 DOI: 10.1016/j.envres.2022.114040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is a synthetic chemical used for the manufacturing of plastics, epoxy resin, and many personal care products. This ubiquitous endocrine disruptor is detectable in the urine of over 80% of North Americans. Although adverse neurodevelopmental outcomes have been observed in children with high gestational exposure to BPA, the effects of prenatal BPA on brain structure remain unclear. Here, using magnetic resonance imaging (MRI), we studied the associations of maternal BPA exposure with children's brain structure, as well as the impact of comparable BPA levels in a mouse model. Our human data showed that most maternal BPA exposure effects on brain volumes were small, with the largest effects observed in the opercular region of the inferior frontal gyrus (ρ = -0.2754), superior occipital gyrus (ρ = -0.2556), and postcentral gyrus (ρ = 0.2384). In mice, gestational exposure to an equivalent level of BPA (2.25 μg BPA/kg bw/day) induced structural alterations in brain regions including the superior olivary complex (SOC) and bed nucleus of stria terminalis (BNST) with larger effect sizes (1.07≤ Cohens d ≤ 1.53). Human (n = 87) and rodent (n = 8 each group) sample sizes, while small, are considered adequate to perform the primary endpoint analysis. Combined, these human and mouse data suggest that gestational exposure to low levels of BPA may have some impacts on the developing brain at the resolution of MRI.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jess E Reynolds
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Madison Long
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Curtis Ostertag
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tyler Pollock
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Max Hamilton
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jeff F Dunn
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jonathan Martin
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Melody Grohs
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bennett Landman
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Yuankai Huo
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Deborah Dewey
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Deborah Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Catherine Lebel
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
29
|
Davis BR, Garza A, Church JA. Key considerations for child and adolescent MRI data collection. FRONTIERS IN NEUROIMAGING 2022; 1:981947. [PMID: 36312216 PMCID: PMC9615104 DOI: 10.3389/fnimg.2022.981947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022]
Abstract
Cognitive neuroimaging researchers' ability to infer accurate statistical conclusions from neuroimaging depends greatly on the quality of the data analyzed. This need for quality control is never more evident than when conducting neuroimaging studies with children and adolescents. Developmental neuroimaging requires patience, flexibility, adaptability, extra time, and effort. It also provides us a unique, non-invasive way to understand the development of cognitive processes, individual differences, and the changing relations between brain and behavior over the lifespan. In this discussion, we focus on collecting magnetic resonance imaging (MRI) data, as it is one of the more complex protocols used with children and youth. Through our extensive experience collecting MRI datasets with children and families, as well as a review of current best practices, we will cover three main topics to help neuroimaging researchers collect high-quality datasets. First, we review key recruitment and retention techniques, and note the importance for consistency and inclusion across groups. Second, we discuss ways to reduce scan anxiety for families and ways to increase scan success by describing the pre-screening process, use of a scanner simulator, and the need to focus on participant and family comfort. Finally, we outline several important design considerations in developmental neuroimaging such as asking a developmentally appropriate question, minimizing data loss, and the applicability of public datasets. Altogether, we hope this article serves as a useful tool for those wishing to enter or learn more about developmental cognitive neuroscience.
Collapse
Affiliation(s)
| | | | - Jessica A. Church
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
30
|
Manning KY, Reynolds JE, Long X, Llera A, Dewey D, Lebel C. Multimodal brain features at 3 years of age and their relationship with pre-reading measures 1 year later. Front Hum Neurosci 2022; 16:965602. [PMID: 36072890 PMCID: PMC9441575 DOI: 10.3389/fnhum.2022.965602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Pre-reading language skills develop rapidly in early childhood and are related to brain structure and functional architecture in young children prior to formal education. However, the early neurobiological development that supports these skills is not well understood. Here we acquired anatomical, diffusion tensor imaging (DTI) and resting state functional MRI (rs-fMRI) from 35 children at 3.5 years of age. Children were assessed for pre-reading abilities using the NEPSY-II subtests 1 year later (4.5 years). We applied a data-driven linked independent component analysis (ICA) to explore the shared co-variation of gray and white matter measures. Two sources of structural variation at 3.5 years of age demonstrated relationships with Speeded Naming scores at 4.5 years of age. The first imaging component involved volumetric variability in reading-related cortical regions alongside microstructural features of the superior longitudinal fasciculus (SLF). The second component was dominated by cortical volumetric variations within the cerebellum and visual association area. In a subset of children with rs-fMRI data, we evaluated the inter-network functional connectivity of the left-lateralized fronto-parietal language network (FPL) and its relationship with pre-reading measures. Higher functional connectivity between the FPL and the default mode and visual networks at 3.5 years significantly predicted better Phonological Processing scores at 4.5 years. Together, these results suggest that the integration of functional networks, as well as the co-development of white and gray matter brain structures in early childhood, support the emergence of pre-reading measures in preschool children.
Collapse
Affiliation(s)
- Kathryn Y. Manning
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jess E. Reynolds
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Xiangyu Long
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Alberto Llera
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behavior, Nijmegen, Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Deborah Dewey
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
31
|
Schneider DT, Balg J, Bernbeck B, Ellerkmann R, Klein M, Leutner A, Lindel P, Manns G, Mause U, Preziosi M, Schilling A, Schnittfeld S, Seyfert A, Winkelmann A, Rohde S. Magnetresonanztomographie-Untersuchung von Kindern in einem audiovisuell gestalteten Kinder-Magnetresonanztomographen. Monatsschr Kinderheilkd 2022. [DOI: 10.1007/s00112-022-01541-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Patel KB, Eldeniz C, Skolnick GB, Commean PK, Eshraghi Boroojeni P, Jammalamadaka U, Merrill C, Smyth MD, Goyal MS, An H. Cranial vault imaging for pediatric head trauma using a radial VIBE MRI sequence. J Neurosurg Pediatr 2022; 30:113-118. [PMID: 35453112 PMCID: PMC9587135 DOI: 10.3171/2022.2.peds2224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/28/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Head trauma is the most common indication for a CT scan. In this pilot study, the authors assess the feasibility of a 5-minute high-resolution 3D golden-angle (GA) stack-of-stars radial volumetric interpolated breath-hold examination (VIBE) MRI sequence (GA-VIBE) to obtain clinically acceptable cranial bone images and identify cranial vault fractures compared to CT. METHODS Patients younger than 18 years of age presenting after head trauma were eligible for the study. Three clinicians reviewed and assessed 1) slice-by-slice volumetric CT and inverted MR images, and 2) 3D reconstructions obtained from inverted MR images and the gold standard (CT). For each image set, reviewers noted on 5-point Likert scales whether they recommended that a repeat scan be performed and the presence or absence of cranial vault fractures. RESULTS Thirty-one patients completed MRI after a clinical head CT scan was performed. Based on CT imaging, 8 of 31 patients had cranial fractures. Two of 31 patients were sedated as part of their clinical MRI scan. In 30 (97%) of 31 MRI reviews, clinicians agreed (or strongly agreed) that the image quality was acceptable for clinical diagnosis. Overall, comparing MRI to acceptable gold-standard CT, sensitivity and specificity of fracture detection were 100%. Furthermore, there were no discrepancies between CT and MRI in classification of fracture type or location. CONCLUSIONS When compared with the gold standard (CT), the volumetric and 3D reconstructed images using the GA-VIBE sequence were able to produce clinically acceptable cranial images with excellent ability to detect cranial vault fractures.
Collapse
Affiliation(s)
| | - Cihat Eldeniz
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, Missouri; and
| | | | - Paul K. Commean
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, Missouri; and
| | | | | | | | - Matthew D. Smyth
- Department of Neurosurgery, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida
| | - Manu S. Goyal
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, Missouri; and
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, Missouri; and
| |
Collapse
|
33
|
Associations between Brain Microstructure and Phonological Processing Ability in Preschool Children. CHILDREN 2022; 9:children9060782. [PMID: 35740719 PMCID: PMC9221994 DOI: 10.3390/children9060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
Neuroimaging studies have associated brain changes in children with future reading and language skills, but few studies have investigated the association between language skills and white matter structure in preschool-aged children. Using 208 data sets acquired in 73 healthy children aged 2–7 years, we investigated the relationship between developmental brain microstructure and phonological processing ability as measured using their phonological processing raw score (PPRS). The correlation analysis showed that across the whole age group, with increasing age, PPRS increased, fractional anisotropy (FA) of the internal capsule and inferior fronto-occipital fasciculus and some other regions increased, and mean diffusivity (MD) of the corpus callosum and internal capsule and some other regions decreased. The results of the mediation analysis suggest that increased FA may be the basis of phonological processing ability development during this period, and the increased number of fiber connections between the right inferior parietal lobule and right supramarginal gyrus may be a key imaging feature of phonological processing ability development. Our study reflects the changes in brain microstructure and contributes to understanding the underlying neural mechanisms of language development in preschool children.
Collapse
|
34
|
Kar P, Reynolds JE, Gibbard WB, McMorris C, Tortorelli C, Lebel C. Trajectories of brain white matter development in young children with prenatal alcohol exposure. Hum Brain Mapp 2022; 43:4145-4157. [PMID: 35596624 PMCID: PMC9374879 DOI: 10.1002/hbm.25944] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/08/2022] [Accepted: 04/16/2022] [Indexed: 12/22/2022] Open
Abstract
Prenatal alcohol exposure (PAE) is associated with alterations to brain white matter microstructure. Previous studies of PAE have demonstrated different findings in young children compared to older children and adolescents, suggesting altered developmental trajectories and highlighting the need for longitudinal research. 122 datasets in 54 children with PAE (27 males) and 196 datasets in 89 children without PAE (45 males) were included in this analysis. Children underwent diffusion tensor imaging between 2 and 8 years of age, returning approximately every 6 months. Mean fractional anisotropy (FA) and mean diffusivity (MD) were obtained for 10 major brain white matter tracts and examined for age-related changes using linear mixed effects models with age, sex, group (PAE vs. control) and an age-by-group interaction. Children with PAE had slower decreases of MD over time in the genu of the corpus callosum, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, and uncinate fasciculus. No significant age-by-group interactions were noted for FA. These findings show slower white matter development in young children with PAE than in unexposed controls. This connects previous cross-sectional findings of lower MD in young children with PAE to findings of higher MD in older children and adolescents with PAE, and further helps to understand brain development in children with PAE. This deviation from typical development trajectories may reflect altered brain plasticity, which has implications for cognitive and behavioral learning in children with PAE.
Collapse
Affiliation(s)
- Preeti Kar
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Jess E Reynolds
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - William Ben Gibbard
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Carly McMorris
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Werklund School of Education, University of Calgary, Calgary, Alberta, Canada
| | | | - Catherine Lebel
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
35
|
Peard L, Gargollo P, Grant C, Strine A, De Loof M, Sinatti C, Spinoit AF, Hoebeke P, Cost NG, Rehfuss A, Alpert SA, Cranford W, Dugan AJ, Saltzman AF. Validation of the modified Bosniak classification system to risk stratify pediatric cystic renal masses: An international, multi-site study from the pediatric urologic oncology working group of the societies for pediatric urology. J Pediatr Urol 2022; 18:180.e1-180.e7. [PMID: 34961708 DOI: 10.1016/j.jpurol.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/29/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pediatric cystic renal lesions are challenging to manage as little is known about their natural course. A modified Bosniak (mBosniak) classification system has been proposed for risk stratification in pediatric patients that takes ultrasound (US) and/or computed tomogram (CT) characteristics into account. However, literature validating this system remains limited. OBJECTIVE To determine if the mBosniak classification system correlates with pathologic diagnoses. The hypothesis is that mBosniak classification can stratify the risk of malignancy in children with renal cysts. STUDY DESIGN Patients treated for cystic renal masses with available imaging and pathology between 2000 and 2019 from five institutions were identified. Clinical characteristics and pathology were obtained retrospectively. Characteristics from the most recent US, CT, and/or magnetic resonance imaging (MRI) were recorded. Reviewers assigned a mBosniak classification to each scan. mBosniak scores 1/2 were considered low-risk and 3/4 high-risk. These groups were compared with pathology (classified as benign, intermediate, malignant). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (+LR), and negative likelihood ratio (-LR) were calculated to assess this categorization as a screening tool to guide surgical intervention. Agreement between imaging modalities was also explored. RESULTS 99 patients were identified. High-risk imaging findings were correlated with malignant or intermediate pathology with a sensitivity of 88.3%, specificity of 84.6%, PPV of 89.8%, NPV of 82.5%, +LR of 5.7, and -LR of 0.14. The sensitivity for detecting malignant lesions only was 100%. There was substantial agreement between US/CT (n = 55; κ = 0.66) and moderate agreement between US/MRI (n = 20; κ = 0.52) and CT/MRI (n = 13; κ = 0.47). DISCUSSION The mBos classification system is a useful tool in predicting the likelihood of benign vs. intermediate or malignant pathology. The relatively high sensitivity and specificity of the system for prediction of high-risk lesions makes this classification applicable to clinical decision making. In addition, all malignant lesions were accurately identified as mBosniak 4 on imaging. This study adds substantial data to the relatively small body of literature validating the mBosniak system for risk stratifying pediatric cystic renal lesions. CONCLUSIONS Pediatric cystic renal lesions assigned mBosniak class 1/2 are mostly benign, whereas class 3/4 lesions are likely intermediate or malignant pathology. We observed that the mBosniak system correctly identified pathology appropriate for surgical management in 88% of cases and did not miss malignant pathologies. There is substantial agreement between CT and US scans concerning mBos classification.
Collapse
Affiliation(s)
- Leslie Peard
- Department of Urology, University of Kentucky, 800 Rose St., Lexington, KY, 40536, USA
| | | | - Campbell Grant
- Division of Urology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Andrew Strine
- Division of Urology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Manon De Loof
- Department of Urology, Ghent University Hospital, Ghent University, Corneel Heymanslaan 10, Gent, 9000, Belgium
| | - Céline Sinatti
- Department of Urology, Ghent University Hospital, Ghent University, Corneel Heymanslaan 10, Gent, 9000, Belgium
| | - Anne-Françoise Spinoit
- Department of Urology, Ghent University Hospital, Ghent University, Corneel Heymanslaan 10, Gent, 9000, Belgium
| | - Piet Hoebeke
- Department of Urology, Ghent University Hospital, Ghent University, Corneel Heymanslaan 10, Gent, 9000, Belgium
| | - Nicholas G Cost
- Department of Surgery, Division of Urology, Surgical Oncology Program at Children's Hospital Colorado, University of Colorado School of Medicine, Children's Hospital of Colorado, 13123 E. 16th Ave., Aurora, CO, 80045, USA
| | - Alexandra Rehfuss
- Department of Urology, Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH, 43205, USA
| | - Seth A Alpert
- Department of Urology, Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH, 43205, USA
| | - Will Cranford
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Adam J Dugan
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Amanda F Saltzman
- Department of Urology, University of Kentucky, 800 Rose St., Lexington, KY, 40536, USA.
| |
Collapse
|
36
|
Hendrix CL, Thomason ME. A survey of protocols from 54 infant and toddler neuroimaging research labs. Dev Cogn Neurosci 2022; 54:101060. [PMID: 35033971 PMCID: PMC8762357 DOI: 10.1016/j.dcn.2022.101060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/20/2021] [Accepted: 01/09/2022] [Indexed: 01/13/2023] Open
Abstract
Infant and toddler MRI enables unprecedented insight into the developing brain. However, consensus about optimal data collection practices is lacking, which slows growth of the field and impedes replication efforts. The goal of this study was to collect systematic data across a large number of infant/toddler research laboratories to better understand preferred practices. Survey data addressed MRI acquisition strategies, scan success rates, visit preparations, scanning protocols, accommodations for families, study design, and policies regarding incidental findings. Respondents had on average 8 years' experience in early life neuroimaging and represented more than fifty research laboratories. Areas of consensus across labs included higher success rates among newborns compared to older infants or toddlers, high rates of data loss across age groups, endorsement of multiple layers of hearing protection, and age-specific scan preparation and participant accommodation. Researchers remain divided on decisions in longitudinal study design and practices regarding incidental findings. This study summarizes practices honed over years of work by a large collection of scientists, which may serve as an important resource for those new to the field. The ability to reference data about best practices facilitates future harmonization, data sharing, and reproducibility, all of which advance this important frontier in developmental science.
Collapse
Affiliation(s)
- Cassandra L Hendrix
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA.
| | - Moriah E Thomason
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA; Department of Population Health, New York University Medical Center, New York, NY, USA; Neuroscience Institute, New York University Medical Center, New York, NY, USA
| |
Collapse
|
37
|
Kraus D, Horowitz‐Kraus T. Functional MRI research involving healthy children: Ethics, safety and recommended procedures. Acta Paediatr 2022; 111:741-749. [PMID: 34986521 DOI: 10.1111/apa.16247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/26/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
Abstract
AIM This specific review aims to expose clinicians, researchers and administrators in hospitals to the importance, procedures and safety of fMRI studies to promote the increased utilisation of such studies in different geographical places worldwide. The child's brain is developing rapidly, both structurally and functionally. These functional changes can only be detected using functional scans generated from an MRI machine and referred to as a functional MRI (fMRI). This method may be used clinically in complex medical and surgical conditions (e.g., epilepsy surgery), but these days are often used for research purposes. However, due to ethical and logistical considerations, fMRI in the paediatric population is not widely and equally used in different geographical places. CONCLUSIONS The benefits of using this method to define the functional changes occurring in the developing brain are discussed in this review, along with desensitisation methods recommended when working with this vulnerable population in research and even in a clinical setting.
Collapse
Affiliation(s)
- Dror Kraus
- Pediatric Neurology Institute Schneider Children's Medical Center of Israel Tel Aviv University Petach‐Tiqua Israel
| | - Tzipi Horowitz‐Kraus
- Educational Neuroimaging Group Faculty of Education in Science and Technology Faculty of Biomedical Engineering Haifa Israel
- Kennedy Krieger Institute Baltimore Maryland USA
- Department of Psychiatry and Behavioral Sciences Johns Hopkins University School of Medicine Baltimore Maryland USA
| |
Collapse
|
38
|
Prenatal depression exposure alters white matter integrity and neurodevelopment in early childhood. Brain Imaging Behav 2022; 16:1324-1336. [PMID: 35000066 PMCID: PMC9107412 DOI: 10.1007/s11682-021-00616-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 11/02/2022]
Abstract
Prenatal exposure to maternal depression increases the risk for onset of emotional and behavioral disorders in children. We investigated the effects of exposure to prenatal depression on white matter microstructural integrity at birth and at 2-3 years, and associated neurodevelopment. Diffusion-weighted images were acquired for children of the Drakenstein Child Health Study at 2-4 weeks postpartum (n=70, 47% boys) and at 2-3 years of age (n=60, 58% boys). Tract-Based Spatial Statistics was used to compare, using an ROI based approach, diffusion tensor metrics across groups defined by presence (>19 on Beck's Depression Inventory and/or >12 on the Edinburgh Postnatal Depression Scale) or absence (below depression thresholds) of depression, and associations with neurodevelopmental measures at age 2-3 years were determined. We did not detect group differences in white matter integrity at neonatal age, but at 2-3 years, children in the exposed group demonstrated higher fractional anisotropy, and lower mean and radial diffusivity in association tracts compared to controls. This was notable in the sagittal stratum (radial diffusivity: p<0.01). Altered white matter integrity metrics were also observed in projection tracts, including the corona radiata, which associated with cognitive and motor outcomes in exposed 2-3-year-olds (p<0.05). Our findings of widespread white matter alterations in 2-3-year-old children with prenatal exposure to depression are consistent with previous findings, as well as with neuroimaging findings in adults with major depression. Further, we identified novel associations of altered white matter integrity with cognitive development in depression-exposed children, suggesting that these neuroimaging findings may have early functional impact.
Collapse
|
39
|
Goddings AL, Roalf D, Lebel C, Tamnes CK. Development of white matter microstructure and executive functions during childhood and adolescence: a review of diffusion MRI studies. Dev Cogn Neurosci 2021; 51:101008. [PMID: 34492631 PMCID: PMC8424510 DOI: 10.1016/j.dcn.2021.101008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) provides indirect measures of white matter microstructure that can be used to make inferences about structural connectivity within the brain. Over the last decade, a growing literature of cross-sectional and longitudinal studies have documented relationships between dMRI indices and cognitive development. In this review, we provide a brief overview of dMRI methods and how they can be used to study white matter and connectivity and review the extant literature examining the links between dMRI indices and executive functions during development. We explore the links between white matter microstructure and specific executive functions: inhibition, working memory and cognitive shifting, as well as performance on complex executive function tasks. Concordance in findings across studies are highlighted, and potential explanations for discrepancies between results, together with challenges with using dMRI in child and adolescent populations, are discussed. Finally, we explore future directions that are necessary to better understand the links between child and adolescent development of structural connectivity of the brain and executive functions.
Collapse
Affiliation(s)
- Anne-Lise Goddings
- UCL Great Ormond Street Institute of Child Health, University College London, UK.
| | - David Roalf
- Department of Psychiatry, University of Pennsylvania, USA; Lifespan Brain Institute, Children's Hospital of Philadelphia and the University of Pennsylvania, USA
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Alberta, Canada
| | - Christian K Tamnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
40
|
Ostertag C, Reynolds JE, Dewey D, Landman B, Huo Y, Lebel C. Altered gray matter development in pre-reading children with a family history of reading disorder. Dev Sci 2021; 25:e13160. [PMID: 34278658 DOI: 10.1111/desc.13160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022]
Abstract
Reading disorders are common in children and can impact academic success, mental health, and career prospects. Reading is supported by network of interconnected left hemisphere brain regions, including temporo-parietal, occipito-temporal, and inferior-frontal circuits. Poor readers often show hypoactivation and reduced gray matter volumes in this reading network, with hyperactivation and increased volumes in the posterior right hemisphere. We assessed gray matter development longitudinally in pre-reading children aged 2-5 years using magnetic resonance imaging (MRI) (N = 32, 110 MRI scans; mean age: 4.40 ± 0.77 years), half of whom had a family history of reading disorder. The family history group showed slower proportional growth (relative to total brain volume) in the left supramarginal and inferior frontal gyri, and faster proportional growth in the right angular, right fusiform, and bilateral lingual gyri. This suggests delayed development of left hemisphere reading areas in children with a family history of dyslexia, along with faster growth in right homologues. This alternate development pattern may predispose the brain to later reading difficulties and may later manifest as the commonly noted compensatory mechanisms. The results of this study further shows our understanding of structural brain alterations that may form the neurological basis of reading difficulties.
Collapse
Affiliation(s)
- Curtis Ostertag
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jess E Reynolds
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah Dewey
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Bennett Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Yuankai Huo
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
41
|
Copeland A, Silver E, Korja R, Lehtola SJ, Merisaari H, Saukko E, Sinisalo S, Saunavaara J, Lähdesmäki T, Parkkola R, Nolvi S, Karlsson L, Karlsson H, Tuulari JJ. Infant and Child MRI: A Review of Scanning Procedures. Front Neurosci 2021; 15:666020. [PMID: 34321992 PMCID: PMC8311184 DOI: 10.3389/fnins.2021.666020] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a safe method to examine human brain. However, a typical MR scan is very sensitive to motion, and it requires the subject to lie still during the acquisition, which is a major challenge for pediatric scans. Consequently, in a clinical setting, sedation or general anesthesia is often used. In the research setting including healthy subjects anesthetics are not recommended for ethical reasons and potential longer-term harm. Here we review the methods used to prepare a child for an MRI scan, but also on the techniques and tools used during the scanning to enable a successful scan. Additionally, we critically evaluate how studies have reported the scanning procedure and success of scanning. We searched articles based on special subject headings from PubMed and identified 86 studies using brain MRI in healthy subjects between 0 and 6 years of age. Scan preparations expectedly depended on subject's age; infants and young children were scanned asleep after feeding and swaddling and older children were scanned awake. Comparing the efficiency of different procedures was difficult because of the heterogeneous reporting of the used methods and the success rates. Based on this review, we recommend more detailed reporting of scanning procedure to help find out which are the factors affecting the success of scanning. In the long term, this could help the research field to get high quality data, but also the clinical field to reduce the use of anesthetics. Finally, we introduce the protocol used in scanning 2 to 5-week-old infants in the FinnBrain Birth Cohort Study, and tips for calming neonates during the scans.
Collapse
Affiliation(s)
- Anni Copeland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Eero Silver
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Riikka Korja
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Satu J. Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Ekaterina Saukko
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Susanne Sinisalo
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Pediatric Neurology, Turku University Hospital, University of Turku, Turku, Finland
| | - Riitta Parkkola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Saara Nolvi
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychology and Speech-Language Pathology, Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Jetro J. Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Borbás R, Fehlbaum LV, Rudin U, Stadler C, Raschle NM. Neural correlates of theory of mind in children and adults using CAToon: Introducing an open-source child-friendly neuroimaging task. Dev Cogn Neurosci 2021; 49:100959. [PMID: 33989857 PMCID: PMC8134957 DOI: 10.1016/j.dcn.2021.100959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 01/05/2023] Open
Abstract
Theory of Mind (ToM) or mentalizing is a basic social skill which is characterized by our ability of perspective-taking and the understanding of cognitive and emotional states of others. ToM development is essential to successfully navigate in various social contexts. The neural basis of mentalizing is well-studied in adults, however, less evidence exists in children. Potential reasons are methodological challenges, including a lack of age-appropriate fMRI paradigms. We introduce a novel child-friendly and open-source ToM fMRI task, for which accuracy and performance were evaluated behaviorally in 60 children ages three to nine (32♂). Furthermore, 27 healthy young adults (14♂; mean = 25.41 years) and 33 children ages seven to thirteen (17♂; mean = 9.06 years) completed the Cognitive and Affective Theory of Mind Cartoon task (CAToon;www.jacobscenter.uzh.ch/en/research/developmental_neuroscience/downloads/catoon.html) during a fMRI session. Behavioral results indicate that children of all ages can solve the CAToon task above chance level, though reliable performance is reached around five years. Neurally, activation increases were observed for adults and children in brain regions previously associated with mentalizing, including bilateral temporoparietal junction, temporal gyri, precuneus and medial prefrontal/orbitofrontal cortices. We conclude that CAToon is suitable for developmental neuroimaging studies within an fMRI environment starting around preschool and up.
Collapse
Affiliation(s)
- Réka Borbás
- Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland; Department of Child and Adolescent Psychiatry, University of Basel, University Psychiatric Clinics Basel, Basel, Switzerland
| | - Lynn V Fehlbaum
- Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland; Department of Child and Adolescent Psychiatry, University of Basel, University Psychiatric Clinics Basel, Basel, Switzerland
| | - Ursula Rudin
- Department of Child and Adolescent Psychiatry, University of Basel, University Psychiatric Clinics Basel, Basel, Switzerland
| | - Christina Stadler
- Department of Child and Adolescent Psychiatry, University of Basel, University Psychiatric Clinics Basel, Basel, Switzerland
| | - Nora M Raschle
- Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland; Department of Child and Adolescent Psychiatry, University of Basel, University Psychiatric Clinics Basel, Basel, Switzerland.
| |
Collapse
|
43
|
Sargolzaei S. Can Deep Learning Hit a Moving Target? A Scoping Review of Its Role to Study Neurological Disorders in Children. Front Comput Neurosci 2021; 15:670489. [PMID: 34025380 PMCID: PMC8131543 DOI: 10.3389/fncom.2021.670489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Neurological disorders dramatically impact patients of any age population, their families, and societies. Pediatrics are among vulnerable age populations who differently experience the devastating consequences of neurological conditions, such as attention-deficit hyperactivity disorders (ADHD), autism spectrum disorders (ASD), cerebral palsy, concussion, and epilepsy. System-level understanding of these neurological disorders, particularly from the brain networks' dynamic perspective, has led to the significant trend of recent scientific investigations. While a dramatic maturation in the network science application domain is evident, leading to a better understanding of neurological disorders, such rapid utilization for studying pediatric neurological disorders falls behind that of the adult population. Aside from the specific technological needs and constraints in studying neurological disorders in children, the concept of development introduces uncertainty and further complexity topping the existing neurologically driven processes caused by disorders. To unravel these complexities, indebted to the availability of high-dimensional data and computing capabilities, approaches based on machine learning have rapidly emerged a new trend to understand pathways better, accurately diagnose, and better manage the disorders. Deep learning has recently gained an ever-increasing role in the era of health and medical investigations. Thanks to its relatively more minor dependency on feature exploration and engineering, deep learning may overcome the challenges mentioned earlier in studying neurological disorders in children. The current scoping review aims to explore challenges concerning pediatric brain development studies under the constraints of neurological disorders and offer an insight into the potential role of deep learning methodology on such a task with varying and uncertain nature. Along with pinpointing recent advancements, possible research directions are highlighted where deep learning approaches can assist in computationally targeting neurological disorder-related processes and translating them into windows of opportunities for interventions in diagnosis, treatment, and management of neurological disorders in children.
Collapse
Affiliation(s)
- Saman Sargolzaei
- Department of Engineering, College of Engineering and Natural Sciences, University of Tennessee at Martin, Martin, TN, United States
| |
Collapse
|
44
|
Kar P, Reynolds JE, Grohs MN, Gibbard WB, McMorris C, Tortorelli C, Lebel C. White matter alterations in young children with prenatal alcohol exposure. Dev Neurobiol 2021; 81:400-410. [PMID: 33829663 DOI: 10.1002/dneu.22821] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/15/2021] [Accepted: 04/03/2021] [Indexed: 12/28/2022]
Abstract
Prenatal alcohol exposure (PAE) can lead to cognitive, behavioural, and social-emotional challenges. Previous neuroimaging research has identified structural brain alterations in newborns, older children, adolescents, and adults with PAE; however, little is known about brain structure in young children. Extensive brain development occurs during early childhood; therefore, understanding the neurological profiles of young children with PAE is critical for early identification and effective intervention. We studied 54 children (5.21 ± 1.11 years; 27 males) with confirmed PAE (94% also had other prenatal exposures, 74% had adverse postnatal experiences) compared with 54 age- and sex-matched children without PAE. Children underwent diffusion tensor imaging between 2 and 7 years of age. Mean fractional anisotropy (FA) and mean diffusivity (MD) were obtained for 10 major white matter tracts. Univariate analyses of covariance were used to test group differences (PAE vs. control) controlling for age and sex. The PAE group had higher FA in the genu of the corpus callosum and lower MD in the bilateral uncinate fasciculus. The PAE group also had lower tract volume in the corpus callosum, the bilateral inferior fronto-occipital fasciculi, and the right superior longitudinal fasciculus. Our findings align with studies of newborns with PAE reporting lower diffusivity, but contrast those in older populations with PAE, which consistently report lower FA and higher MD. Further research is needed to understand trajectories of white matter development and how our results of higher FA/lower MD in young children connect with lower FA/higher MD observed at older ages.
Collapse
Affiliation(s)
- Preeti Kar
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jess E Reynolds
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Melody N Grohs
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - W Ben Gibbard
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Carly McMorris
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Werklund School of Education, University of Calgary, Calgary, AB, Canada
| | | | - Catherine Lebel
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
45
|
DeMayo MM, Pokorski I, Song YJC, Thapa R, Patel S, Ambarchi Z, Soligo D, Sadeli I, Thomas EE, Hickie IB, Guastella AJ. The Feasibility of Magnetic Resonance Imaging in a Non-Selective Comprehensive Clinical Trial in Pediatric Autism Spectrum Disorder. J Autism Dev Disord 2021; 52:1211-1222. [PMID: 33903957 DOI: 10.1007/s10803-021-05028-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
There is an increasing interest in using magnetic resonance imaging (MRI) as a tool for precision medicine in autism spectrum disorder (ASD). This study investigated the feasibility of MRI scanning in a large comprehensive, inclusive and test heavy clinical trial for children (aged 3-12 years) with ASD, without functioning constraints for participation. Of the 71 participants enrolled who consented to the MRI, 24 participants (38%) successfully completed an MRI scan at baseline along with other assessments. This scanning followed a familiarization procedure at two preceding visits. At post-treatment, 21 participants successfully completed the MRI scan. This study highlights the challenge of completing MRI assessments in ASD populations when conducted as one of a number of tests in a clinical trial.
Collapse
Affiliation(s)
- Marilena M DeMayo
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Izabella Pokorski
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Yun J C Song
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Rinku Thapa
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Shrujna Patel
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Zahava Ambarchi
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | | | - Indra Sadeli
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Emma E Thomas
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Ian B Hickie
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia.,Faculty of Medicine and Health, Brain and Mind Centre, Central Clinical School, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Adam J Guastella
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
46
|
Kar P, Reynolds JE, Grohs MN, Bell RC, Jarman M, Dewey D, Lebel C. Association between breastfeeding during infancy and white matter microstructure in early childhood. Neuroimage 2021; 236:118084. [PMID: 33882345 DOI: 10.1016/j.neuroimage.2021.118084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Associations between breastfeeding and brain development, in the context of child, perinatal, and sociodemographic variables, remain unclear. This study investigated whether exclusive breastfeeding for the first 6 months and total duration of breastfeeding were associated with brain white matter microstructure in young children. METHODS This study included 85 typically developing children (42 males) born to 83 mothers that were predominantly white, highly educated, and in high income households. Children underwent their first diffusion tensor imaging scan between ages 2.34 and 6.97 years; some children returned multiple times, providing a total of 331 datasets. Feeding information was collected from mothers at 3, 6, and 12 months postpartum and at their child's scan to calculate breastfeeding status at 6 months (exclusive or not) as well as total duration of any breastfeeding. Linear regression was used to investigate associations between breastfeeding exclusivity/duration and fractional anisotropy (FA) for the whole brain and 10 individual white matter tracts. RESULTS Breastfeeding exclusivity and duration were associated with global and regional white matter microstructure, even after controlling for perinatal and sociodemographic factors. Greater exclusivity was associated with higher FA in females and lower FA in males. CONCLUSIONS These findings suggest white matter differences associated with breastfeeding that differ by sex. These may stem from different trajectories in white matter development between males and females in early childhood and suggest possible long-term white matter differences associated with breastfeeding.
Collapse
Affiliation(s)
- Preeti Kar
- Alberta Children's Hospital Research Institute, Canada; Hotchkiss Brain Institute, University of Calgary, Canada.
| | - Jess E Reynolds
- Alberta Children's Hospital Research Institute, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Departments of Radiology, University of Calgary, Canada.
| | - Melody N Grohs
- Alberta Children's Hospital Research Institute, Canada; Hotchkiss Brain Institute, University of Calgary, Canada.
| | - Rhonda C Bell
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Canada.
| | - Megan Jarman
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Canada.
| | - Deborah Dewey
- Alberta Children's Hospital Research Institute, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Department of Pediatrics, University of Calgary, Canada; Department of Community Health Sciences, University of Calgary, Canada.
| | - Catherine Lebel
- Alberta Children's Hospital Research Institute, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Departments of Radiology, University of Calgary, Canada.
| |
Collapse
|
47
|
Vecchiato K, Egloff A, Carney O, Siddiqui A, Hughes E, Dillon L, Colford K, Green E, Texeira RPAG, Price AN, Ferrazzi G, Hajnal JV, Carmichael DW, Cordero-Grande L, O'Muircheartaigh J. Evaluation of DISORDER: Retrospective Image Motion Correction for Volumetric Brain MRI in a Pediatric Setting. AJNR Am J Neuroradiol 2021; 42:774-781. [PMID: 33602745 DOI: 10.3174/ajnr.a7001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/02/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE Head motion causes image degradation in brain MR imaging examinations, negatively impacting image quality, especially in pediatric populations. Here, we used a retrospective motion correction technique in children and assessed image quality improvement for 3D MR imaging acquisitions. MATERIALS AND METHODS We prospectively acquired brain MR imaging at 3T using 3D sequences, T1-weighted MPRAGE, T2-weighted TSE, and FLAIR in 32 unsedated children, including 7 with epilepsy (age range, 2-18 years). We implemented a novel motion correction technique through a modification of k-space data acquisition: Distributed and Incoherent Sample Orders for Reconstruction Deblurring by using Encoding Redundancy (DISORDER). For each participant and technique, we obtained 3 reconstructions as acquired (Aq), after DISORDER motion correction (Di), and Di with additional outlier rejection (DiOut). We analyzed 288 images quantitatively, measuring 2 objective no-reference image quality metrics: gradient entropy (GE) and MPRAGE white matter (WM) homogeneity. As a qualitative metric, we presented blinded and randomized images to 2 expert neuroradiologists who scored them for clinical readability. RESULTS Both image quality metrics improved after motion correction for all modalities, and improvement correlated with the amount of intrascan motion. Neuroradiologists also considered the motion corrected images as of higher quality (Wilcoxon z = -3.164 for MPRAGE; z = -2.066 for TSE; z = -2.645 for FLAIR; all P < .05). CONCLUSIONS Retrospective image motion correction with DISORDER increased image quality both from an objective and qualitative perspective. In 75% of sessions, at least 1 sequence was improved by this approach, indicating the benefit of this technique in unsedated children for both clinical and research environments.
Collapse
Affiliation(s)
- K Vecchiato
- From the Department for Forensic and Neurodevelopmental Sciences (K.V., J.O.), Institute of Psychiatry, Psychology and Neuroscience .,Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences
| | - A Egloff
- Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences
| | - O Carney
- Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences.,Department of Radiology (O.C.), Great Ormond Street Hospital for Children, NHS Foundation Trust London, United Kingdom
| | - A Siddiqui
- Department of Radiology (A.S.), Guy's and Saint Thomas' Hospitals NHS Trust, London, United Kingdom
| | - E Hughes
- Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences
| | - L Dillon
- Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences
| | - K Colford
- Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences
| | - E Green
- Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences
| | - R P A G Texeira
- Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences
| | - A N Price
- Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences
| | - G Ferrazzi
- IRCCS San Camillo Hospital (G.F.), Venice, Italy
| | - J V Hajnal
- Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences
| | - D W Carmichael
- EPSRC/Wellcome Centre for Medical Engineering, Biomedical Engineering (D.W.C.)
| | - L Cordero-Grande
- Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences .,Biomedical Image Technologies, ETSI Telecomunicación (L.C.-G.), Universidad Politécnica de Madrid & CIBER-BBN, Madrid, Spain
| | - J O'Muircheartaigh
- From the Department for Forensic and Neurodevelopmental Sciences (K.V., J.O.), Institute of Psychiatry, Psychology and Neuroscience.,Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences.,MRC Centre for Neurodevelopmental Disorders (J.O.), King's College London, London, United Kingdom
| |
Collapse
|
48
|
Donnici C, Long X, Dewey D, Letourneau N, Landman B, Huo Y, Lebel C. Prenatal and postnatal maternal anxiety and amygdala structure and function in young children. Sci Rep 2021; 11:4019. [PMID: 33597557 PMCID: PMC7889894 DOI: 10.1038/s41598-021-83249-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Anxiety symptoms are relatively common during pregnancy and are associated with behavioural problems in children. The amygdala is involved in emotion regulation, and its volume and function are associated with exposure to prenatal maternal depression. The associations between perinatal maternal anxiety and children's amygdala structure and function remain unclear. The objective of this study was to determine associations between prenatal and postnatal maternal anxiety and amygdala structure and function in children. Maternal anxiety was measured during the second trimester of pregnancy and 12 weeks postpartum. T1-weighted anatomical data and functional magnetic resonance imaging data were collected from 54 children (25 females), between the ages of 3-7 years. Amygdala volume was calculated and functional connectivity maps were created between the amygdalae and the rest of the brain. Spearman correlations were used to test associations between amygdala volume/functional connectivity and maternal anxiety symptoms, controlling for maternal depression symptoms. Second trimester maternal anxiety symptoms were negatively associated with functional connectivity between the left amygdala and clusters in bilateral parietal regions; higher maternal anxiety was associated with increased negative connectivity. Postnatal maternal anxiety symptoms were positively associated with child amygdala volume, but this finding did not remain significant while controlling for total brain volume. These functional connectivity differences may underlie behavioral outcomes in children exposed to maternal anxiety during pregnancy.
Collapse
Affiliation(s)
- Claire Donnici
- Neuroscience Program, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Xiangyu Long
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Deborah Dewey
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Nicole Letourneau
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
- Faculty of Nursing, University of Calgary, Calgary, AB, Canada
| | - Bennett Landman
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Yuankai Huo
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Catherine Lebel
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada.
- Department of Radiology, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, Calgary, AB, Canada.
| |
Collapse
|
49
|
Turesky TK, Vanderauwera J, Gaab N. Imaging the rapidly developing brain: Current challenges for MRI studies in the first five years of life. Dev Cogn Neurosci 2021; 47:100893. [PMID: 33341534 PMCID: PMC7750693 DOI: 10.1016/j.dcn.2020.100893] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/21/2020] [Accepted: 12/05/2020] [Indexed: 12/20/2022] Open
Abstract
Rapid and widespread changes in brain anatomy and physiology in the first five years of life present substantial challenges for developmental structural, functional, and diffusion MRI studies. One persistent challenge is that methods best suited to earlier developmental stages are suboptimal for later stages, which engenders a trade-off between using different, but age-appropriate, methods for different developmental stages or identical methods across stages. Both options have potential benefits, but also biases, as pipelines for each developmental stage can be matched on methods or the age-appropriateness of methods, but not both. This review describes the data acquisition, processing, and analysis challenges that introduce these potential biases and attempts to elucidate decisions and make recommendations that would optimize developmental comparisons.
Collapse
Affiliation(s)
- Ted K Turesky
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Jolijn Vanderauwera
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Psychological Sciences Research Institute, Université Catholique De Louvain, Louvain-la-Neuve, Belgium; Institute of Neuroscience, Université Catholique De Louvain, Louvain-la-Neuve, Belgium
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Gentle Touch: Noninvasive Approaches to Improve Patient Comfort and Cooperation for Pediatric Imaging. Top Magn Reson Imaging 2021; 29:187-195. [PMID: 32541256 DOI: 10.1097/rmr.0000000000000245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pediatric imaging presents unique challenges related to patient anxiety, cooperation, and safety. Techniques to reduce anxiety and patient motion in adults must often be augmented in pediatrics, because it is always mentioned in the field of pediatrics, children are not miniature adults. This article will review methods that can be considered to improve patient experience and cooperation in imaging studies. Such techniques can range from modifications to the scanner suite, different ways of preparing and interacting with children, collaborating with parents for improved patient care, and technical advances such as accelerated acquisition and motion correction to reduce artifact. Special considerations for specific populations including transgender patients, neonates, and pregnant women undergoing fetal imaging will be described. The unique risks of sedation in children will also be briefly reviewed.
Collapse
|